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Abstract: In this paper a stiffness control strategy based on the
fuzzy mapped nonlinear terms of the robot manipulator dynamic
model is proposed. The proposed stiffness controller is evaluated on
a research robot manipulator performing a task in the operational
space. Tests attempted to achieve fast motion with reasonable ac-
curacy associated with lower computational load compared to the
non-fuzzy approach. The stability analysis is presented to conclude
about the mapping error influence and to obtain precondition crite-
ria for the gains adjustment to face the trajectory tracking problem.
Simulation results that supported the implementation are presented,
followed by experiments and results obtained. These tests are con-
ducted on a robot manipulator with SCARA configuration to illus-
trate the feasibility of this strategy.

Keywords: stiffness control, fuzzy mapping, robot manipula-
tors, operational space, trajectory tracking

1. Introduction

Since the first robot manipulators involved in industrial processes were required
to perform positional tasks (e.g., spray painting), robot manipulators were man-
ufactured to be very rigid. This rigid design allowed the robot manipulator con-
trol designer to obtain reasonable positional accuracy by utilizing simple control
laws (Natale, 2010; Lewis et al., 2004). As one might expect, force control ap-
plications (e.g., grinding or sanding) are extremely difficult to accomplish with
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a stiff robot manipulator. Therefore, if the robot manipulator stiffness could be
controlled, force control applications could be accomplished more easily (Natale,
2010; Lewis et al., 2004).

In stiffness control, the joint stiffness matrix is modulated to achieve the de-
sired relationship between position and applied force (Tischler, 2000; Yu, 2000).
Stiffness control can be further classified into passive stiffness control and active
stiffness control. Passive stiffness control is achieved by equipping the robot ma-
nipulator end-effector with a mechanical device composed of passive springs and
dampers. In active stiffness control, the robot manipulator end-effector stiffness
is changed based on the position and/or force feedback signals (Tischler, 2000).
A stiffness control scheme was implemented in Cartesian coordinates in Tischler
(2000), where the stiffness was specified in the workspace. Three translational
and three rotational stiffness coefficients were specified for force control. Based
on the difference between desired and actual end-effector position, a desired
force is obtained. Stiffness may be changed under computer control to match
varying task requirements. The implementation of this type of stiffness control
was reported for tendon tension robot manipulator control by Tischler (2000).
End-effector stiffness control for over-constrained systems was considered by Yu
(2000). An over-constrained system contains more independent inputs than the
number of kinematic degrees of freedom.

Stiffness control is sensitive to the combined stiffness of the environment,
the end-effector, and the force sensor. Uncertainty in stiffness value leads to
poor force control performance. The effect of robot manipulator wrist stiffness
on robot manipulator control was discussed by Tischler (2000). Stiffness control
combined with adaptive, learning, and robust control techniques were consid-
ered by Yu (2000) to handle stiffness uncertainty. Adaptive strategies were
included into the stiffness controller to maintain consistent performance in the
presence of unknown parameters of the robot manipulator and the environment
in Yu (2000). Also, in Yu (2000), feedback controller gains were changed based
on online estimates of stiffness matrix. A reinforcement learning process was
proposed by Yu (2000) to compute the stiffness values of the end-effector for
repetitive tasks.

When robot manipulators are requested to perform an agile motion, con-
ventional strategies based on PD (proportional-derivative) control action can
be inaccurate due to inherent nonlinear dynamics existing in real mechanisms.
Facing these problems, the control action must be enhanced in such a way as
to include some model features.

Other difficulties arise when characteristics of the model comprise the control
action and tasks are performed in the operational space and controlled in the
joint space. This control action becomes even more complex, since mathematical
transformations require a substantial number of matrix operations, resulting in
an excessive computational load (considering the average capacity of processing
cores embedded in robot manipulators) and more expressive magnitudes of the
partial error, due to parametric uncertainties.

A control methodology has been used to circumvent these inconveniences
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by using kinematic transformations, carrying the control paradigm to the op-
erational space, relating the joint torques to forces in the operational space by
means of the Jacobian matrix (Siciliano et al., 2011; Sciavicco and Siciliano,
2009). To illustrate, Fig. 1 shows the control structure in the joint space (left)
and in the operational space (right), where Xd = [xd ẋd ẍd]

T is the desired
trajectory matrix of the end-effector in the operational space, X = [x ẋ ẍ]T is
the posture matrix of the end-effector in the operational space, Qd = [qd q̇d q̈d]

T

is the desired trajectory matrix in the joint space, Q = [q q̇ q̈]T is the posture
matrix in the joint space and τ is the control torques vector in the joint space.
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Figure 1. Control structures

Fuzzy sets and fuzzy systems have undergone a substantial development
since their introduction by Zadeh (1973). The most used inference process was
proposed by Mamdani (1974). However, in this paper the Sugeno inference
process is used (Takagi and Sugeno, 1985), also known as Takagi-Sugeno or T-S
fuzzy inference. A more recent debate about those pioneering works can be
found in Zhang and Liu (2008); Lilly (2010); Piegat (2010).

Among the features of fuzzy systems, two justify its use in this study: the
possibility of identifying systems using only sets of input-output pairs (Zhang
and Liu, 2008) and the possibility to reduce the order of some terms of the
system model with consequent reduction of computational load (Tanaka and
Wang, 2001; Lilly, 2010).

Unlike the aforementioned works on stiffness control for robot manipulators
and in order to face the operational space control problem with agile motion
and low computational load, a stiffness controller is proposed with addition of
model-based nonlinear terms mapped by a fuzzy inference system. This mapping
provides the ability of reducing the amount of mathematical operations of the
control law, decreasing the computational load.

