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Abstract: In this paper, a passivity-based optimal control method
for a broad class of nonlinear discrete-time systems is proposed. The
resulting control law is a static output feedback law which is practi-
cally preferred with respect to the state feedback law and is simple to
implement. The control law has a general structure with adjustable
parameters which are tuned, using an optimization method (genetic
algorithm), to minimize an arbitrary cost function. By choosing
this cost function it is possible to shape the transient response of
the closed-loop system, as it is desirable. An illustrative example
shows the effectiveness of the proposed approach.
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1. Introduction

The concept of dissipativity and its particular case, passivity, were born from
the observation of physical systems behaviors. These concepts have provided a
useful tool for analysis of nonlinear systems. One of the main motivations, in the
study of passivity in the system theory, is its connection with stability (Willems,
1972; Hill and Moylan, 1976; Sengor, 1995; Byrnes, Isidori and Willems, 1991).
Passive systems have this valuable property that with a special kind of output
feedback, their closed-loop stability is guaranteed.

A very important tool to check the dissipativity or passivity of continuous-
time and discrete-time systems is the well-known Kalman-Yakubovich-Popov
(KYP) Lemma or its equivalent for linear systems, i.e. Positive Real Lemma
(PR) (Willems, 1972). In the paper of Hill and Moylan (1976), the KYP con-
ditions have been developed for a broad class of nonlinear continuous-time sys-
tems. This work was continued by Isidori and Willems (1991) for affine nonlinear
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systems. In the case of discrete-time systems, first, KYP Lemma was developed
for linear systems (Hitz and Anderson, 1969) and then, KYP conditions were
developed for nonlinear systems which are affine in control (Byrnes and Lin,
1993, 1994; Lin and Byrnes, 1995). In the paper of Sengor (1995), new defini-
tions of lossless and dissipative systems in the framework of abstract dynamical
energy systems were proposed and then the appropriate KYP conditions were
developed. In the case of non-affine discrete-time systems, the KYP lemma
has been presented for single-input single-output systems by Navarro-Lopez,
Sira-Ramirez and Fossas-Colet (2002). Then, KYP conditions for single-input
multiple-output systems which are non-affine-in-input, have been presented by
Monaco and Normand-Cyrot (1997, 1999). Navarro-Lopez (2002, 2007) de-
veloped KYP conditions for a class of dissipativity called Quadratic Storage
Supply-dissipativity for MIMO general systems. There are also other studies in
this regard (for instance, see Navarro-Lopez, 2005).

The close connection between stability and passivity concepts has caused
the development of passivity-based control methods. In this regard, Byrnes
and Isidori (1991) have shown that a number of stabilization theorems may be
derived from the basic stability property of passive systems. In Byrnes and Lin
(1993); Lin and Byrnes (1995); Navarro-Lopez (2002, 2007); Navarro-Lopez,
Sira-Ramirez and Fossas-Colet (2002); Navarro-Lopez and Fossas-Colet (2004)
nonlinear discrete-time systems which are affine in the control input, have been
studied and some theorems on passivity-based control of such systems have been
presented.

However, in the case of non-passive system, the above mentioned methods
were inapplicable. Therefore, the action of making a system passive using a
static state feedback, which is known as feedback passivity (passification), was
studied. Consequently, sufficient conditions to convert MIMO non-passive sys-
tems to passive ones were proposed in the series of papers (Shuping, Guoshan
and Wanquan, 2010; Navarro-Lopez, 2002, 2007; Navarro-Lopez, Sira-Ramirez
and Fossas-Colet, 2002; Navarro-Lopez and Fossas-Colet, 2004).

The problem of stabilization of passive systems may be summarized as fol-
lows: If a nonlinear system is zero-state detectable and passive (with a positive
definite storage function), the origin can be globally stabilized by the output
feedback u = −ϕ(y), where ϕ is any locally Lipschitz function such that ϕ(0) = 0
and yTϕ(y) > 0, for all y 6= 0 (Lin and Byrnes, 1995). The output feedback is
more preferred with respect to another type of feedback law (state feedback).
This is because that the state variables in many of applications are not available
or measurable. However, the system output is almost always available. More-
over, the proposed control law is static which is, in practice, much preferred
with respect to a dynamic output control law.

