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1. Introduction

Pontryagin’s maximum principle is, in its various versions, probably the most
important theorem of optimal control, both for theory and applications. It is
therefore vital to make it as easy to access as possible, for students, researchers,
and engineers. Unfortunately, short and elementary proofs of the maximum
principle are known only for very special cases, e.g., with fixed initial state and
free final state. Such cases do not include the nonlinear time optimal problem,
which can be viewed as a flagship problem of optimal control.

This paper is intended as a step towards improving this situation. It presents
a new, relatively short and elementary proof of the maximum principle for
the canonical optimal control problem (Milyutin et al., 2004), with equality
and inequality constraints imposed on the trajectory endpoints. Leaving out
mixed or pathwise state constraints, most of the ODE optimal control problems
taught at universities, including the time optimal ones, may be easily reduced
to this canonical form or treated as its special cases. The simplicity of the proof
is achieved by combining together two fundamental ideas, which, in the ear-
lier works, appeared separately: application of the Karush-John conditions for
finite-dimensional problems (known also as Fritz John conditions, see Mangasar-
ian and Fromovitz, 1967), and using packages of needle variations. The former
idea is due to A.A. Milyutin (Milyutin et al., 2004, see also Dubovitskii and
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Milyutin, 1965), the latter dates back to the very beginnings of the maximum
principle (Pontryagin et al., 1961).

The paper begins with the problem statement, slightly different from that
in Milyutin et al. (2004). For the ease of argument, feasible controls are lim-
ited to piecewise continuous functions. Next, necessary facts from the theory of
differential equations are recalled. The maximum principle is then formulated,
followed by the proof. Lastly, the time variation of the Hamiltonian is character-
ized in a separate theorem. This well known result is included for completeness,
also because its proof is partly new. In the appendix, a C1 extension from the
positive orthant onto the whole space is described.

It is my pleasant duty to thank Nikolai P. Osmolovskii, without whose help
this work would not have been possible. He drew my attention to the works of
A.A. Milyutin and his coworkers, and pointed out errors and omissions in the
manuscript. Thanks are also due to the anonymous reviewers for their helpful
comments and suggestions.

2. Canonical optimal control problem and variational equa-

tion

Our purpose is to formulate the necessary optimality conditions in an optimal
control problem, where the decision variables consist of the initial and termi-
nal time moments t0 and t1, the control u ∈ PC(t0, t1;R

m)1, the initial state
x0 ∈ Rn, and the terminal state x1 ∈ Rn. These variables are subject to con-
straints: t1 > t0, u(t) ∈ D ⊂ Rm for every t ∈ [t0, t1], g(t0, x0, t1, x1) 6 0,
h(t0, x0, t1, x1) = 0, x0 = x(t0) and x1 = x(t1), where x : [t0, t1] → Rn is a
solution of the state equation

ẋ(t) = f(t, x(t), u(t)), (1)

that is, an absolutely continuous function satisfying (1) almost everywhere. D
is a given set, the functions g : R2n+2 → Rr and h : R2n+2 → Rk are of class
C1. The function f : R×Rn×Rm → Rn is of class C1 in the second argument,
f and its derivative ∂2f are continuous in all their arguments.

A performance index Q : R2n+2 × PC(t0, t1;R
m) → R is to be minimized,

Q(t0, x0, t1, x1, u) = q(t0, x0, t1, x1),

with q : R2n+2 → R being of class C1. Any tuple (t0, x0, t1, x1, u) which
fulfils the above assumptions is called a feasible solution. Any feasible tuple
(t̂0, x̂0, t̂1, x̂1, û), such that Q(t̂0, x̂0, t̂1, x̂1, û) 6 Q(t0, x0, t1, x1, u) for every fea-
sible (t0, x0, t1, x1, u), is called an optimal solution.

The solution of (1) with an optimal control û and condition x(s) = ξ defines
a function P : Rn+2 → Rn,

P (t, s, ξ) = x(t), (2)

1PC(t0, t1;Y ) denotes the space of all functions [t0, t1] → Y which have a finite number of
discontinuities, are right-continuous in [t0, t1[, left-continuous at t1, and have a finite left-hand
limit at every discontinuity point.



A simple proof of the maximum principle with endpoint constraints 7

for t, s ∈ [t̂0, t̂1] and ξ from a certain neighborhood of x̂(s). It is well known from
the theory of differential equations that P is of class C1 in the third argument,
and continuous and piecewise C1 w.r.t. the others. Let now x be a fixed, feasible
solution of (1) with the control û. Denote Φ(t, s) = ∂3P (t, s, x(s)). From (1)
and (2) it immediately follows that the function t 7→ Φ(t, s) satisfies a matrix

variational equation

∂1Φ(t, s) = Φ(t, s)A(t), Φ(s, s) = I,

where A(t) = ∂2f(t, x(t), û(t)). The matrix Φ(t, s) is nonsingular and

Φ(t, s) Φ(s, t) = I.