This paper is organized as follows. In Section 2 the mathematical model
of the robot manipulator as well as its relationships and transformations re-
quired to perform the operational space control are presented. In Section 3 the
proposed control action is presented, and the stability analysis of the control
system is given in Section 4. Section 5 provides the details of the mapping pro-
cess. Finally, simulations, experimental results and conclusions are presented in
Sections 6, 7 and 8, respectively.
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2. Mathematical model of the robot manipulator

For the experiments performed in this paper a robot manipulator with a SCARA
configuration (Selective Compliant Assembly Robot Arm), shown in Fig. 2, has
been used. This robot manipulator, made in Robotics Institute of Zurich Uni-
versity in Switzerland by Eidgenössische Technische Hochschule (ETH), is used
for academic research at the Laboratório de Controle e Automação (LCA) of
the Departamento de Automação e Sistemas (DAS) in the Universidade Federal
de Santa Catarina (UFSC).

The joints of this robot manipulator are actuated by four motors of Infra-
nor brand. For joints 1 and 2, transmission is done by harmonic drives with
reduction of (1 : 100). For joints 3 and 4 there is a combined linear/revolution
spindle driven by timing belts (joint 4 has a planetary gear reduction (1 : 4.5)).
It is emphasized that position measurements are obtained by means of incre-
mental encoders. Additional information can be found in Passold (2009); Vargas
(2005); Vargas et al. (2004); Mendes et al. (2002); Garcia et al. (2002); Hüipi
and Gruener (2001); Weihmann (1999).

q1

q2

l1l2

link1

link 2

link 4

li
n
k
 3

Figure 2. Inter SCARA robot manipulator

The robot manipulator dynamics can be represented by the following math-
ematical model (Siciliano and Khatib, 2008):

B(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ. (1)

This equation describes the robot manipulator dynamics in the joint space,
where: B(q) is the inertia matrix, C(q, q̇) is the Coriolis and centrifugal forces
matrix, F is the friction forces matrix, g(q) is the gravitational forces vector
and τ is the joint torques vector.

By using the relational property ẋ = J(q)q̇, J(q) being the Jacobian matrix
rewritten as J for simplification, Eq. (1) can be converted to describe the robot
manipulator dynamics in the operational space:

J−TB(q)J−1ẍ+ J−T [C(q, q̇)J−1 −B(q)J−1J̇J−1]ẋ+ J−TFJ−1ẋ

J−T g(q) = J−T τ. (2)
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By renaming some of the equation terms, Eq. (2) can be resumed to:

B(q)ẍ+ C(q, q̇)ẋ+ F ẋ+ g(q) = τ, (3)

where B(q) is the symmetric inertia matrix, C(q, q̇) is the Coriolis and cen-
trifugal forces matrix, F is the frictional forces matrix, g(q) is the gravitational
forces vector and τ is the forces vector. All now concern the operational space.

For the tests, a reduced mathematical model based on the first two joints,
q1 and q2, of the robot manipulator is used, i.e., two degrees of freedom related
to two rotational joints. Thereat, the vector of position joints is reduced to
q = [q1 q2]

T and, since the two rotational joint axes are parallel, the workspace
is reduced to a plane. Below we give the detailed matrices of the dynamic model
that need to be computed to perform the control, as shown by Vargas (2005):

• Inertia matrix:

B(q) =
[ b1 + 2b3 cos(q2)

b2 + b3 cos(q2)

b2 + b3 cos(q2)

b2 + j2k2r

]

, (4)

where
b1 = b2 + i1 + (m2 +m3 +m4)l

2
1
+m1l

2
c1 + j1k

2
r ,

b2 = i2 + i3 + i4 +m2l
2
c2 + (m3 +m4)l

2
2

and
b3 = (m2l1lc2 + (m3 +m4)l2l1),

• Coriolis and centrifugal forces matrix:

C(q, q̇) =
[−c1 sin(q2)q̇2

c1 sin(q2)q̇1

−c1 sin(q2)(q̇1 + q̇2)

0

]

, (5)

where c1 = (m2l1lc2 + (m3 +m4)l2l1);
• Jacobian matrix:

J(q) =
[ −l1 sin(q1)−l2 sin(q1 + q2)

l1 cos(q1) + l2 cos(q1 + q2)

−l2 sin(q1 + q2)

l2 cos(q1 + q2)

]

, (6)

• Friction forces matrix:

F =
[µ1

0

0

µ2

]

, (7)

where, for simplicity, the friction forces matrix is considered to be com-
posed only of dynamic friction coefficients.

Due to the parallelism of the joints 1 and 2 with the gravity, the gravitational
forces vector becomes redundant, i.e., g(q) = 0. Table 1 lists the parameter
values that compose the dynamic model matrices.

3. Control design

The goal of the proposed controller is to perform tasks in the operational space
based on a reduced algorithm, which means low computational load. This is
achieved by applying fuzzy logic to the control action, i.e. replacing the nonlin-
ear terms of the matrix by means of fuzzy sets mapping.

For the design and implementation of the proposed controller as well as for
the comparison of performance, the study was initiated with the conventional
PD (Proportional-Derivative) controller, which is represented as follows:

τ = JT (kpx̃+ kd ˙̃x), (8)
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Table 1. Parameters of the robot manipulator
Parameter Description Value

l1 Length of link 1 0.25 [m]
l2 Length of link 2 0.25 [m]
lc1 Link 1 center of mass 0.118 [m]
lc2 Link 2 center of mass 0.116 [m]
m1 Mass of link 1 11.40 [kg]
m2 Mass of link 2 19.40 [kg]
m3 Mass of link 3 2.00 [kg]
m4 Mass of link 4 1.50 [kg]

i1 Inertia of link 1 0.23 [kg.m2]

i2 Inertia of link 2 0.16 [kg.m2]

i3 Inertia of link 3 0.10 [kg.m2]

i4 Inertia of link 4 0.10 [kg.m2]

j1 Inertia of rotor 1 5.00× 10−5 [kg.m2]

j2 Inertia of rotor 2 5.00× 10−5 [kg.m2]
µ1 Viscous friction of joint 1 11.50 [Nms/rad]
µ2 Viscous friction of joint 2 6.00 [Nms/rad]
kr Joints gear relation 100

where x̃ = [xd−x]T is the end-effector position error vector, ˙̃x = [ẋd− ẋ]T is the
end-effector velocity error vector, x = [xy]T is the end-effector position vector,
xd = [xd yd]