There is a great freedom in choosing this function. For any first-third quad-
rant sector function (ϕ(y)), the closed-loop system is asymptotically stable.
However, the choice of this function affects the transient response of the sys-
tem. The above mentioned papers have not considered the desired transient
response in their design method.
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One of the significant approaches in shaping the transient response of a
system (the trajectories of state variables and the control input) is to define a
cost function in the design procedure. Placing appropriate terms with proper
weighting coefficients in this cost function can force the closed-loop system to
have the desirable transient response (Lewis, Vrabie and Syrmos, 2012).

In this paper, presenting the first study connecting passivity-based control
and optimality concepts for discrete-time nonlinear systems, a design method
based on choosing an appropriate cost function is presented. The purpose of this
paper is to use the freedom in choosing the function ϕ(y), in such a way that a
given cost function be minimized. Therefore, a general structure for ϕ(y) (which
satisfies the above conditions) is considered. In the proposed structure, there
are adjustable parameters which may be found by an optimization algorithm
like genetic algorithm (GA).

The remainder of this paper is organized as follows: In the next section, the
basic definitions and a theorem about passive nonlinear discrete-time systems
are presented. Section 3 presents a scheme to design a controller for passive
systems in such a way that an appropriate cost function is minimized. A design
example is given in Section 4. Finally, conclusions are presented in Section 5.

2. Preliminary definitions

This section introduces some basic definitions concerning the concept of pas-
sivity in the nonlinear discrete-time systems, based on the definitions from the
papers of Willems (1972) and Lin and Byrnes (1995).

A general class of nonlinear discrete-time systems can be described by the
following state-space equations:

x(k + 1) = F (x(k), u(k)),
y(k) = H(x(k), u(k)),

(1)

where x ∈ D ⊆ Rn is the state vector, u ∈ U ⊆ Rm is the control input,
and y ∈ Rm is the system output. Suppose that F and H are both smooth
mappings with the appropriate dimensions. Moreover, assume that F (0, 0) = 0
and H(0, 0) = 0. In this situations, a positive definite scalar function V (x(k)) :
D → R (where V (0) = 0 ) is addressed as storage function and system (1) is
said to be locally passive, if there exists a storage function V (x(k)) such that:

V (F (x, u)) − V (x) ≤ yTu ∀(x, u) ∈ D×U (2)

where D×U is a neighborhood of x=0, u=0.

Definition 2.1 The zero dynamics of system (1) is defined by F ∗ = F (x, u∗),
where (x, u∗) = {(x, u) : s.t. H(x, u) = 0}. A system of the form (1) has a
locally passive zero dynamics, if there exists a positive definite function V (x(k)) :
D → R, such that:

V (F (x, u∗)) ≤ V (x) ∀x ∈ D. (3)
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Definition 2.2 A system (1) has local relative degree zero at x = 0, if

∂H(x, u)

∂u

∣

∣

∣

∣ x = 0
u = 0

(4)

is nonsingular.

Now, assume that the nonlinear discrete-time system (1) is affine in the
control input (i.e., in the following form):

x(k + 1) = f(x(k)) + g(x(k))u(k),
y(k) = h(x(k)) + J(x(k))u(k).

(5)

The system (5) has local relative degree zero, if J (0) is nonsingular. This
system has uniform relative degree zero, if J (x ) is nonsingular for all x ∈ D.
Additionally, the system (5) is locally zero-state observable, if for all x ∈ D,

y(k)|u(k)=0 = h(φ(k, x, 0)) = 0 ∀k ∈ Z+ ⇒ x = 0 (6)

where φ(k, x, 0) = fk(x) = f(fk−1(x)), ∀k > 1, and f0(x) = x. Also, fk(x) is
the trajectory of the unforced dynamics, x(k + 1) = f(x(k)), from x (0)=x. If
D = Rn, the system is globally zero-state observable. Moreover, system (5) is
locally zero-state detectable, if for all x ∈ D and y(k)|u(k)=0 = h(φ(k, x, 0)) = 0

and for all k ∈ Z+, lim
k→∞

φ(k, x, 0) = 0. Also, if D = Rn, the system is globally

zero-state detectable.
Another important benefit from passive systems is their highly desirable

stability property which may simplify system analysis and controller design
procedure. Therefore, transformation of a non-passive system into a passive
one is desirable. The use of feedback to transform a non-passive system into a
passive one is known as feedback passivation (Lin and Byrnes, 1995).

Definition 2.3 Let α(x) and β(x) be smooth functions. Consider a static state
feedback control law of the following form:

u(x) = α(x) + β(x)w(k) (7)

A feedback control law of the form (7) is regular, if β(x) is invertible for all
x ∈ D.