By differentiating both sides of this last equality we obtain

∂2Φ(t, s) = −A(s)Φ(t, s). (3)

3. Maximum Principle

Define the Pontryagin function H : R×Rn ×Rm ×Rn → R,

H(t, x, u, ψ) = ψT f(t, x, u).

Theorem 1 (Maximum Principle). Assume that (t̂0, x̂0, t̂1, x̂1, û) is an opti-

mal solution and x̂ is the corresponding state trajectory. There then exist λ ∈ R,
µ ∈ Rr, ρ ∈ Rk and an absolutely continuous function ψ̂ : [t̂0, t̂1] → Rn, such
that the following relationships hold

(i) λ > 0, µ > 0 (non-negativity conditions)

(ii) λ+ ||µ ||+ || ρ || > 0 (non-triviality condition)

(iii) µT g(t̂0, x̂0, t̂1, x̂1) = 0 (complementarity condition)

(iv)
˙̂
ψ(t) = −∂2H(t, x̂(t), û(t), ψ̂(t)) a.e. t ∈ [t̂0, t̂1] (adjoint equation)

(v) ψ̂(t̂0) = ∂2(λq + µT g + ρTh)

ψ̂(t̂1) = −∂4(λq + µT g + ρTh)

H [t̂0] = −∂1(λq + µT g + ρTh)

H [t̂1] = ∂3(λq + µT g + ρTh) (transversality conditions)

(vi) H(t, x̂(t), v, ψ̂(t)) 6 H [t] ∀t ∈ [t̂0, t̂1] ∀v ∈ D (maximum condition).
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Here, ∂i(λq + µT g + ρTh) stands for the derivative w.r.t. the ith argument of

q, gand h, computed at the optimal point, and H [t] = H(t, x̂(t), û(t), ψ̂(t)).
Proof. The theorem will be proved in stages. First, a family of auxiliary,

finite-dimensional optimization problems will be introduced. For each problem
of the family, the Karush–John necessary optimality conditions will be for-
mulated. Next, a topological argument will be used to prove that there are
Lagrange multipliers common for the whole family. Lastly, an adjoint function
will be defined and used for the formulation of necessary conditions.

Note that similar Karush–John conditions and the topological argument
appear in Milyutin et al. (2004). However, the auxiliary finite-dimensional
problems in that book were constructed differently, in a more complex way and
without employing needle variations.

Let us extend the control û outside the interval [t̂0, t̂1], so that it is continuous
at t̂0 and t̂1. For a positive integer s introduce three sequences: a non-decreasing
sequence θ1, ..., θs contained in [t̂0, t̂1[, a sequence of non-negative real numbers
ε1, ..., εs, and a sequence v1, ..., vs, contained in D. Let further u be a control
in PC(t̂0, t̂1;D),

u(t) =

{

vi, t ∈ [θ′i, θ
′
i + εi[ , i = 1, ..., s

û(t), otherwise ,

where θ′1 = θ1, and for i > 1, θ′i = θi, if θi > θi−1, and θ′i = θ′i−1 + εi−1, if

θi = θi−1. Assume that θ′s + εs 6 t̂1 and θ′i + εi 6 θ′i+1, i = 1, ..., s − 1. The
initial value problem

ẋ(t) = f(t, x(t), u(t)), t ∈ [t0, t1], x(t0) = x0,

defines a function F , F (t0, x0, t1, ε) = x(t1), where ε = col(ε1, ..., εs). An obvi-
ous identity P (t1, t0, x0) ≡ F (t0, x0, t1, 0) holds, where P (t1, t0, x0) denotes the
value at t1 of the solution of equation (1) with control û, if x0 is the state at t0.
We will now use a well known result of the theory of differential equations. It
readily follows from the theorem on solution dependence on problem parame-
ters that F is continuously differentiable in some set of the form O1 ×O2 where
O1 ⊂ Rn+2 is a neighborhood of the point (t̂0, x̂0, t̂1), and O2 ⊂ Rs is the inter-
section of a neighborhood of the origin and the nonnegative orthant. We will
calculate the right-hand derivatives of F w.r.t. εi, i = 1, ..., s, at (t̂0, x̂0, t̂1, 0).
Fix i and assume εj = 0 for every j 6= i. Then, of course, x(t) = x̂(t), t 6 θi.
From the right-differentiability of solutions of (1) it follows that

x(θi + εi) = x̂(θi) + εif(θi, x̂(θi), vi) + o(εi)

x̂(θi + εi) = x̂(θi) + εif(θi, x̂(θi), û(θi)) + o(εi).

