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Abstract: Let (X, d) be a metric space. Let Y be an ordered
Banach space with increasing norm. Let Φ be a separable linear
family (a class) of Lipschitz functions defined on X and with values
in Y . Let α(·) be a nondecreasing function mapping the interval

[0,+∞) into itself such that limt↓0
α(t)
t

= 0. We say that a multi-
function Γ mapping X into Φ is Φ-α(·)-K-monotone if for all k in
the interior of K, k ∈ Int K, there is a constant Ck > 0 such that
for all φx ∈ Γ(x),φy ∈ Γ(y) we have

φx(x) + φy(y)− φx(y)− φy(x) ≥K −Ckα(d(x, y))k.

It is shown in the paper that under certain conditions on Φ each Φ-
α(·)-K-monotone multifunction is single-valued and continuous on
a dense Gδ-set.

Keywords: vector valued functions, normal cone, cone with
bounded basis, Φ-α(·)-K-subgradi-ents, increasing norm, Φ-α(·)-k-
subdifferential Fréchet Φ-differentiability

1. Φ-α(·)-K-subgradients and Φ-α(·)-K-supergradients

of vector valued functions

Let (X, d) be a metric space. Let f(x) and φ(x) be two functions defined on
X with values in a Banach space (Y, ‖ · ‖) partially ordered by a pointed closed
convex cone K with non-empty interior, Int K 6= ∅. Recall that the cone K
introduces the order in the following way. We write x ≤K y if y ∈ x+K (x ≥K y

if x ∈ y +K) and x <K y if y ∈ x+ Int K (x >K y if x ∈ y + Int K).
Let α(·) be a nondecreasing function mapping the interval [0,+∞) into itself

such that

lim
t↓0

α(t)

t
= 0. (1.1)
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Let k ∈ Int K. The function φ(x) will be called a Φ-α(·)-k-subgradient (Φ-α(·)-
k-supergradient) of the function f(x) at a point x0 if there is a constant Ck > 0
such that

f(x)− f(x0) ≥K φ(x) − φ(x0)− Ckα(d(x, y))k (1.2)

(resp., f(x)− f(x0) ≤K φ(x) − φ(x0) ) + Ckα(d(x, y))k) (1.2′)

for all x ∈ X.

If a function φ is Φ-α(·)-k0-subgradient (respectively Φ-α(·)-k0- supergradi-
ent) of the function f(x) at a point x0 for a certain k0 ∈ Int K, then by (1.1)
it is Φ-α(·)-k-subgradient (respectively Φ-α(·)-k-supergradient) of the function
f(x) at a point x0 for all k ∈ Int K. Therefore the natural definition is that a
function φ is Φ-α(·)-K-subgradient (respectively Φ-α(·)-K-supergradient) of the
function f(x) at a point x0 if it is Φ-α(·)-k0-subgradient (respectively Φ-α(·)-
k0-supergradient) of the function f(x) at a point x0 for a certain k0 ∈ Int K.

The set of all Φ-α(·)-K-subgradients (respectively, Φ-α(·)-K-supergradients)
of the function f at a point x0 we shall call Φ-α(·)-K-subdifferential (respec-
tively, Φ-α(·)-K-superdifferential) of the function f at a point x0 and we shall

denote it by ∂Φα,kf
∣

∣

x0

(respectively, ∂α,kΦ f
∣

∣

x0

).

Proposition 1 Φ-α(·)-K-subdifferential (respectively, Φ-α(·)-K-superdifferential)
of the function f at a point x0 is a convex set.

Proof Let φ(x) and ψ(x) be two Φ-α(·)-K-subgradients (Φ-α(·)-K-supergradients)
of a function f(x) at a point x0.

