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Abstract: In this paper, we introduce four new classes of open
sets in general Euclidean space RN . It is shown that every such class
of open sets is compact under the Hausdorff distance. The result is
applied to a shape optimization problem of p-Laplacian equation.
The existence of the optimal solution is presented.
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1. Introduction

The existence of optimal solution is one of the major concerns in most of the
shape optimization problems. Many approaches aiming to achieve the existence
are available in literature. Under a regularity assumption on the boundary of
unknown domain, the existence of various shape optimizations can be found in
Chenais (1975), Pironneau (1984), Tiba (2003), Wang, Wang, and Yang (2006),
Wang and Yang (2008), Yang (2009). In Tiba (2003), the existence of shape
optimization for an elliptic equation over a class of special interior domains is
considered. Wang, Wang, and Yang (2006) generalizes the work of Tiba (2003)
to the stationary Navier-Stokes equations over a class of exterior domains. In
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Wang and Yang (2008), the solution space of stationary Navier-Stokes equations
over a class of domains by using some geometric methods is considered. Simi-
lar interesting studies have also been presented in Tiba and Halanay (2009) and
Tiba (2013). Some generalizations based on Wang, Wang, and Yang (2006) have
been developed in Delay (2012). The generalized perimeter and constraints, or
the penalty terms constructed from generalized perimeter and constraints are
used in dealing with existence in Guo and Yang (2013), He and Guo (2012),
where, for the second case, the conditions on the dimension of underlying Eu-
clidean spaces are imposed to obtain the compactness of certain families of open
sets with respect to the Hausdorff distance.

Let UR = U(0, R) ⊂ R
N be an open ball centered at the origin with the

radius R in a general Euclidean space R
N and let C be a class of open sets

inside of UR, this class to be specified later. Consider the following p-Laplacian
equation:

{

−∆puΩ = f in Ω,

uΩ ∈ W 1,p
0 (Ω),

(1.1)

where ∆p denotes the p-Laplace operator: ∆puΩ = div(|∇uΩ|p−2∇uΩ) with

2 ≤ p < +∞ and f ∈ Lp
′

(UR) is a given function, p′ = p
p−1 .

We say that uΩ is a (weak) solution of equation (1.1) if uΩ ∈ W 1,p
0 (Ω)

satisfies
∫

Ω

|∇uΩ|
p−2∇uΩ · ∇ϕdx =

∫

Ω

f · ϕdx, ∀ ϕ ∈ W 1,p
0 (Ω). (1.2)

In this paper, we are concerned with the existence of the following shape
optimization problem:

inf
Ω∈C

E(Ω) = inf
Ω∈C

∫

Ω

|uΩ − u0|
pdx, (1.3)

where uΩ is the solution of equation (1.2) corresponding to Ω ∈ C with zero
extension outside of Ω, and u0 ∈ Lp(UR) is a given function.

It is natural that in order to study problem (1.3), we need to define the
topology for the open sets class C. This is realized by the Hausdorff distance
between their complementary sets for any two given open sets. That is, for any
Ω1,Ω2 ∈ C, the Hausdorff distance ρ(Ω1,Ω2) is defined as

ρ(Ω1,Ω2) = max

{

sup
x∈BR\Ω1

dist (x,BR \ Ω2) , sup
y∈BR\Ω2

dist (BR \ Ω1, y)

}

, (1.4)

where dist(·, ·) denotes the Euclidean metric of RN and BR = UR is the closure
of UR in R

N . In this way, (C, ρ) becomes a metric space (see Pironneau, 1984).
A sequence {Ωn} ⊂ C is said to be convergent to Ω ∈ C, which is denoted by

Ωn
ρ
→ Ω, if ρ(Ωn,Ω) → 0 as n→ ∞.
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In this work, we introduce four new classes of open sets Ci, i = 1, 2, 3, 4, in
R
N (N ≥ 1) and C = C3 ∩ C4. We show that each class is compact under the

Hausdorff distance (1.4). The existence of the optimal solution (1.3) over the
class C is demonstrated.

We proceed as follows. In Section 2, we first introduce some preliminary
notation and define the classes of open sets Ci, i = 1, 2, 3, 4, respectively. The
main results are stated. Section 3 is devoted to the proof of the main results.