o is a common symbol for all error terms of order higher than one. The function
P is of class C1 in the third argument, and so

P (t̂1, θi + εi, x(θi + εi)) = P (t̂1, θi + εi, x̂(θi))

+εi∂3P (t̂1, θi + εi, x̂(θi))
T f(θi, x̂(θi), vi) + o(εi)
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P (t̂1, θi + εi, x̂(θi + εi)) = P (t̂1, θi + εi, x̂(θi))

+εi∂3P (t̂1, θi + εi, x̂(θi))
T f(θi, x̂(θi), û(θi)) + o(εi).

Subtracting the latter equality from the former one and using the continuity of
derivative, we obtain

F (t̂0, x̂0, t̂1, εiei)− F (t̂0, x̂0, t̂1, 0) = εi∂3P (t̂1, θi, x̂(θi))
T∆f(θi, vi) + o(εi),

where ∆f(θi, vi) = f(θi, x̂(θi), vi) − f(θi, x̂(θi), û(θi)), and ei denotes the unit
vector of the ith axis in Rs. The function F has been so far determined for ε > 0
only. We continue it onto the whole space in such a way that it is continuously
differentiable in a neighborhood of (t̂0, x̂0, t̂1, 0) (see Appendix). Then

∂4F (t̂0, x̂0, t̂1, 0) =
[

∂ε1
F (t̂0, x̂0, t̂1, 0) · · · ∂εsF (t̂0, x̂0, t̂1, 0)

]T

∂εiF (t̂0, x̂0, t̂1, 0) = ∂3P (t̂1, θi, x̂(θi))
T∆f(θi, vi), i = 1, ..., s,

and it follows from the relationship between P and F that

∂εiF (t̂0, x̂0, t̂1, 0) = ∂2F (θi, x̂(θi), t̂1, 0)
T∆f(θi, vi), i = 1, ..., s. (4)

We pose an auxiliary, (2n + s + 2)-dimensional optimization problem: the
performance index

Qa(t0, x0, t1, x1, ε) = q(t0, x0, t1, x1)

is minimized subject to

g(t0, x0, t1, x1) 6 0, −ε 6 0, h(t0, x0, t1, x1) = 0, x1 − F (t0, x0, t1, ε) = 0.

The necessary optimality conditions of the point (t̂0, x̂0, t̂1, x̂1, 0) in the aux-
iliary problem are also necessary conditions of optimality of the point (t̂0, x̂0, t̂1, x̂1, û)
in the original problem. We now formulate the Karush–John conditions. For
λ ∈ R, µ ∈ Rr, µ1 ∈ Rs, ρ ∈ Rk, ρ1 ∈ Rn define a Lagrange function
L = λq + µT g + ρTh − µT

1 ε + ρT1 (x1 − F ). The Karush–John theorem says
that if (t̂0, x̂0, t̂1, x̂1, 0) is an optimal solution of the auxiliary problem, then
there are λ ∈ R, µ ∈ Rr, µ1 ∈ Rs, ρ ∈ Rk, ρ1 ∈ Rn, such that

λ > 0, µ > 0, µ1 > 0 (5)

λ+ ||µ ||+ ||µ1 ||+ || ρ ||+ || ρ1 || > 0 (6)

µT g(t̂0, x̂0, t̂1, x̂1) = 0 (7)

∂L

∂ t0
= ∂1(λq + µT g + ρTh)− ρT1 ∂1F = 0 (8)

∂L

∂x0
= ∂2(λq + µT g + ρTh)− (∂2F )ρ1 = 0 (9)
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∂L

∂ t1
= ∂3(λq + µT g + ρTh)− ρT1 ∂3F = 0 (10)

∂L

∂x1
= ∂4(λq + µT g + ρTh) + ρ1 = 0 (11)

∂L

∂ε
= −µ1 − (∂4F )ρ1 = 0. (12)

All derivatives in (5)-(12) are computed at (t̂0, x̂0, t̂1, x̂1, 0). Condition (6) is
equivalent to λ+ ||µ ||+ || ρ || > 0. Indeed, if λ+ ||µ ||+ || ρ || = 0, then ρ1 = 0
by virtue of (5) and (11), and from (12) it follows that µ1 = 0. Further, the
condition λ+ ||µ ||+ || ρ || > 0 may be equivalently replaced by the equality

λ+ ||µ ||+ || ρ || = 1. (13)

This is a consequence of the fact that if T = (λ, µ, µ1, ρ, ρ1) satisfies (5)-(12),
then T divided by λ+ ||µ ||+ || ρ || also satisfies (5)-(12).