In order to analyze feedback passivation, the following theorem is taken from
Navarro-Lopez (2007).

Theorem 2.1 Considering a system in the form (5), suppose that h(0) = 0 and
there exists a positive definite C2 storage function V (i.e., the storage function
and its first and second drivatives are continuous), where V (0) = 0 and V (f(x)+
g(x)u) is quadratic in u. Then, the system (5) is locally feedback equivalent to
a passive system with V as the storage function by means of a regular feedback
control law of the form (7), if and only if the system (5) has local relative degree
zero at x = 0 and its zero dynamic is locally passive in a neighborhood of x = 0.
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It has been shown by Navarro-Lopez (2007) that the control law in the form
(7) with

α(x) = −J−1(x)h(x) + J−1(x)h̄(x) (8)

β(x) = J−1(x)J̄(x) (9)

converts the non-passive nonlinear discrete-system (5) to a new passive dynamic
described by:

x(k + 1) = f∗(x(k)) + g∗(x(k))h̄(x(k)) + g∗(x(k))J̄(x)w(k)
y(k) = h̄(x(k)) + J̄(x)w(k),

(10)

where

f∗(x) = f(x)− g(x)J−1(x)h(x) (11)

g∗(x) = g(x)J−1(x), (12)

J̄(x) = (
1

2
g∗T

∂2V

∂z2

∣

∣

∣

∣

z=f∗(x)

g∗(x))−1 (13)

h̄(x) = −J̄(x)(
∂V

∂z

∣

∣

∣

∣

z=f∗(x)

g∗(x))−1. (14)

3. Passivity-based optimal control

Suppose that a system of the form (5) is passive with a positive definite storage
function V. Let ϕ be any smooth mapping such that ϕ(0) = 0 and yTϕ(y) > 0,
for all y 6= 0. The basic idea of the passivity-based control method is illustrated
in the next theorem (Lin and Byrnes, 1995).

Theorem 3.1 If system (5) is zero-state detectable and passive with storage
function V which is proper on Rn, then the following smooth output feedback
globally asymptotically stabilizes the equilibrium x=0:

u = −ϕ(y) u, y ∈ Rm. (15)

There is a freedom in selection of vector function ϕ(y). In this paper, it
is desirable to design ϕ(y) such that, in addition to globally asymptotically
stabilizing the nonlinear system (5), a given cost function is also minimized.

For this purpose, the following general structure for the vector function
ϕ(y) = [ϕ1(y1), ϕ2(y2), ..., ϕm(ym)]

T
is proposed:

ϕi(yi) = ai1yi + ai2y
3
i + ...+ aily

2l−1
i for i = 1, ...,m (16)

where ai1, ai2, ..., ail belong to R+and the suitable l ∈ Z+ ≥ 1 may be chosen
by the designer. In the suggested structure, each ϕi belongs to the first-third
quadrant sector, and yTϕ(y) > 0, for all y 6= 0.
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The task is to find the unknown coefficients ai, such that the proposed
static output feedback, minimizes an appropriate cost function in the general
form I(k) =

∑k

k̄=0 L(x(k̄);u(k̄)).
In order to obtain the minimum value of the considered cost function, the

optimization procedure based on the theory of genetic algorithms (GA) is used.
The genetic algorithms constitute a class of search and optimization methods,
which imitate the principles of natural evolution (Goldberg, 1989). The flow
diagram of the GA method used in this paper is depicted in Fig. 1.

Figure 1. Flow diagram of GA method used

The genetic algorithm differs substantially from more traditional search and
optimization methods, like gradient-based optimization (for more information
see Belegundu and Chandrupatla, 1999; Nocedal and Wright, 1999). The most
significant differences are as follow:

(a) GAs search through a population of points in parallel rather than point-
after-point.

(b) GAs do not require derivative information on an objective function or
other auxiliary knowledge. Only the objective function and the corre-
sponding fitness levels influence the directions of search.

(c) GAs use probabilistic transition rules, not deterministic ones.
The basic structure of genetic algorithms consists of the following steps:

(a) Initialize a population of chromosomes.
(b) Evaluate each chromosome in the population.
(c) Create new chromosomes by mating current chromosomes.
(d) Remove weaker members of the population, according to the fitness func-

tions for each chromosome, to make room for the new chromosomes.
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(e) Insert the new chromosomes into the population.
(f) Stop and return the best chromosome if time is up, otherwise, go to (c).