By the definition of Φ-α(·)-K-subgradient there are k ∈ IntK and a constant
Ck, such that

f(x)− f(x0) ≥K φ(x) − φ(x0)− Ckα(d(x, y))k, (1.2)φ

f(x)− f(x0) ≥K ψ(x)− ψ(x0)− Ckα(d(x, y))k. (1.2)ψ

Multiplying (1.2)φ by t and (1.2)ψ by (1− t) and adding them, by the convexity
of K we obtain that

f(x)− f(x0) ≥K [tφ(x)+ (1− t)ψ(x)]− [tφ(x0)+ (1− t)ψ(x0)]−Ckα(d(x, y))k.,
(1.3)

which shows that tφ(x) + (1 − t)ψ(x) is a Φ-α(·)-k-subgradient of a function
f(x) at a point x0. The proof for Φ-α(·)-k-supergradients is similar. ⊓⊔

Observe that the introduced notions of Φ-α(·)-k-subgradients, Φ-α(·)-k-super-
gradients, Φ-α(·)-K- subdifferentials, Φ-α(·)-K-superdifferentials do not depend
on the norm in the space Y , and as a consequence we get that if ‖ · ‖1 is a
norm in Y equivalent to the norm ‖ · ‖, then Φ-α(·)-K-subgradients, Φ-α(·)-K-
supergradients, Φ-α(·)-K- subdifferentials, Φ-α(·)-K-superdifferentials are the
same with respect to both these norms.
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2. Φ-α(·)-k-monotone vector-valued multifunctions

Let X,Z be two sets. Let Γ : X → 2Z be a multifunction, i.e., the mapping of
the set X into subsets of Z. We shall call the domain of Γ, dom(Γ), the set of
such x, that Γ(x) 6= ∅,

dom(Γ) = {x ∈ X : Γ(x) 6= ∅}.

By the graph of Γ, G(Γ), we shall call the set G(Γ) = {(x, z) ∈ X×Z : z ∈ Γ(x)}.
Let, as before, (X, d) be a metric space. Let Φ be a linear family of functions

defined on (X, d) with values in a Banach space (Y, ‖ · ‖) partially ordered by a
pointed closed convex cone K with non-empty interior.

We say that a multifunction Γ mapping (X, d) into Φ is Φ-α(·)-k-monotone

if there is Ck > 0 such that for φx ∈ Γ(x), φy ∈ Γ(y) we have

φx(x) + φy(y)− φx(y)− φy(x) ≥K −Ckα(d(x, y))k. (2.1)

In particular, when (X, d) is a metric linear space, and Φ is a linear space
consisting of linear operators φ(x) = 〈φ, x〉, we can rewrite (2.1) in the more
classical form

〈φx − φy, x− y〉 ≥K −Ckα(d(x, y))k. (2.1)ℓ

Amultifunction Γ mapping (X, d) into Φ is called n-cyclicΦ-α(·)-k-monotone

if there is Ck > 0 such that for arbitrary x0, x1, ..., xn = x0 ∈ X and φxi
∈

Γ(xi), (i = 0, 1, 2, ..., n), we have

n
∑

i=1

[φxi−1
(xi−1)− φxi−1

(xi)] ≥K −Ck

n
∑

i=1

α(d(xi, xi−1))k. (2.1)n

A multifunction Γ mapping (X, d) into Φ is called cyclic Φ-α(·)-k-monotone

if it is n-cyclic Φ-α(·)-k-monotone for n = 2, 3, .... . Of course, just from the
definition a multifunction Γ is Φ-α(·)-k-monotone if and only if it is 2-cyclic
Φ-α(·)-k-monotone.

Observe that the introduced notions of Φ-α(·)-k-monotone multifunctions,
n-cyclic Φ-α(·)-k-monotone multifunctions, cyclic Φ-α(·)-k-monotone multifunc-
tions do not depend on the norm in the space Y , and so, as a consequence we
get that if ‖ · ‖1 is a norm in Y equivalent to the norm ‖ · ‖, then Φ-α(·)-
k-monotone multifunctions, n-cyclic Φ-α(·)-k-monotone multifunctions, cyclic
Φ-α(·)-k-monotone multifunctions are the same with respect to both norms.

Proposition 2 For a given function f the subdifferential ∂Φα,kf
∣

∣

x
, considered

as a multifunction of x, is cyclic Φ-α(·)-k-monotone.