T is the end-effector desired position vector, ẋ = [ẋ ẏ]T is the end-
effector velocity vector, ẋd = [ẋd ẏd]

T is the end-effector desired velocity vector,
all in the operational space, kp and kd are the proportional and derivative gains,
respectively.

The fundamental idea of the control action refers to the conventional PD
controller (8) improved by terms which interact with inertial forces. Moreover,
the terms in the control action related to accelerations are based on the prop-
erties of the inertia matrix (positive definite) so one can consider it as a gain
with positive variable values. Thus, the basic control action is given by:

τ = JT (kpx̃+ kd ˙̃x+B(q)ẍd), (9)

where ẍd = [ẍd ÿd]
T is the end-effector desired acceleration vector in the oper-

ational space.

Compared with a conventional PD controller (8), the control action of (9)
presents a considerable reduction of the tracking errors provided by the addition
of the term B(q)ẍd. However, the proposed control structure is based on a stiff-
ness control strategy presented by Slotine and Li (Slotine and Li, 1987, 2004;
Lewis et al., 2004; Khalil and Dombre, 2004), which uses the concept of an aux-
iliary error to achieve better rates of convergence to the tracking errors. Thus,
the control action of (9) is modified to provide such convergence properties, i.
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e.,

τ = JT (kdσ +B(q)ẍr), (10)

where σ = ˙̃x+ kpx̃ is a filtered tracking error and ẋr = ẋd + kpx̃ is the reference
velocity based on the end-effector desired velocity vector and the end-effector
position error vector, Fig. 3 shows the block diagram of this controller.

kp BJ-1
robot

manipulator

x

τ

controller

.
x

..

.

xd kp kd

xd

xd

JT

Figure 3. Block diagram of the controller proposed by Slotine and Li (1987)

To provide satisfactory results over tasks performed in the operational space
with a low computational load, in this paper the insertion of fuzzy logic mapping
to replace the nonlinear functions of the controller (10) is proposed. To do this,
the inertia matrix B(q) is expanded, rewriting B(q) as B for simplicity, to
obtain:

τ = JTkdσ +BJ−1ẍr . (11)

Then, the mapping is made over the transposed Jacobian JT , which is rep-

resented by JT , and over the matrix BJ−1, which is represented by BJ−1,
obtaining the following expression for the control law:

τ = JTkdσ +BJ−1ẍr . (12)

To complete the mathematical analysis of the controller, in the next section
the stability analysis of the closed-loop system is provided.

4. Stability analysis

Consider the mapped terms rewritten as follows:

JT = JT (I +Ψ1), (13)

BJ−1 = BJ−1(I +Ψ2), (14)

where Ψ1 and Ψ2 are matrices that contain error functions related to the map-
ping and vary with the robot manipulator posture. Substituting Eqs. (13) and
(14) into Eq. (12), one can describe the closed-loop system dynamics as:

(I +Ψ1)Bσ̇ + (I +Ψ2)kdσ = (C + F )ẋ +BΨ1ẍd. (15)
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It is possible to conclude from (15) that the system will be stable when
conditions ||Ψ1||<1 and ||Ψ2 < 1|| are satisfied. This is verified during the
mapping stage. Such mapping process is explained in Section 5.

One can also note that it is impossible to achieve null errors when the robot
manipulator performs motion, because the perturbation is directly related to
the velocity and acceleration of the end-effector in the operational space.

This can be better noticed by expanding the variable σ in such a way as to
rewrite (15) in terms of errors:

(I+Ψ1)B(¨̃x+kp ˙̃x)+(I+Ψ2)kd( ˙̃x+kpx̃) = (C+F )(ẋd− ˙̃x)+BΨ1ẍd,(16)

after some manipulation and replacement, (16) can be rewritten as,

α1
¨̃x+ α2

˙̃x+ α3x̃ = (C + F )ẋd + BΨ1ẍd, (17)

where α1 = (I + Ψ1), α2 = (I + Ψ1)Bkp + (I + Ψ2)kd + C + F and α3 =
(I +Ψ2)kdkp.

Thus, in Eq. (17) one can identify the direct relationship of the perturbation
with the desired velocities, the term (C+F )ẋd, and the desired acceleration, the
term BΨ1ẍd. In this way, given the absence of desired velocity and acceleration,
i.e., in regulation cases, by Eq. (17), it can be concluded that the error tends to
zero when the time goes to infinity.

5. Fuzzy mapping of dynamic functions

In this study we aim to compare the performance of the controllers presented
until now, over the simulated and practical tests. To conduct such tests, avoid-
ing the concern about having singularity postures during the running time, we
chose to restrict the robot manipulator workspace, shown in Fig. 4, to the first
quadrant and the radius range from 295 mm to 495 mm, this area being cross
hatched in the same figure.

X
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Y
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2
9
5

robot
manipulator

rotational joint

end effector

redundant area

non redundant area

mapped area

Legend

3D workspace
*displacements in milimeters

260

Figure 4. Workspace of the SCARA robot manipulator

First, in this section we describe the fuzzy mapping process of the nonlinear
matrices JT and BJ−1, considering the delimited workspace. Each element of
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these R
2×2 matrices is shown in Fig. 5. This figure shows the values of the

elements in terms of the end-effector position in polar coordinates (angle and
radius).