2. Main results

Throughout the paper, we denote by U(x, r) ⊂ R
N the open ball centered at

x ∈ R
N with radius r and by B(x, r) ⊂ R

N the closure of U(x, r). Define

δ(K1,K2) = max

{

sup
x∈K1

dist(x,K2) sup
y∈K2

dist(y,K1)

}

,

which is also called the Hausdorff distance between two compact subsets K1 and
K2 of RN . It is seen from equation (1.4) that ρ(Ω1,Ω2) = δ(BR \ Ω1, BR \ Ω2)
for any open sets Ω1,Ω2 ⊂ UR. Hence

Ωn
ρ
→ Ω ⇐⇒ BR \ Ωn

δ
→ BR \ Ω.

Lemmas 2.1-2.5 below are brought from Guo and Yang (2012), Pironneau
(1984), and Schneider (1993).

Lemma 2.1 Let K,Kn, n ∈ N, be compact subsets of RN such that Kn
δ
→ K.

Then K is the set of all accumulation points of the sequences {xn}n∈N such that
xn ∈ Kn for every n ∈ N.

Remark 2.1 It follows from Lemma 2.1 and the definition of δ that for any
given ε > 0, there exists an integer M(ε) > 0 such that K ⊂

⋃

x∈Km
U(x, ε) for

all m ≥M(ε) and Km ⊂
⋃

x∈K U(x, ε).

Lemma 2.2 Let K, K̃,Kn, K̃n, n ∈ N, be compact subsets of R
N such that

Kn
δ
→ K and K̃n

δ
→ K̃. If Kn ⊂ K̃n for every n, then K ⊂ K̃.

Lemma 2.3 [Γ-property for open sets class] For any given class of open

sets C, if {Ωn}
∞
n=1 ⊂ C,Ω ∈ C, and Ωn

ρ
→ Ω, then for each open subset Λ with

Λ ⊂ Ω, there exists a positive integer nΛ depending on Λ such that Λ ⊂ Ωn for
all n ≥ nΛ.

Lemma 2.4 Suppose that Ωn ⊂ UR, n ∈ N, are bounded open sets of R
N .

Then there exist an open set Ω ⊂ UR and a subsequence {Ωnk
}∞k=1 of {Ωn}∞n=1

such that Ωnk

ρ
→ Ω. In particular, (O, δ) is a compact metric space, where

O = {K ⊂ UR| K is compact}.
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Lemma 2.5 [Blaschke selection theorem] Any bounded sequence of convex
sets contains a convergent subsequence under the Hausdorff distance.

Let C ⊂ R
N be a given nonempty convex domain. C′ is said to be congruent

with C, if C′ is equal to C upon rotation and translation in R
N . Therefore, C′

is congruent with C if and only if C is congruent with C′.

Definition 2.1 Let Ω be a bounded set in R
N , x0 ∈ ∂Ω. We say that Ω satisfies

the interior convex domain condition at x0 if there exists a C′ that is congruent
with C such that C′ ⊂ Ω and x0 ∈ ∂C′.

We say that Ω satisfies the uniformly interior convex domain condition if Ω
satisfies the interior convex domain condition at every x0 ∈ ∂Ω.

Definition 2.2 Let Ω be a bounded set in R
N , x0 ∈ ∂Ω. Ω is said to satisfy

the exterior convex domain condition at x0 if there exists a C′ that is congruent
with C such that C′ ⊂ UR \ Ω and x0 ∈ ∂C′.

We say that Ω satisfies the uniformly interior convex domain condition if Ω
satisfies the exterior convex domain condition at every x0 ∈ ∂Ω.

The following Definition 2.3 and Lemma 2.6 appeared first in Chenais (1975),
and can also be found in Pironneau (1984) as well as in Delfour and Zolésio
(2001). Definition 2.3 is available in Adams and Fournier (2003) on page 81.

Definition 2.3 Let C(ε, ξ, x) be the half-cone with angle ε, direction ξ, and
vertex x, intersecting with the ball U(x, ε).

Ω is said to have the ε-cone property if for all x ∈ ∂Ω, there exists a direction
ξ(x) such that

C(ε, ξ(x), y) ⊂ Ω, ∀ y ∈ U(x, ε) ∩Ω.