Proof Take arbitrary x0, x1, ..., xn = x0 ∈ X and φxi
∈ ∂Φα,kf

∣

∣

xi
, i =

0, 1, 2, ..., n. Since φxi
∈ ∂Φα,kf

∣

∣

xi
we have that for i = 1, 2, , , .n there are Cik

such that

f(xi)− f(xi−1) ≥K φxi−1
(xi)− φxi−1

(xi−1)− Cikα(d(xi, xi−1))k. (1.3)i
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Adding all equations (1.3)i for i = 1, 2, ..., n and changing the sign we obtain

n
∑

i=1

[φxi−1
(xi−1)− φxi

(xi−1)] ≥K −Cik

n
∑

i=1

α(d(xi, xi−1))k ≥K

−Ck

n
∑

i=1

α(d(xi, xi−1))k, (2.1)n

where Ck = maxCik. ⊓⊔

Let L be the space of all Lipschitzian functions defined on (X, d) with values
in (Y, ‖ · ‖). We define on L a quasinorm

‖φ‖L = sup
x1,x2∈X,

x1 6=x2

‖φ(x1)− φ(x2)‖

d(x1, x2)
. (2.2)

Observe that, if ‖φ1−φ2‖L = 0, then the difference of φ1 and φ2 is a constant
function, i.e., there is c ∈ Y such that φ1(x) = φ2(x) + c. Thus, we consider the
quotient space L̃ =L

/

Y
. The quasinorm ‖φ‖L induces the norm in the space L̃.

Since this will not lead to any misunderstanding, we shall also denote this norm
by ‖φ‖L.

Let Φ be a linear family of Lipschitz functions. If there is an element h,
belonging to the interior of K, h ∈ Int K, ‖h‖ < 1, such that for all x ∈ X and
all φ ∈ Φ and all t > 0, there is a y ∈ X such that 0 < d(x, y) < t and

φ(y)− φ(x) ≥K ‖φ‖Ld(y, x)h, (2.3)

we say that the family Φ has the monotonicity property with respect to the

element h (briefly: the family Φ has the h-monotonicity property).
It is easy to see, that if a ∈ Int K, 0 ≤K a ≤K h, then each family Φ having

the h-monotonicity property also has a-monotonicity property.
Write for any φ ∈ Φ, a ∈ Int K, x ∈ X, ̺ ∈ R+ (see Preiss and Zajiček,

1984; Rolewicz, 1994; Pallaschke and Rolewicz, 1997; Rolewicz, 1999)

K(φ, a, x, ̺) = {y ∈ X : φ(y)− φ(x) ≥K ‖φ‖Ld(y, x)a, d(x, y) < ̺}. (2.4)

The setK(φ, a, x, ̺) will be called a (a, ̺)-cone with vertex at x and direction

φ. Of course, it may happen that K(φ, a, x, ̺) = {x}. However, if h ∈ a+ IntK,
it is obvious that the set K(φ, a, x, ̺) has a non-empty interior and, even more,

x ∈ IntK(φ, a, x, ̺). (2.5)

Observe that just from the definition it follows that if a1 <K a2, then
K(φ, a1, x, ̺) ⊃ K(φ, a2, x̺).

A set M ⊂ X is said to be (a, ̺)-cone meagre if for arbitrary ε, 0 < ε < ̺

there are z ∈ X, d(x, z) < ε and φ ∈ Φ such that
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M ∩ Int K(φ, a, z, ̺) = ∅. (2.6)

The arbitrariness of ε and (2.5) imply that an (a, ̺)-cone meagre set M is
nowhere dense. A setM ⊂ X is called (a, ̺)-small-angle if it can be represented
as a union of a countable number of (a, ̺)-cone meagre sets Mn,

M =

∞
⋃

n=1

Mn. (2.7)

Of course, every (a, ̺)-small-angle set M is of the first category.
In further considerations we shall assume that the cone K is normal, i.e. for

all k ∈ Int K, the set (−k +K) ∩ (k −K) is a bounded neighbourhood of 0.
This is equivalent to the fact that K has a bounded basis, i.e. there exists in K
a closed bounded convex subset, B ⊂ K, such that 0 6∈ B and each k ∈ K can
be represented in the form k = tb, where t is a non-negative real number and
b ∈ B. Let K be a convex cone having non-empty interior and a bounded basis.
It can be shown (Peressini, 1967; Jahn, 1986, 2004) that in this case there is in
Y an equivalent norm ‖ · ‖i such that if k ∈ K, k ≤K h, i.e. h ∈ k +K, then