0

pi/2 0.29

0.5

−0.5

0

0

pi/2 0.29

0.5

0

0.5

0

pi/2 0.29

0.5

−0.3

0.3

0

pi/2 0.29

0.5

0

0.3

Element (1,1) of JT

va
lu
e

angle [rad] radius [m]

Element(1,2) of JT

va
lu
e

angle [rad] radius[m]

Element(2,1) of JT

va
lu
e

angle [rad] radius [m]

Element(2,2) of JT

va
lu
e

angle [rad] radius[m]

0

pi/2 0.29

0.5

−30

0

0

pi/2 0.29

0.5

−30

30

0

pi/2 0.29

0.5

−10

20

0

pi/2 0.29

0.5

0

20

Element (1,1) of BJ
−1

va
lu
e

angle [rad] radius[m]

Element(1,2) of BJ
−1

va
lu
e

angle [rad] radius[m]

Element(2,1) of BJ
−1

va
lu
e

angle [rad] radius[m]

Element(2,2) of BJ
−1

va
lu
e

angle [rad] radius[m]

Figure 5. JT and BJ−1 and elements

5.1. Mapping process

The mapping task was performed using the Adaptive Neuro-Fuzzy Inference
System Editor (ANFIS Editor), which is part of the fuzzy logic toolbox of the
Matlab R© software. This tool provides a back-propagation algorithm combined
with a least square method to tune the fuzzy rules of a Sugeno inference system
using a set of conjugate input/output pairs from the function to be mapped.
Since each of the matrix elements is a function of the robot manipulator posture
(angle and radius), the mapping can be done using the information shown in
Fig. 5.

Thus, for each element of the matrices JT and BJ−1 one substitute Sugeno
inference system was obtained. For these inference systems we could choose
output membership functions (MFs), either linear or constant, and as input
MFs any one that can represent a statistical distribution.

The selection of these input/output MFs has direct influence on the accuracy
and computational load of the controller. For our tests, to reflect the cost-benefit
between mapping error and number of mathematical operations, we chose two
types of input MFs:

• Generalized bell-shaped

gbellmf(x) =
1

1 +
∣

∣

x−c
a

∣

∣

2b
. (18)

This function computes the pertinence of the x element described by a
bell-shaped distribution (see Fig. 6), where c is the center value of the
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distribution, b is the center of the changing borders and a is the smoothness
of the function. It is used here to obtain an accurate (low error) mapping,
but requires a higher number of mathematical operations, compared with
the trimf MF described below.

• Triangular-shaped

trimf(x) = max

(

min

(

x− a

b− a
,
c− x

c− b

)

, 0

)

. (19)

This function is used to compute the pertinence of x using a triangular
distribution, where a is the beginning of the ascending part of the function,
b is where the function attains its apex and the point of junction of the
ascending and descending slopes, and c is the end point of the descendent
slope. Fig. 6 illustrates this function.

cb b

1

0

0,5

gbelmf(x)

x ca b

1

0

0,5

trimf(x)

x

Figure 6. Membership functions

As a result of each mapping process the ANFIS Editor gives the quadratic
error between the output reference data and the output data computed from
the respective mapped fuzzy system. In the subsequent subsections the results
of practical mapping of matrices JT and BJ−1 are described.

5.2. Mapping of JT

For mapping elements of the matrix JJ we used the data output of the Eq. (6)
transposed, corresponding to the region defined in Fig. 4. During the mapping
process we noticed that the error results of the mapping process using any
combination of input/output MFs was considerably close and low. Thus the
only concern about the mapping of this matrix was about the computational
cost, not the accuracy. Moreover, because of the low variation between the angle
and radius, we could map the function from only one of them.

Therefore, the mapping process of the matrix JT picks the angle as the input
variable, we partitioned the input region into three parts, each one described by
a trimf MF, and selected a continuous output function for each fuzzy rule. In
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Table 5.2 one can see these setup parameters used in the mapping process and
the calculated quadratic error for each element of the matrix JT . This result-
ing error is the main information obtained here, used to evaluate the mapping
process over the stability of the system.

Table 2. JT mapping configuration parameters and error
Setup parameters Quadratic error

Element Input variables No. of rules Input MF Output MF

JT
11 angle 3 trimf continuous 0.040

JT
12 angle 3 trimf continuous 0.040

JT
21 angle 3 trimf continuous 0.024

JT
22 angle 3 trimf continuous 0.046

In order to visually compare the mapped functions, in Fig. 7 one can see the
original function elements of the matrix JT on the left (2D projected over the
value/angle plan) and the mapped elements on the right.
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Figure 7. Mapped elements of J

5.3. Mapping of BJ−1

Although the mapping process of the JT presents low computational load and
high mapping performance (low error) by using triangular functions and at most
three fuzzy rules, the mapping of the matrix BJ−1 shows more variables of con-
cern and finds the cost-benefit that fits a solution for the robot manipulator with
low computational load and sufficient accuracy, i.e. the trade-off load/accuracy.

Two variants of fuzzy mapping were tested: one aiming at reduction of the
mapping error using the generalized bell-shaped input MFs, see Eq. (18), with
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linear output MFs; the other aimed at reduction of the computational load at
the expense of the mapping error using the triangular-shaped input MFs, see
Eq. (19), with constant output MFs.

Tables 3 and 4 depict the setup parameters and the calculated errors ob-
tained for the matrix BJ−1, for an accurate mapping process and a low cost
mapping process, respectively. Of these two setups, the first one shows a very
high mapping accuracy and the second shows a lower computational load.