C(ε, ξ(x), y) is then called an ε-cone at y. Set

Oε = {Ω ⊂ R
N | Ω is open and Ω has the ε-cone property}. (2.1)

Lemma 2.6 Let π
2 > ε > 0 and let Oε be defined by equation (2.1). Then

(Oε, ρ) is a compact metric space; and Ω has the ε-cone property if and only if
∂Ω is Lipschitz continuous with constant k(ε) > 0.

Definition 2.4 [The cone condition] Ω is said to satisfy the cone condition
if there exists a finite cone C0 such that for any x ∈ Ω, there exists a finite
cone Cx ⊂ Ω that is congruent with C0 and x is the vertex of Cx. Note that Cx
is not necessarily obtained from C0 by the parallel translation, but it is simply
obtained by the rigid motion.

Definition 2.5 Let C0 be a given cone. We say that Ω satisfies the C0-cone
condition if for every x ∈ Ω, there exists a cone Cx ⊂ Ω that is congruent with
C0 and x is the vertex of Cx.

We say that Ω satisfies the exterior C0-cone condition if for every x ∈ UR\Ω,
there exists a cone Cx that is congruent with C0, where x is the vertex of Cx,
such that Cx ⊂ UR \ Ω.
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Let R, r0 > 0, and let C0 be a given cone. We introduce four classes of open
sets Ci, i = 1, 2, 3, 4:















































C1 = {Ω ⊂ U(0, R2 )|
Ω satisfies the uniformly interior convex domain condition},

C2 = {Ω ⊂ U(0, R2 )| U(xΩ, rΩ) ⊂ Ω, rΩ ≥ r0,
Ω satisfies the uniformly interior convex domain condition},

C3 = {Ω ⊂ U(0, R2 )| Ω satisfies the C0-cone condition},
C4 = {Ω ⊂ U(0, R2 )| U(xΩ, rΩ) ⊂ Ω, rΩ ≥ r0,

Ω satisfies the exterior C0-cone condition},
C = C3 ∩ C4.

(2.2)

We are now in a position to state the main results of this paper.

Theorem 2.1 For every given i ∈ {1, 2, 3, 4}, if {Ωm}∞m=1 ⊂ Ci, then there
exist a subsequence {Ωmk

}∞k=1 of {Ωm}∞m=1 and Ω ∈ Ci such that

Ωmk

ρ
→ Ω as k → ∞.

In other words, each (Ci, ρ) is a compact metric space. In particular, (C, ρ) is
also a compact metric space.

The following Remark 2.2 establishes the relationship between C1 ∩ C2 and
Oε defined by equation (2.1).

Remark 2.2 Let Oε be defined by equation (2.1). For any ε > 0, all ε-cones
in Oε are congruent with each other. If we take some ε-cone C(ε, ξ, y) in Oε

as the convex domain C in C1 ∩ C2, then Oε ⊂ C1 ∩ C2. If 0 < ε < π
4 , then

there may be Oε 6= C1 ∩ C2. Obviously, if one takes ε-cone as the cone C0, then
Oε ⊂ C3 ∩ C4.

In general, the open set Ω in C1 or C2 may not satisfy the ε-cone property.
The following Example 2.1 is an appropriate counterexample.

Example 2.1 (a). Set Ω = ((−1, 0) ∪ (0, 1)) × (−1, 1) and C(ε, e1, 0) with
ε < 1

4 and e1 = (1, 0). Then Ω ∈ C1, but Ω 6∈ Oε.
(b). Let C(ε, ξ, 0) be any ε-cone. Set Ω = (− ε

4 ,
ε
4 ) × (−1, 1). Then Ω ∈ C2

but Ω 6∈ Oε.

The open set Ω in C may not satisfy uniform segment property (see e.g.,
Neittaanmaki, Sprekels and Tiba, 2006; Tiba, 2003). The following Example
2.2 is an appropriate counterexample.

Example 2.2 Let Ω = {(−1, 2) × (−2, 2)} \ {(x, y) ∈ [−1, 1]2| |y| ≤ |x|} and
cone C0 = C(π8 ,

1
8 , 0). Then Ω ∈ C is a connected domain. But Ω does not

satisfy the uniform segment property.