Following the above structure, a pseudo-code outline of genetic algorithms is
shown below. The population of chromosomes at time t is represented by the
time-dependent variable P(t), with the initial population of random estimates
P(0) (Goldberg, 1989).

procedure GA
begin

t=0;
initialize P(t) = P(0);
evaluate P(t);
while not finished do
begin

t=t+1;
select P(t)from P(t -1);
reproduce pairs in P(t) by
begin

crossover;
mutation;
reinsertion;

end
evaluate P(t);

end
end

Therefore, by using the GA-based optimization, the best coefficients of the
proposed structure (Equation (16)) may be found in such a way that the given
cost function is minimized. In the optimization process, the corresponding cost
function is considered as the fitness function of the genetic algorithm.

4. Design example

Consider the following nonlinear discrete-time system, taken from Navarro-
Lopez (2007):

x1(k + 1) = (x2
1(k) + x2

2(k) + u(k)) cos(x2(k))
x2(k + 1) = (x2

1(k) + x2
2(k) + u(k)) sin(x2(k))

y(k) = (x2
1(k) + x2

2(k)) +
1

x2

1
(k)+x2

2
(k)−0.25

u(k).
(17)

The system (17) is not passive. Considering V = 1
2 (x

2
1(k) + x2

2(k)) as a
storage function, the system can be rendered passive by means of a static state
feedback control law, due to the fact that J(x(k)) = 1

x2

1
(k)+x2

2
(k)−0.25

is invertible

and the zero dynamics of system (17) is passive (see Theorem 2.1). Therefore,
the passifying control scheme, i.e. u = α(x) + β(x)w, proposed by equations
(8) and (9) is applied to (17). The passified system satisfies the conditions
of Theorem 3.1. Consequently, it can be locally asymptotically stabilized by
output feedback w = −ϕ(y), where w is the new input of the passified system.
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Now, the goal is to find a proper function ϕ(y) in order to minimize the
following cost function, related to the passified system:

I =
1

2

∞
∑

k=0

(w2(k) + x(k)T x(k) + y2(k)).

The choice of this cost function is tightly linked with physical concepts.
The term w2(k) is meant to minimize the consumed energy of control signal.
The term x(k)Tx(k) confirms that fast convergence of the states is desired.
Finally the term y2(k) is supposed to make the output signal converge to zero
in minimum time and with minimum overshoot and oscillations.

The proposed optimization process has been carried out for three following
cases: Case 1: Only first term of (16) is considered (φ1(y) = a1y). Case 2:
First two terms of (16) are considered (φ2(y) = a1y + a2y

3). Case 3: First
three terms of (16) are considered (φ3(y) = a1y + a2y

3 + a3y
5).

The nonlinear static functions, resulting from the GA optimization procedure
are as follows:

ϕ1(y) = 0.02755y
ϕ2(y) = 0.0245y+ 0.0451y3

ϕ3(y) = 0.021413y+ 0.0296y3 + 0.0258y5.
(18)

The passified dynamics is simulated for the initial condition x0=[-1, +1] and
the control inputs, w = −ϕ1(y), w = −ϕ2(y) and w = −ϕ3(y). Comparison of
results is given in Table 1. Also Figs. 2-4 present the response of the output,
first and second states of the passified dynamics, respectively.

w = −ϕ1(y) w = −ϕ2(y) w = −ϕ3(y)
max |y| 0.6178 0.5155 0.6028

I 2.619 2.6097 2.6027

Table 1. The cost functions (I) of control inputs, w = −ϕ1(y), w = −ϕ2(y) and
w = −ϕ3(y).

It is worth noting that, considering Table 1 and Figs. 2-4, the proposed
controller with w = −ϕ3(y) has the best performance among the control laws
accounted for. Thus, consideration of more terms in (16) may lead to a better
performance.

5. Conclusion

In this paper, some properties of nonlinear discrete-time passive systems were
studied and a passivity-based optimal control method for a broad class of non-
linear discrete-time systems was proposed. The proposed control law is a static
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Figure 2. Time-response of the output y(k)

Figure 3. Time-response of the first state x 1(k)

output feedback law u = −ϕ(y) (where ϕ(y) is a smooth function belonging to
the first-third quadrant sector), which has a general structure with adjustable
parameters. These parameters were found by a genetic algorithm, to shape
the transient response of the closed-loop system. Effectiveness of the proposed
procedure was illustrated by an example.
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Figure 4. Time-response of the second state x 2(k)
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