Table 3. BJ−1 accurate mapping configuration parameters and error
Setup parameters Quadratic error

Element Input variables No. of rules∗ Input MF Output MF

BJ
−1

11 angle & radius 9 [3 3] gbellmf linear 0.098

BJ
−1

12 angle & radius 9 [3 3] gbellmf linear 0.070

BJ
−1

21 angle & radius 9 [3 3] gbellmf linear 0.050

BJ
−1

22 angle & radius 9 [3 3] gbellmf linear 0.066

Table 4. BJ low cost mapping configuration parameters and error
Setup parameters Quadratic error

Element Input variables No. of rules∗ Input MF Output MF

BJ
−1

11 angle & radius [3 2] trimf continuous 0.563

BJ
−1

12 angle & radius [2 2] trimf continuous 0.575

BJ
−1

21 angle & radius [2 2] trimf continuous 0.424

BJ
−1

22 angle & radius [2 2] trimf continuous 0.646

Fig. 8 shows the representation of the two mapping processes, the accurate
(left) and the low cost (right). These two mappings could be compared with
the original matrix in Fig. 5 (right).

Appendix in Section 9 provides all the mapping process results and the pa-
rameters needed to reproduce the fuzzy inference systems, described in Tables 6
through 14.

As shown in the next sections on simulated and practical tests, the control
performance results display no significant differences. The performance results
of both processes are so similar that is not possible to ensure that the most
accurate is the best choice. So, the low cost solution appears to be a reasonable
choice.

∗The number of rules corresponds the combination of all MFs, e.g. with 6 [3 2] the fuzzy
system has 6 rules: 3 MFs for the first input and 2 MFs for the second input.
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Figure 8. Mapped elements of BJ−1 - accurate mapping (left) and low cost
mapping (right)

6. Simulation tests

For numerical representation of the system to be controlled, as specified in
Section 2 and illustrated in Fig. 2, the dynamic model for the first two links
of the SCARA robot manipulator was used, see Eq. (1), with the parameters
presented in Table 1. For simulation, the Matlab/Simulink software (Simulink,
2012) was used.

To evaluate the performance of the fuzzy mapping approach with JT and
BJ−1, we used a desired trajectory in the workspace and tested the following
four strategies: PD control given by Eq. (8); a PD control with model-based
nonlinear terms (PD+MBT Control), as stated in Eq. (11); and the control
given in Eq. (12), which has the model-based nonlinear terms mapped via fuzzy
systems (PD+FM Control with accurate mapping and PD+FM Control with
low cost mapping).

Fig. 9 shows the structure of the controllers, in which the desired trajectory
block contains the reference trajectory; the control blocks represent the PD+FM
(accurate mapping and low cost mapping), PD+MBT, and PD algorithms; the
dynamic model is given by Inter SCARA robot manipulator dynamics block;
the transformation of the angular displacements in joint space to the Cartesian
positions in operational space is provided by the direct kinematics block.
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desired
trajectory

Eq. (20)

[x  x]

error

real position
torque [q  q]

control
signal

controller
Eqs. (8,11,12)

robot manipulator
Eq. (1)

direct kinematics
Eq. (6)

tracking error control signal

real position

.

[q  q]
..

Figure 9. Block diagram of the controllers implemented in Matlab/Simulink

6.1. Robot manipulator test task

The desired task of the robot manipulator is described by a two-dimensional
trajectory inside the workspace delimited in Section 5 and formulated as

xd =

{

(r + dr sin (wrs)) cos (crs+ ai) if t ≤ 10 [s]
(r + dr sin (wrs)) sin (crs+ ai) otherwise

,

yd =

{

(r + dr sin (wrs)) sin (crs+ ai) if t ≤ 10 [s]
(r + dr sin (wrs)) cos (crs+ ai) otherwise

,

(20)

where r = 0.39 [m] is the central line of the trajectory, dr = 0.075 [m] is the
amplitude of the trajectory wave, wr = π [rad/s] is the angular velocity of the
trajectory wave, ai =

π
180

[rad] is the initial angular position, af = 89π
180

[rad] is

the final angular position, cr =
af−ai

10
[rad/s] is the angular velocity over the

quadrant displacement and s is a parameter of time, described as

s =

{

5− 5 cos(0.3112t) + 0.07388 sin(0.3112t) if t ≤ 10 [s]
5− 5 cos(0.3112(t − 10)) + 0.07388 sin(0.3112(t − 10)) otherwise

,(21)

this s parameter having been selected to create a smooth transition at the
discontinuity of the trajectory and to ensure a soft start and end of the execution.

An illustration of the parameters and the trajectory is shown in Fig. 10. As
complementary information, Fig. 11 shows the desired velocities and accelera-
tions required by the reference trajectories.

6.2. Results

In order to verify the effect of the nonlinear terms added in (11) and (12), all of
the PD actions in all four strategies have equivalent gains, as given in Table 6.2,
and all controllers have the sampling period of 1.0 ms.

The gains were set initially based on Ziegler-Nichols parameters and then
better adjusted empirically using the trial-and-error method after a few obser-
vations of the amplitude of control signals and the reference tracking errors. In
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Figure 10. The desired trajectory and its parameters
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Figure 11. The desired velocities and accelerations

Table 5. Equivalence of control actions - controller parameters
Controller kp gain kd gain Equivalent P action Equivalent D action
PD - Eq. (8) 20000 200 20000 (kp) 200 (kd)
PD+MBT - Eq. (11) 100 200 20000 (kpkd) 200 (kd)
PD+FM - Eq. (12) 100 200 20000 (kpkd) 200 (kd)

the literature, other methodologies, based on adaptive control, neural networks
and genetic algorithms were applied to the tuning of classical and advanced
controllers (Mendes et al., 2002) that can be used here, but that will result in
increased computational load.