The following property is called the exterior Γ−property.
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Theorem 2.2 [Exterior Γ-property for C] If {Ωn}∞n=1 ⊂ C and Ωn
ρ
→ Ω,

then for each open subset Λ satisfying Λ ⊂ UR \Ω, there exists a positive integer
nΛ depending on Λ such that Λ ⊂ UR \ Ωn for all n ≥ nΛ.

It is noted that the exterior Γ-property cannot be deduced from the Haus-
dorff convergence as the (interior) Γ-property stated in Lemma 2.3.

Example 2.3 Set Ωn = {(0, 1)×(−1, 0)∪{(0, 1/n)×[0, 1)}, Ω = (0, 1)×(−1, 0),

Λη = {(x, y)|(x2 + (y − 1/2)2 < η}. Obviously, Ωn
ρ
→ Ω and Λη ∩ Ω = ∅, but

Λη ∩Ωn cannot be empty for any n no matter how small η is.

The existence of the optimal solution for the shape optimization (1.3) in
class C is stated as the following Theorem 2.3.

Theorem 2.3 Suppose that p 6= N . Then the shape optimization problem (1.3)
admits at least one solution for the class of open sets C.

Remark 2.3 The p-Laplacian problem (1.3) has been studied in Bucur and
Buttazzo (2005) for p = 2 under a different class of open sets.

3. Proof of main results

The following Lemmas 3.1 and 3.2 are brought from Guo and Yang (2012):

Lemma 3.1 Let {xn} ⊂ R
N and {rn} ⊂ R be such that rn ≥ r∗ > 0 and

U(xn, rn)
ρ
→ D ⊂ R

N . Then there exist an x ∈ R
N and a subsequence {xnk} of

{xn} such that U(x, r∗) ⊂ D and xnk → x as k → ∞. Furthermore, if rn → r∗

as n→ ∞, then D = U(x, r∗).

Lemma 3.2 Suppose that Ωn
ρ
→ Ω and x ∈ ∂Ω. Then there exist xnl

∈ ∂Ωnl

for all l ∈ N such that xnl
→ x as l → ∞.

Assume being given a sequence {Cn}∞n=1 where Cn is congruent with C
for every n ∈ N. By Lemma 2.4, there exists a subsequence of {Cn}∞n=1, still

denoted by itself, and C̃ ⊂ R
N , such that Cn

ρ
→ C̃.

Lemma 3.3 Let Cn
ρ
→ C̃, where Cn is congruent with C for every n ∈ N. Then

C̃ is also congruent with C. In addition, if Cn
δ
→ F , then Int(F ) = C̃ and

F = Int(F ), where Cn is the closure of Cn and Int(F ) is the interior of F .

Proof Since Cn is congruent with C, there exist an orthogonal matrix
An ∈ R

N×N and an xn such that Cn = AnC + xn; here and throughout the
paper we denote by AC + x0 = {Ay + x0; y ∈ C}, where A ∈ R

N×N is an
orthogonal matrix and x0 ∈ R

N .
Since {An}∞n=1 is a bounded sequence in R

N×N , there exists a subsequence
of {An}∞n=1, still denoted by itself, and A0 ∈ R

N×N , such that An → A0. By
orthogonality of {An}

∞
n=1, A0 is orthogonal as well. By the same reasoning,
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there exists a subsequence of {xn}∞n=1, still denoted by itself, and x0 ∈ R
N such

that xn → x0.
Next, we show that C̃ = A0C + x0.
(i). For any y ∈ C, there exists an ry > 0 such that U(y, ry) ⊂ C and

hence U(Any + xn, ry) = AnU(y, ry) + xn ⊂ Cn. On the other hand, since

Any + xn → A0y + x0, by Lemma 3.1, U(Any + xn, ry)
ρ
→ U(A0y + x0, ry).