Let the sequences θ1, ..., θs and v1, ..., vs be determined as in the beginning
of the proof, and let J be the sequence of pairs (θi, vi), i = 1, ..., s. Denote
the family of all such sequences (finite, of different lengths) by ℑ. For every
J ∈ ℑ, denote by M(J) the set of all triples (λ, µ, ρ) satisfying (5), (13), (7)
– (12). M(J) is nonempty and compact. For J1, J2 ∈ ℑ we write J1 ≺ J2,
if J1 is a subsequence of J2. In consequence of the obvious implication J1 ≺
J2 ⇒ M(J1) ⊃ M(J2), the family of sets M(J), J ∈ ℑ, is centered. Indeed,
for any J1, ..., Jj ∈ ℑ, it is straightforward to construct a sequence J ∈ ℑ such
that J i ≺ J , i = 1, ..., j. Then, M(J) 6= ∅ and M(J) ⊂ M(J i), i = 1, ..., j. By
the Finite Intersection Property known in topology (Edwards, 1995, Ch. 0.1;
Yosida, 1965, Ch. 2, p. 6) it is proved that the set

M =
⋂

J∈ℑ

M(J )

is nonempty.
We now select (λ, µ, ρ) ∈ M, determine ρ1 from (11) and define the adjoint

function by the equality ψ̂(t) = ∂2F (t, x̂(t), t̂1, 0) ·ρ1. By virtue of the definition
of F ,

ψ̂(t) = ∂3P (t̂1, t, x̂(t)) ρ1 = Φ(t̂1, t)ρ1.

It follows from (3) that ψ̂ satisfies the adjoint equation
˙̂
ψ(t) = −A(t)ψ̂(t),

that is, (iv) holds. From (9) and (11) we obtain the first two transversality
conditions (v). To prove the third condition, notice that the derivative of the
function t0 7→ F (t0, x̂(t0), t̂1, 0), computed along the trajectory x̂ vanishes

d

dt0
F (t0, x̂(t0), t̂1, 0)

∣

∣

∣

∣

t0=t̂0

= ∂1F + (∂2F )
T f [t̂0] = 0,
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whence ρT1 ∂1F + ρT1 (∂2F )
T f [t̂0] = 0. Now it suffices to substitute the definition

of ψ̂ and use (8). The fourth transversality condition results from (10). The
maximum condition (vi) is obtained from the relationships (12) and (5) using
s = 1, t = θ1, v = v1. They immediately yield (∂4F )ρ1 6 0, and further, by
virtue of (4),

ρT1 ∂4F (t̂0, x̂0, t̂1, 0)
T = ρT1 ∂2F (t, x̂(t), t̂1, 0)

T∆f(t, v) = ψ̂(t)T∆f(t, v) 6 0. ✷

Theorem 1 also applies to problems in which inequality and/or equality
constraints do not appear. If there are no inequality constraints, the variable µ
is omitted in the formulation of the theorem, together with the complementarity
condition and the term µT g in the transversality conditions. To justify this,
introduce an always redundant inequality constraint g(t0, x0, t1, x1) ≡ −1 6

0. Then, µ = 0 by the complementarity condition. If there are no equality
constraints, the variable ρ and the term ρTh in the transversality conditions are
skipped. This can be justified by referring to the Karush–John conditions used
in the proof. Irrespective of the fact whether there is a constraint of the form
h(t0, x0, t1, x1) = 0 in the original problem, the Karush–John conditions for the
finite-dimensional problem with an equality constraint x1 = F (t0, x0, x1, ε) are
used in the proof. If constraints of both kinds are absent, we additionally put
λ = 1.

4. Time variation of H on extremal solutions

A triple (u, x, ψ ) is called an extremal solution in [t0, t1], if u ∈ PC(t0, t1;D),
and u, x and ψ in [t0, t1] satisfy the state equation (1), the adjoint equation

ψ̇(t) = −∂2H(t, x(t), u(t), ψ(t)),

and the maximum condition

H(t, x(t), v, ψ(t)) 6 H(t, x(t), u(t), ψ(t)) ∀t ∈ [t0, t1] ∀v ∈ D.