It is important to mention that the robot manipulator has harmonic drives
as transmission system device, therewith the friction effects are dynamically
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significant. Thus, to improve the quality of the controller a simple friction com-
pensation could be inserted in parallel to the PD strategy. However, for the
tests, the controllers specified up to now were only used, i.e., friction compen-
sation was not employed.

For a better evaluation of performance, Figs. 12 and 13 show the corre-
sponding trajectory tracking errors. The maximum position errors are about
2.0 × 10−2 m for the PD control, 6.0 × 10−3 m for the PD+MBT control, and
6.0×10−3 m for the PD+FM (accurate mapping and low cost mapping) control.
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Figure 12. Simulation results: trajectory tracking errors - PD and PD+MBT
controllers
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Figure 13. Simulation results: trajectory tracking errors - PD+FM (accurate
mapping and low cost mapping) controllers

The control performance can be seen in Figs. 14 and 15 (left), in which
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the PD controller performs the trajectory tracking in an unsatisfactory manner
while PD+MBT and PD+FM controllers follow the path with a better accuracy.

Also, in Figs. 14 and 15 (right), the control action applied to the robot
manipulator is shown. Note that control signals are kept between maximum
levels given by the controller parameters, which are below the limits of the
robot manipulator used in the practical implementation. Limit values of the
robot manipulator are (Passold, 2009; Vargas, 2005; Vargas et al., 2004; Mendes
et al., 2002; Hüipi and Gruener, 2001; Weihmann, 1999): 333.0 Nm for the link
01, and 157.0 Nm for the link 02. The magnitudes of the control signals were:
30.0 Nm for the PD control, 15.0 Nm for the PD+MBT control, and 15.0 Nm
for the PD+FM control.

It should be noted that the PD+FM controller with low cost mapping can
require a lower computational load for implementation in comparison to the
PD+MBT controller as well as the PD+FM controller with accurate mapping.
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Figure 14. Simulation results: trajectory tracking performance and control
signals - PD and PD+MBT controllers

7. Experimental results

In this section, details of the experiment are described. The PD, PD+MBT, and
PD+FM (low cost mapping) controllers simulated numerically are implemented
for the XOberon operational system (Nikitin, 1998; Brega, 1998; Wirth and
Gutnecht, 1992; Reiser and Wirth, 1992; Reiser, 1991) to control an industrial
SCARA robot manipulator whose model served as the basis for the simulations.
In the practical experiment, basically the same controller parameters (Table 6.2)
are used, including the sampling period (1.0 ms). The desired trajectory is the
same as the one used in the simulations (Fig. 10).
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Figure 15. Simulation results: trajectory tracking performance and control
signals - PD+FM (accurate mapping and low cost mapping) controllers

7.1. Control architecture

Fig. 16 shows the control architecture used for one servo axis (driver, motor,
optical encoder). Each motor is connected to an electronic rack containing a
VME-bus (VersaModular Eurocard bus) based CPU (Central Processing Unit,
i.e., processor board Motorola MVME 2600-2). The optical encoder measures
the instantaneous rotation angle of each motor. The analog output block is con-
nected to each motor power amplifier (driver). The power amplifier is configured
so that the current is proportional to the control voltage applied.

Processor Board

Motorola MVME 2600-2

VMEbus

External

Computer
Ethernet

Servo Controller

SMT-BD1

Motor

BLS 50/70

Resolver

VMEbus

Carrier Board

Figure 16. Control system of one servo axis

The controller (implemented at the CPU) uses the information of optical
encoders to generate the control torque in the joint space. The control torque is
amplified and sent to each motor through the drivers. The sampling frequency
is 1 kHz. The controller is linked to an external computer using Ethernet, as
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shown in Fig. 16. The real time version of the operational system and software
programming is based on XOberon.

The robot manipulator runs a version of XOberon operational system over
a PowerPC 200 MHz equipped with 16 MB of memory (electronic rack), which
communicates with its I/O device using an industrial VME bus (67 MHz). The
user develops the whole control system of the robot manipulator (including
text command interface with the user, initialization and security functions) and
through a cross compiler the execution program is downloaded to the CPU of
this robot manipulator (up to 4 MB of code).

7.2. PD and PD+MBT control strategies performance

Based on the experiments, in Fig. 17 one can observe that the PD+MBT con-
troller presents a considerable reduction of tracking errors, compared with the
PD controller. From the information given for the trajectory tracking per-
formance, see Fig. 18 (left), one can verify that the PD controller shows the
quadratic error of 6.01×10−3 m with variance of 15.05×10−6 and the PD+MBT
controller shows the error of 3.77× 10−3 m with variance of 3.48× 10−6. That
is, the PD+MBT controller features quadratic error about two times smaller
and variance five times smaller compared with the PD controller.
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Figure 17. Experimental results: trajectory tracking errors - PD and PD+MBT
controllers

Another important feature to be mentioned is the difference between control
actions, as shown in Fig. 18 (right). The magnitude of the control action is re-
duced for the PD+MBT controller once tracking errors are reduced by inclusion
of the model-based terms in the control law.