By Lemma 2.2, A0U(y, ry) + x0 = U(A0y + x0, ry) ⊂ C̃, which implies that

A0C + x0 ⊂ C̃.
(ii). If C̃ 6⊂ A0C+x0, there exists a z ∈ C̃\(A0C + x0). Obviously, A0C+x0

is a convex domain. There are two cases. a) If z ∈ C̃ \ (A0C + x0), then
there exists an rz > 0 such that U(z, rz) ⊂ C̃ and U(z, rz) ∩ (A0C + x0) = ∅;
b) If z ∈ C̃ ∩ ∂ (A0C + x0), since A0C + x0 is convex, there also exist z′ ∈ C̃
and rz′ > 0 such that U(z′, rz′) ∩ (A0C + x0) = ∅. By combining two cases,
we get that there exist z′ ∈ R

N and rz′ > 0 such that U(z′, rz′) ⊂ C̃ and
U(z′, rz′) ∩ (A0C + x0) = ∅. In other words,

dist(z′, A0C + x0) ≥ rz′ . (3.1)

Since An → A0 and xn → x0, there exists an M > 0 such that ‖An − A0‖ <
min{ rz′4 ,

rz′
4R } and |xn − x0| < min{ rz′4 ,

rz′
4R } for all n ≥M . Hence

|(Any + xn)− (A0y + x0)| = |(An −A0)y + (xn − x0)|

≤ ‖An −A0‖|y|+ |xn − x0| ≤
rz′

2
, ∀y ∈ C. (3.2)

On the other hand, one can find a unique y′n ∈ ∂C such that

dist(z′, AnC + xn) = |z′ − (Any
′
n + xn)|

≥ |z′ − (A0y
′
n + x0)| − |(A0y

′
n + x0)− (Any

′
n + xn)|

≥ dist(z′, A0C + x0)−|(A0y
′
n + x0)−(Any

′
n + xn)|. (3.3)

By combining (3.1), (3.2), and (3.3), we obtain

dist(z′, AnC + xn) ≥
rz′

2
, ∀ n ≥M.

In other words, there exists an M > 0 such that U(z′, rz′2 ) ∩ [AnC + xn] = ∅
for all n ≥ M . Hence, z′ 6∈ AnC + xn for all n ≥ M . Upon letting Kn =
BR \ (AnC +xn) and K = BR \ C̃, it follows from Lemma 2.1 that z′ ∈ BR \ C̃,
that is, z′ 6∈ C̃. This is a contradiction, and hence the first part follows.

Now, we show the second part.

Let Cn
δ
→ F . Since Cn = AnC + xn and C is a convex domain, it has

Cn = AnC + xn for every n ∈ N. Using the same notation as above, we may
assume An → A0 and xn → x0 as n → ∞. For any y ∈ C, since Any + xn →
A0y + x0, it follows from Lemma 2.1 and Any + xn ∈ Cn for each n ∈ N that
A0C + x0 = A0C + x0 ⊂ F . On the other hand, for any y ∈ F , there exists
ynk ∈ Cnk where {Cnk}∞k=1 is a subsequence of {Cn}∞n=1, such that ynk → y
as k → ∞. Since there exists znk ∈ C such that ynk = Ankznk + xnk for each



22 Bao-Zhu Guo and Dong-Hui Yang

k ∈ Z, and Cnk = AnkC + xnk, there is znk = A−1
nk (ynk − xnk) → A−1

0 (y − x0).
Furthermore, A−1

0 (y−x0) ∈ C. That is, y ∈ A0C+x0, and hence F ⊂ A0C + x0,
so F = A0C + x0 = A0C + x0. Moreover, since C is an open convex domain,
one arrives at Int(F ) = Int

(

A0C + x0
)

= A0C + x0 = C̃ and F = A0C + x0 =

Int(F ).

Proof of Theorem 2.1. Let i ∈ {1, 2, 3, 4}. For any given {Ωn}∞n=1 ⊂ Ci, by
Lemma 2.4, there exists a subsequence of {Ωn}∞n=1, still denoted by itself, and

an open set Ω0 such that Ωn
ρ
→ Ω0. Hence, we only need to show that Ω0 ∈ Ci.

We first show that (C1, ρ) is a compact metric space.

For every z0 ∈ ∂Ω0, by Lemma 3.2 and Ωn
ρ
→ Ω0, there exists a subsequence

of {Ωn}∞n=1, still denoted by itself, and zn ∈ ∂Ωn, such that zn → z0 as n→ ∞.
For every zn ∈ ∂Ωn, there exist an orthogonal matrix An and xn ∈ R

N , such
that AnC + xn ⊂ Ωn and zn ∈ ∂(AnC + xn). Since {An}∞n=1 is bounded, there
exists a subsequence of {An}

∞
n=1, still denoted by itself, and an orthogonal

matrix A0 such that An → A0. In the same way, one can find a subsequence of
{xn}∞n=1, still denoted by itself, such that xn → x0. With the same arguments

as in the proof of Lemma 3.3, one has AnC + xn
ρ
→ A0C + x0. By Lemma

2.2, A0C + x0 ⊂ Ω0. On the other hand, since zn ∈ ∂(AnC + xn) for every
n ∈ N, it follows that dist(zn, AnC + xn) = 0. Since An → A0 and xn → x0,
dist(z0, A0C + x0) = 0. So, z0 ∈ ∂(A0C + x0). This is the required result.