‖k‖i ≤ ‖h‖i. (2.8)

Any norm satisfying (2.8) shall be called increasing. By adapting the method
of Preiss and Zajiček (1984) to metric spaces we obtain

Theorem 1 (compare Rolewicz 1994, 1999; Pallaschke and Rolewicz, 1997).
Let (X, d) be a metric space. Let (Y, ‖ · ‖) be a Banach space, ordered by a
closed pointed convex cone K, such that the norm is increasing. Let Φ be a
linear family of Lipschitz functions mapping (X, d) into (Y, ‖ · ‖) having the
monotonicity property with respect to the element h ∈ Int K with ‖h‖ < 1.
Assume that Φ is separable in the metric dL. Let a multifunction Γ mapping
(X, d) into 2Φ be Φ-α(·)-k-monotone and such that dom Γ = X (i.e., Γ(x) 6= ∅
for all x ∈ X ). Then there are ̺ > 0 and a (k, ̺)-small-angle set A such that
Γ is single-valued and continuous on the set X \A.

Proof It is sufficient to show that the set

A = {x ∈ X : lim
δ→0

diam Γ(B(x, δ)) > 0},

where by diam we denote the diameter of the set measured in the Lipschitz
metric dL, is (k, ̺)-small-angle. Of course, we can represent A as a union of sets

An = {x ∈ X : lim
δ→0

diam Γ(B(x, δ)) >
1

n
}. (2.9)

Let {φm} be a dense sequence in the space Φ in the metric dL. Suppose that
0 <K a <K h and ‖a‖ < 1. Let

An,m = {x ∈ An : dist(φm,Γ(x)) <
‖a‖

4n
}, (2.10)
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where, as usual, we denote dist(φm,Γ(x)) = inf{‖φm − φ‖L : φ ∈ Γ(x)}.
By the density of the sequence {φm} in Φ,

∞
⋃

m=1

An,m = An.

We will show that there is ̺ > 0 such that the sets An,m are (a, ̺)-cone
meagre. Suppose that x ∈ An,m. Let ε be an arbitrary positive number. Since
x ∈ An, there are 0 < δ < ε and z1, z2 ∈ X , φ1 ∈ Γ(z1), φ2 ∈ Γ(z2) such that
d(z1, x) < δ, d(z2, x) < δ and

‖φ1 − φ2‖L >
1

n
. (2.11)

Thus, by the triangle inequality, for every φ ∈ Γ(x) either ‖φ1 − φ‖ > 1
2n or

‖φ2 − φ‖ > 1
2n . By the definition of An,m, we can find φx ∈ Γ(x) such that

‖φx−φm‖ < ‖a‖
4n . Therefore, choosing as z either z1 or z2, we can say that there

are z ∈ X and φz ∈ Γ(z) such that d(z, x) < δ and

‖φz − φm‖L ≥ ‖φz − φx‖L − ‖φx − φm‖L >
1

2n
−

‖a‖

4n
. (2.12)

We shall show that there is ̺ > 0 such that

An,m ∩K(φz − φm, a, z, ̺) =

{y ∈ An,m : d(y, z) < ̺, φz(y)+φm(z)−φm(y)−φz(z) ≥K ‖φz−φm‖Ld(y, z)a} =

= ∅. (2.13)

Indeed, let ̺ > 0 be chosen in such a way that

sup
0<t<̺

Ck‖k‖
α(t)

t
< r =

1− ‖a‖

4n
. (2.14)

Since r > 0, by (1.1) such ̺ exists. Now we shall show (2.13). Suppose that
y ∈ K(φz − φm, a, z, ̺). This means that

d(y, z) < ̺ (2.15)

and
[φz(y)− φm(y)]− [φz(z)− φm(z)] =

φy(y) + φm(z)− φm(y)− φy(z) ≥K ‖φz − φm‖Ld(y, z)a. (2.16)

Suppose that φy ∈ Γ(y). Then, by the Φ-α(·)-k-monotonicity of Γ,

φy(y)− φy(z) ≥K φz(y)− φz(z)− Ckα(d(z, y))k (2.17)

and by (2.16)
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φy(y) + φm(z)− φm(y)− φy(z)

≥K φz(y) + φm(z)− φm(y)− φz(z)− Ckα(d(z, y))k

≥K ‖φz − φm‖Ld(y, z)a− Ckα(d(z, y))k.