658 D.W. Bertol, V. Barasuol, N.A. Martins, E.R. De Pieri

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Experimental controllers performance

y
[m

]

x [m]

reference

PD

PD+MBT

0 5 10 15 20
−50

0

50

0 5 10 15 20
−50

0

50

0 5 10 15 20
−50

0

50

0 5 10 15 20
−50

0

50

PD control signals

τ
1
[N
m
]

τ
2
[N
m
]

PD+MBT control signals
τ
1
[N
m
]

τ
2
[N
m
]

time [s]

Figure 18. Experimental results: position control performance and control sig-
nals - PD and PD+MBT controllers

7.3. PD+FM control strategy - computational load reduction

As the last result, the performance of the PD+FM controller with low cost
mapping is shown in Fig. 19. Compared to the desired trajectory, the calculated
quadratic error is 3.85× 10−3 and its variance is 3.40× 10−6. This validates the
mapping process as a good choice to maintain the performance of the controller
with a lower computational load.
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Figure 19. Experimental results: trajectory tracking performance, control sig-
nals and trajectory tracking errors - PD+FM controller (low cost mapping)

It is important to emphasize that not all parameters of the robot manipulator
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used in the simulations are exact. Besides, frictions, flexibility, nonlinearities,
actuator dynamics, unmodeled dynamics and noise, given by the practical setup
are not considered in simulations. Thus, as expected, results from the practical
implementation are different from the simulation, as verified in Figs. 12 through
19. Observing the control signals in Figs. 14, 15, 18, and 19, one sees that the
noise in the practical implementation implies larger variations in the control
signals. This noise in the control signal comes from the indirect joint velocity
measurement, which is obtained by differentiating joint position. The PD+FM
(low cost mapping) and PD+MBT control strategies amplify even more this
noise on the control action when compared with the PD control strategy (see
Appendix 10).

8. Conclusions

In this paper a stiffness control strategy was proposed with model-based non-
linear terms mapped via fuzzy systems, where the task and the control were
performed in the operational space.

The proposed approach is based on a well known model-based stiffness con-
trol strategy that requires more processing power as complex as the robot ma-
nipulator model. To overcome this drawback a fuzzy mapping was used to
accomplish the exchange of the processing power requirement by memory.

To circumvent the computational load problem, a mapping of the nonlinear
terms of the controller was proposed and experimental tests were conducted on
a SCARA configuration robot manipulator. The mapping approach allowed for
a significant reduction of computational load without significant loss of perfor-
mance. Also, simulation results showed the ability of the controller to follow a
desired trajectory. The aim of these tests was to demonstrate the capabilities
of the control method and its viability for practical use.

The results confirm that the theoretical development as well as the perfor-
mance obtained were in the expected range of accuracy, even with results of the
practical implementation being slightly different from the simulation results due
to aforementioned reasons.

The tuning of the controllers, in simulations and practical implementations,
was done empirically. Probably the best possible performance (response time,
overshoot, etc.) was not reached. To overcome this deficiency, further studies
are necessary on techniques for automatic tuning that give optimum values
for controller parameters. Nevertheless, regarding the authors’ experience, the
trial-and-error tuning is adequate for producing performance with acceptable
accuracy. As a future work, the aim is to circumvent the effect or influence of
noise incident on the control signals.
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Appendices

9. Mapping results

Table 6. JT fuzzy rules setup and calculated quadratic errors
Setup parameters

Element

ru
le

s

Input MF Parameters [a, b, c] Output MF Value

JT
11

trimf(angle) [−0.7853, 0.0045, 0.8977] constant [ 0.0056]
trimf(angle) [−0.0098, 0.7331, 1.6849] constant [−0.3211]
trimf(angle) [ 0.9199, 1.3722, 2.3533] constant [−0.4195]

JT
12

trimf(angle) [−0.7826, 0.1985, 0.6508] constant [ 0.4195]
trimf(angle) [−0.1141, 0.8376, 1.5806] constant [ 0.3211]
trimf(angle) [ 0.6730, 1.5662, 2.3561] constant [−0.0056]

JT
21

trimf(angle) [−0.7853, 0.0425, 0.8146] constant [ 0.1497]
trimf(angle) [−0.0414, 0.7696, 1.6326] constant [−0.0514]
trimf(angle) [ 0.8126, 1.4882, 2.3559] constant [−0.2131]

JT
22

trimf(angle) [−0.7853,−0.1079, 0.8613] constant [0.2062]
trimf(angle) [ 0.0157, 0.8389, 1.5607] constant [0.2749]
trimf(angle) [ 0.4486, 1.6401, 2.3561] constant [0.1416]

Table 7. BJ−1

11
accurate setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

gbellmf(angle)
a1 [0.3975, 1.9997, 0.0036]
a2 [0.3963, 1.9994, 0.7857]
a3 [0.3978, 1.9997, 1.5670]

gbellmf(radius)
r1 [0.0749, 2.0000, 0.3178]
r2 [0.0854, 2.0002, 0.4194]
r3 [0.0141, 1.9995, 0.5366]

Output MF Type Rule No. Rule Parameters

linear

1 [a1 r1] [−7.2222,−33.4583, 5.1862]
2 [a1 r2] [−6.2989,−54.0797, 18.2109]
3 [a1 r3] [137.2256,−337.0226,−422.3745]
4 [a2 r1] [−4.3441,−23.4850, 0.6265]
5 [a2 r2] [−1.7401,−42.2961, 9.7199]
6 [a2 r3] [487.2411,−392.2798,−599.1970]
7 [a3 r1] [−0.0675, 0.8271,−9.4073]
8 [a3 r2] [3.5014,−6.6289,−11.7076]
9 [a3 r3] [637.8705,−412.8825,−803.6321]
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Table 8. BJ−1

12
accurate setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

gbellmf(angle)
a1 [0.3934, 1.9999, 0.0005]
a2 [0.3930, 1.9999, 0.7851]
a3 [0.3932, 1.9999, 1.5703]

gbellmf(radius)
r1 [0.0683, 1.9999, 0.3107]
r2 [0.0815, 2.0001, 0.4245]
r3 [0.0137, 1.9995, 0.5417]