Next, we show that (C2, ρ) is also a compact metric space.

By the definition of C2, there exists an U(xn, rn) ⊂ Ωn with rn ≥ r0 > 0
for every n ∈ N. Hence, one can extract a subsequence of {U(xn, rn)}∞n=1, still

denoted by itself, and x∗ ∈ R
N , r∗ > r0 such that U(xn, rn)

ρ
→ U(x∗, r∗). Since

U(xn, rn) ⊂ Ωn, by Lemma 2.2, U(x∗, r∗) ⊂ Ω. So, Ω0 6= ∅.

Since BR \ Ωn
δ
→ BR \ Ω0, for every x ∈ ∂Ω0 ⊂ BR \ Ω0, there exists a

sequence {xnk}∞k=1 with xnk ∈ BR \ Ωnk for every k ∈ N, where {Ωnk}∞k=1 is a
subsequence of {Ωn}∞n=1, such that xnk → x as k → ∞. By the definition of
C2, there exists a Ck that is congruent with C, such that Ck ⊂ BR \ Ωnk and
xnk ∈ ∂Ck. Obviously, Ck ⊂ BR \ Ωnk. Since {Ck}∞k=1 is bounded in BR, by
Lemma 2.4 there exists a subsequence of {Ck}∞k=1, still denoted by itself, and

F ⊂ BR such that Ck
ρ
→ F . By Lemma 2.1 x ∈ F , and by Lemma 3.3, Int(F )

is congruent with C. On the other hand, by Lemma 2.2, F ⊂ BR \ Ω0, which
implies that for every x ∈ ∂Ω0, there exists a C′ that is congruent with C such
that C′ ⊂ BR \ Ω0.

Thirdly, we show that (C3, ρ) is a compact metric space.

Indeed, for every x ∈ Ω0, there exists an r∗ > 0 such that B(x, r∗) ⊂ Ω0.
This, together with Lemma 2.3, shows that there exists an nx > 0 such that
B(x, r∗) ⊂ Ωn for all n ≥ nx. Since Ωn satisfies the C0-cone condition for every
n ≥ nx, then, there exists a cone Cx,n for which x is the vertex of Cx,n and
Cx,n is congruent with C0 such that Cx,n ⊂ Ωn. By Lemma 3.3, there exists

a subsequence of {Cx,n}∞n=nx
, still denoted by itself, such that Cx,n

ρ
→ C̃ and

C̃ is congruent with C0. Obviously, x is the vertex of C̃. Moreover, by Lemma
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2.2, C̃ ⊂ Ω0. Hence, Ω0 satisfies the C0-cone condition. In other words, (C3, ρ)
is a compact metric space.

Finally, by Lemma 3.1, Ω0 6= ∅. Along the same line as that in the proof of
(C2, ρ), we can obtain that (C4, ρ) is also a compact metric space. The proof is
complete. �

In order to prove Remark 2.2, we need the following Lemma 3.4 that has
been proven in Lemma III.1 of Chenais (1975).

Lemma 3.4 Let ε > 0 and let Oε be defined by equation (2.1). Then, for every
x0 ∈ ∂Ω, there exists a unit vector ξ(x0) ∈ R

N such that C(ε, ξ(x0), x0) ⊂ Ω
and C(ε,−ξ(x0), x0) ⊂ UR \ Ω.