Using the fact that the norm is increasing and (2.12) we get

‖φy(y)+φm(z)−φm(y)−φy(z)‖ ≥

(

[
1

2n
−

‖a‖

4n
]

)

d(y, z)− rd(y, z) ≥
1

4n
d(y, z)

>
‖a‖

4n
d(y, z).

This implies that

‖φy − φm‖L >
‖a‖

4n

and by the definition of An,m, y 6∈ An,m. ⊓⊔

Let K be a convex cone K having non-empty interior and a bounded basis.
We have the following corollary

Corollary 1 (compare Rolewicz, 1994, 1999; Pallaschke and Rolewicz, 1997).
Let (X, d) be a metric space. Let (Y, ‖ · ‖) be a Banach space, ordered by a
closed pointed convex cone K with bounded basis. Let Φ be a linear family of
Lipschitz functions mapping X into Y having the monotonicity property with
respect to the element h ∈ Int K. Assume that Φ is separable in the metric
dL. Let a multifunction Γ mapping X into 2Φ be Φ-α(·)-k-monotone and such
that dom Γ = X (i.e., Γ(x) 6= ∅ for all x ∈ X ). Then there are ̺ > 0 and a
(k, ̺)-small-angle set A such that Γ is single-valued and continuous on the set
X \A.

We recall that a set B of the second category is called residual if its comple-
ment is of the first category. Since the (a, ̺)-small-angle sets are always of the
first category we immediately obtain the following extension of the result from
Kenderov (1974) on metric spaces and vector valued functions

Theorem 2 Let (X, d) be a metric space of the second category on itself (in
particular, let X be a complete metric space). Let (Y, ‖ · ‖) be a Banach space.
We assume that (Y, ‖·‖) is an ordered Banach space and that the order is given by
a closed convex cone K with bounded basis. Let Φ be a linear family of Lipschitz
functions mapping X into Y . We assume that Φ has the monotonicity property
with respect to an element h ∈ Int K, ‖h‖ < 1. Assume that Φ is separable in
the metric dL. Let Γ be a Φ-α(·)-k- monotone multifunction mapping X into 2Φ

such that Γ(x) 6= ∅ for all x ∈ X. Then there is a residual set B such that the
multifunction Γ is single-valued and continuous on B.
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Corollary 2 Let (X, d) be a metric space of the second category on itself (in
particular, let X be a complete metric space). Let (Y, ‖ · ‖) be a Banach space.
We assume that Y is an ordered Banach space and that the order is given by a
closed convex cone K with bounded basis. Let Φ be a linear family of Lipschitz
functions mapping X into Y . We assume that Φ has monotonicity property with
respect to element k ∈ Int K, ‖k‖ < 1. Assume that Φ is separable in the metric
dL. Let f(x) be a function having at each point a Φ-subgradient. Then there is

a residual set B such that on B the subdifferential ∂α,kΦ f
∣

∣

x
is single-valued and

it is continuous in the metric dL.

We shall say that a function f(x) mapping a metric space (X, d) into a
normed space (Y, ‖ · ‖Y ) is Fréchet Φ-differentiable at a point x0 if there are a
function γ(t) mapping the interval [0,+∞) into the interval [0,+∞] such that

lim
γ(t)

t
= 0

and a function φx0
∈ Φ such that

‖[f(x)− f(x0)]− [φ(x) − φ(x0)]‖Y ≤ γ(d(x, x0)).

The function φ will be called a Fréchet Φ-gradient of the function f(x) at the
point x0. The function γ(t) will be called the modulus of smoothness.

In the case of normed spaces the continuity of Gâteaux differentials in the
norm operator topology implies that these differentials are the Fréchet differen-
tials. Similarly, for metric spaces we obtain the following generalization of the
Asplund Theorem (Asplund, 1968) (see also Mazur, 1933).