Output MF Type Rule No. Rule Parameters

linear

1 [a1 r1] [−4.8050,−2.7552, 9.9436]
2 [a1 r2] [−7.7183, 2.8306, 7.9756]
3 [a1 r3] [−1163.7192,−14.0762, 30.0290]
4 [a2 r1] [−8.05774,−17.3037, 15.0041]
5 [a2 r2] [−10.3594,−23.6060, 20.8033]
6 [a2 r3] [−946.1839,−22.6433, 14.0975]
7 [a3 r1] [−8.5493,−22.1582, 15.9287]
8 [a3 r2] [−9.5871,−37.2410, 25.5024]
9 [a3 r3] [−360.2554,−230.7200,−410.0439]

Table 9. BJ−1

21
accurate setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

gbellmf(angle)
a1 [0.3934, 1.9999, 0.0004]
a2 [0.3931, 1.9999, 0.7852]
a3 [0.3934, 1.9999, 1.5702]

gbellmf(radius)
r1 [0.0664, 1.9999, 0.3088]
r2 [0.0796, 2.0001, 0.4240]
r3 [0.0125, 1.9995, 0.5394]

Output MF Type Rule No. Rule Parameters

linear

1 [a1 r1] [−2.8632, 8.7167, 2.7256]
2 [a1 r2] [−4.1807, 15.6978,−1.1295]
3 [a1 r3] [−184.9605, 326.5142, 679.2908]
4 [a2 r1] [−4.5627, 2.4389, 5.1260]
5 [a2 r2] [−6.0324, 7.1068, 3.6007]
6 [a2 r3] [−619.3488, 397.4153, 873.6399]
7 [a3 r1] [−4.6154,−5.6079, 6.8668]
8 [a3 r2] [−6.0396,−5.5412, 8.9980]
9 [a3 r3] [−693.3766, 434.8291, 883.0551]
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Table 10. BJ−1

22
accurate setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

gbellmf(angle)
a1 [0.3951, 1.9998, 0.0018]
a2 [0.3944, 1.9997, 0.7855]
a3 [0.3951, 1.9998, 1.5690]

gbellmf(radius)
r1 [0.0659, 1.9999, 0.3083]
r2 [0.0794, 2.0001, 0.4237]
r3 [0.0120, 1.9996, 0.5390]

Output MF Type Rule No. Rule Parameters

linear

1 [a1 r1] [3.7161, 6.2729, 0.1971]
2 [a1 r2] [4.4040, 6.7177,−0.1013]
3 [a1 r3] [875.7292,−3.2664, 4.4106]
4 [a2 r1] [1.9610, 11.0823, 0.2959]
5 [a2 r2] [1.9712, 15.9162,−2.5474]
6 [a2 r3] [684.4734, 6.4300, 110.7776]
7 [a3 r1] [−0.4756, 9.4954, 3.2384]
8 [a3 r2] [−1.0836, 16.3792, 0.2437]
9 [a3 r3] [223.9125, 219.9400, 483.5207]

Table 11. BJ−1

11
low cost setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

trimf(angle)
a1 [−0.7853,−0.0015, 0.7879]
a2 [0.0011, 0.7846, 1.5702]
a3 [0.7844, 1.5716, 2.3561]

trimf(radius)
r1 [0.0980, 0.4314, 0.4919]
r2 [0.2434, 0.5454, 0.6949]

Output MF Type Rule No. Rule Parameters

constant

1 [a1 r1] [0.4878]
2 [a1 r2] [−15.5197]
3 [a2 r1] [−6.1488]
4 [a2 r2] [−17.8846]
5 [a3 r1] [−9.2307]
6 [a3 r2] [−10.1661]
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Table 12. BJ−1

12
low cost setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

trimf(angle)
a1 [−1.5707, 0.0044, 1.5670]
a2 [−0.0043, 1.5751, 3.1415]

trimf(radius)
r1 [0.0978, 0.4323, 0.4919]
r2 [0.2446, 0.5457, 0.6949]

Output MF Type Rule No. Rule Parameters

constant

1 [a1 r1] [10.2577]
2 [a1 r2] [9.3243]
3 [a2 r1] [1.6012]
4 [a2 r2] [−15.8773]

Table 13. BJ−1

21
low cost setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

trimf(angle)
a1 [−1.5707, 0.0129, 1.5594]
a2 [−0.0125, 1.5835, 3.1415]

trimf(radius)
r1 [0.0999, 0.4535, 0.4897]
r2 [0.2343, 0.5475, 0.6949]

Output MF Type Rule No. Rule Parameters

constant

1 [a1 r1] [2.1462]
2 [a1 r2] [12.8496]
3 [a2 r1] [−2.0857]
4 [a2 r2] [−2.7350]

Table 14. BJ−1

22
low cost setup fuzzy mapping

Input MF type Input MF Parameters [a, b, c]

trimf(angle)
a1 [−1.5707,−0.0104, 1.5811]
a2 [0.0086, 1.5602, 3.1415]

trimf(radius)
r1 [0.0984, 0.4438, 0.4920]
r2 [0.2413, 0.5470, 0.6949]

Output MF Type Rule No. Rule Parameters

constant

1 [a1 r1] [2.5506]
2 [a1 r2] [5.3972]
3 [a2 r1] [2.8141]
4 [a2 r2] [13.4410]

10. Noise effect in the PD+MBT control action

Consider the indirect measurement of end-effector velocity, described as:

ˆ̇x = ẋ+ δ, (22)

where ẋ represents the real end-effector velocity and δ the noise signal in the
measurement process.
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By inserting 22 into the PD control action in the operational space, the
control torque due to noise for the PD control strategy can be calculated as:

τδPD = JTkdδ. (23)

Likewise, substituting (22) in (10), the control torque due to noise for
PD+MBT control strategy can be calculated as:

τδMBT = JT (B̄kp + kd)δ. (24)

Therefore, the PD+MBT control strategy leads to a more noisy control
action when compared to the PD control strategy due to the JB̄kpδ term.
This statement is also valid for the PD+FM (accurate mapping and low cost
mapping) control strategy.