Theorem 2. Assume that f , ∂1f and ∂2f are continuous. If (u, x, ψ ) is an

extremal solution in [t0, t1], then the function χ(t) = H(t, x(t), u(t), ψ(t)) is

continuous in [t0, t1], and has a derivative

χ̇(t) = ∂1H(t, x(t), u(t), ψ(t)),

continuous in every interval of continuity of u.
Proof. The function χ is obviously continuous in every interval of continuity

of the control u. Let θ be an arbitrary point of control discontinuity. Assume,
contrary to the claim, that χ has a jump at θ, e.g.,

H(θ, x(θ), u(θ−), ψ(θ)) > H(θ, x(θ), u(θ+), ψ(θ)).

Thus, there are t′ and t′′ sufficiently close to one another, such that t′ < θ < t′′

and

H(t′′, x(t′′ ), u(t′), ψ(t′′ )) > H(t′′, x(t′′ ), u(t′′), ψ(t′′)),
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but this is in contradiction with the maximum condition (vi). The function χ
is therefore continuous.

Let θ1 and θ2 be two time moments from an interval of continuity of u.
Denote ∆t = θ2 − θ1 and ψi = ψ(θi), xi = x(θi), ui = u(θi),

∆i = H(θi, xi, u2, ψi)−H(θi, xi, u1, ψi)

for i = 1, 2. Write the expression ∆H = H(θ2, x2, u2, ψ2)−H(θ1, x1, u1, ψ1) in
two ways:

∆H = ∆2 +H(θ2, x2, u1, ψ2)−H(θ1, x1, u1, ψ1)

= ∆1 +H(θ2, x2, u2, ψ2)−H(θ1, x1, u2, ψ1).

For every v, the function t 7→ H(t, x(t), v, ψ(t)) has a continuous derivative

d

dt
H(t, x(t), v, ψ(t)) = ∂1H + ∂2H

T ẋ+ ∂4H
T ψ̇ = ∂1H.

Then

∆H = ∆2 + ∂1H(θ1, x1, u1, ψ1)∆t+ o(∆t)

= ∆1 + ∂1H(θ1, x1, u2, ψ1)∆t+ o(∆t). (14)

The function v 7→ ∂1H(θ1, x1, v, ψ1) is continuous by assumption, and so

∂1H(θ1, x1, u2, ψ1)∆t = ∂1H(θ1, x1, u1, ψ1)∆t+ o(∆t). (15)

From (14) and (15) it follows that ∆2 −∆1 = o(∆t). In virtue of the maximum
condition, ∆1 6 0 and ∆2 > 0. Both these expressions are thus of the order
higher than one and in consequence

∆H = ∂1H(θ1, x1, u1, ψ1)∆t+ o(∆t),

which ends the proof. ✷

5. Conclusions

The here presented proof of the maximum principle is suitable for teaching pur-
poses. It uses classical “textbook” results from the theory of ordinary differential
equations, mathematical programming, and, to a smaller extent, topology, to
replace the most troublesome parts of typical proofs. The rest of the presented
proof is elementary, only basics of differential calculus are required. This is why
it comes naturally and without special difficulties in a typical course of study,
where the student listening to lectures on optimal control has already mastered
the necessary elements of differential equations and finite dimensional optimiza-
tion. Due to relying on facts from other domains of mathematics, the proof is
also relatively short.
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Appendix

Let m, n and s be positive integers, R+ = [0,∞ [, and let F : Rm × Rs
+ → Rn

be a C1 function. Our aim is to construct a C1 extension of F onto the whole
space Rm × Rs. The construction will be done in steps. In the first step F is
extended onto Rm ×R×Rs−1

+

F (x, y) = 2F (x, 0, y2, y3, ..., ys)− F (x, −y1, y2, y3, ..., ys),

x ∈ Rm, y1 < 0, y2 > 0, y3 > 0, ..., ys > 0.

In step 2, F is extended onto Rm ×R2 ×Rs−2
+

F (x, y) = 2F (x, y1, 0, y3, ..., ys)− F (x, y1, −y2, y3, ..., ys),

x ∈ Rm, y1 ∈ R, y2 < 0, y3 > 0, ..., ys > 0.

Generally, in step i, i = 1, 2, ..., s,

F (x, y) = 2F (x, y1, ..., yi−1, 0, yi+1, ..., ys)−F (x, y1, ..., yi−1, −yi, yi+1, ..., ys),

x ∈ Rm, y1, ..., yi−1 ∈ R, yi < 0, yi+1 > 0, ..., ys > 0. (A1)

After the ith step, F is well defined on Rm × Ri × Rs−i
+ , and so, after the sth

step, F is well defined on the whole space Rm × Rs. The extended function
F is obviously continuous. To prove that it is continuously differentiable, it is
enough to notice that due to (A1), the right and left partial derivatives of F
w.r.t. yi at yi = 0 are identical.
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