Proposition 3 (compare Rolewicz, 1995a, 1995b). Let (X, d) be a metric space
of the second category on itself (in particular, let X be a complete metric space).
Let (Y, ‖ · ‖) be a Banach space. We assume that Y is an ordered Banach space
and that the order is given by a closed convex cone K with bounded basis. Let
Φ be a linear family of Lipschitz functions mapping X into Y . We assume that
Φ has monotonicity property with respect to an element k ∈ IntrK, ‖k‖ < 1.
Assume that Φ is separable in the metric dL. Let φx0

be a Φ-subgradient of
the function f(x) at a point x0. Suppose that there is a neighbourhood U of x0
such that for all x ∈ U the subdifferential ∂α,kf

∣

∣

x
is not empty and it is lower

semi-continuous at x0 in the Lipschitz norm, i.e., for every ε > 0 there is a
neighbourhood Vε ⊂ U such that for x ∈ Vε there is φx ∈ ∂

α,k
Φ f

∣

∣

X
such that

‖φx − φx0
‖L ≤ εd(x, x0). (2.18)

Then φx0
is the Fréchet Φ-gradient of the function f(x) at the point x0.

Proof Let
F (x) = [f(x)− f(x0)]− [φx0

(x)− φx0
(x0)].

It is easy to see that F (x0) = 0. Since φx0
is a Φ-subgradient of the function

f(x) at a point x0, then F (x) ≥K 0. Let ε be an arbitrary positive number
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and let Vε be a neighbourhood of x0 such that for x ∈ Vε (2.18) holds. Since
φx is a Φ-subgradient of the function f(x) at a point x, ψx = φx − φx0

is a
Φ-subgradient of the function F (x) at the point x. Thus

F (y)− F (x) ≥K ψx(y)− ψx(x).

In particular, if y = x0, then

F (x0)− F (x) ≥K ψx(x0)− ψx(x). (2.19)

Taking into account (2.14), we obtain that for x ∈ Vε

0 ≤ F (x) ≤ ψx(x) − ψx(x0) ≤K φx(x)− φx(x0). (2.20)

Since the cone K has bounded basis, without loss of generality we may assume
that the norm is increasing 0 ≤K a ≤K b, which implies that

‖a‖ ≤ ‖b‖. (2.21)

Thus from (2.18),( 2.20) and (2.21) we obtain that

‖[f(x)− f(x0)]− [φx0
(x)− φx0

(x0)]‖ ≤ εd(x, x0). (2.22)

So, the fact that ε is arbitrary implies that φx0
is the Fréchet gradient of the

function f(x) at a point x0. ⊓⊔

If we assume that the function f(x) is continuous, then we do not need
to assume that there is a neighbourhood U of x0 such that for all x ∈ U ,
the subdifferential ∂α,kf

∣

∣

x
is not empty. It is sufficient to assume that the

subdifferential ∂α,kf
∣

∣

x
is not empty on a dense set.

Proposition 4 (compare Rolewicz, 1995a, 1995b). Let (X, d) be a metric
space. Let (Y, ‖ ·‖) be a Banach space. We assume that Y is an ordered Banach
space and that the order is given by a closed convex cone K with bounded basis.
Let Φ be a linear family of Lipschitz functions mapping X into Y . We assume
that Φ has monotonicity property with respect to element k ∈ IntrK. Assume
that Φ is separable in the metric dL. Let φx0

be a Φ-subgradient of the function
f(x) at a point x0. Suppose that there is a dense set A in a neighbourhood U

of x0 such that for all x ∈ A the Φ-subdifferential ∂α,kfΦ
∣

∣

x
is not empty and

lower semi-continuous at x0 in the Lipschitz norm. Then, φx0
is the Fréchet

Φ-gradient of the function f(x) at the point x0.

Proof The proof goes along the same line as the proof of Proposition 3. We
obtain that for x ∈ A ∩ Vε

‖[f(x)− f(x0)]− [φx0
(x)− φx0

(x0)]‖ ≤ εd(x, x0). (2.23)

Thus, by the continuity of f(x) and the density of A, we obtain that (2.23)
holds for all x ∈ U. The remaining part of the proof is the same. ⊓⊔
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