Proof of Remark 2.2. For any x1, x2 ∈ ∂Ω,Ω ∈ Oε, by the ε-cone prop-
erty, there exist unit vectors ξ(x1) and ξ(x2) such that C(ε, ξ(x1), y1) ⊂ Ω,
C(ε, ξ(x2), y2) ⊂ Ω, respectively, for all y1 ∈ B(x1, ε) ∩ Ω, y2 ∈ B(x2, ε) ∩ Ω.
Take Ax1,x2

as an orthogonal matrix satisfying Ax1,x2
ξ(x1) = ξ(x2). Then,

C(ε, ξ(x2), y2) = Ax1,x2
C(ε, ξ(x1), y1) + (y2 − y1), that is, C(ε, ξ(x2), y2) and

C(ε, ξ(x1), y1) are congruent.
If we take the convex domain C in C1 ∩ C2 as some ε-cone C(ε, ξ, y) in Oε,

then it follows from Lemma 3.4 that Oε ⊂ C1 ∩ C2.
The following is a counterexample showing that Oε 6= C1 ∩C2 for 0 < ε < π

4 .

Example 3.1 Let Ω1 ∈ R
2 be the interior domain surrounded by the following

three curves Γi, i = 1, 2, 3

Γ1 :
{

(x, y) ∈ R
2| x ∈ [−1, 1], y = |x| cos ε

}

;

Γ2 :

{

(x, y) ∈ R
2
∣

∣ x =

√

sec2 ε− (y − sec ε csc ε)
2
, y ∈ [cot ε, sec ε(1 + csc ε)]

}

;

Γ3 :

{

(x, y) ∈ R
2
∣

∣ x = −

√

sec2 ε− (y − sec ε csc ε)
2
, y ∈ [cot ε, sec ε(1 + csc ε)]

}

.

It is easy to verify that Ω ≡ Ω1 ∪ (−Ω1) ∈ C1 ∩ C2 with −Ω1 = {x ∈ R
N | − x ∈

Ω1}. But Ω 6∈ Oε in terms of Theorem 2.6.

The following Lemma 3.5, which is a direct consequence of the definition of
δ, and Lemma 3.6, are used to prove Theorem 2.2.

Lemma 3.5 Let K,Kn, n ∈ N be compact sets in BR, and Kn
δ
→ K∗.Then

K ∪Kn
δ
→ K ∪K∗.

Lemma 3.6 Let Ω ∈ C3. For every x0 ∈ ∂Ω, there exists a Cx0
that is congruent

with C0, where x0 is the vertex of Cx0
, such that Cx0

⊂ Ω.

Proof Since x0 ∈ ∂Ω, there exists a sequence {xn}∞n=1 ⊂ Ω such that
xn → x0 as n → ∞. For every xn ∈ Ω, one can find a Cxn

such that Cxn
⊂ Ω
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and xn ∈ ∂Cxn
in terms of Ω ∈ C3. By Lemmas 2.4 and 3.3, it follows that

there exists a subsequence of {Cxn
}∞n=1, still denoted by itself, and C∗ such that

Cxn

ρ
→ C∗ where C∗ is congruent with C0. Since Cxn

⊂ Ω, by Lemma 2.1 there
also holds C∗ ⊂ Ω. Obviously, x0 ∈ ∂C∗. The lemma is then proved by taking
C∗ = Cx0

. �

Remark 3.1 Following from the definition of C3 and Lemma 3.6, one can ob-
tain that for every x0 ∈ Ω with Ω ∈ C3, there exists a Cx0

that is congruent with
C0, such that Cx0

⊂ Ω, where x0 is the vertex of Cx0
.

Proof of Theorem 2.2. By Lemma 2.3, we need only to show, by the def-

initions of ρ and δ, that UR \ Ωn
ρ
→ UR \ Ω. This is equivalent to showing

that

∂BR ∪ Ωn = BR \
(

UR \ Ωn
) δ
→ BR \

(

UR \ Ω
)

= ∂BR ∪ Ω. (3.4)

By Lemma 3.5 and Ωn ⊂ B
(

0, R2
)

for all n ∈ N, in order to prove (3.4), it

suffices to prove Ωn
δ
→ Ω. Since {Ωn}∞n=1 is a sequence of compact sets, by

Lemma 2.4, there exists a subsequence of {Ωn}∞n=1, still denoted by itself, and

a compact set F such that Ωn
δ
→ F . Now, we show that F = Ω.

For every x ∈ Ω, there exists an r∗ > 0 such that B(x, r∗) ⊂ Ω. By Lemma
2.3, one can find an nx > 0 such that B(x, r∗) ⊂ Ωn for all n ≥ nx. By Lemma
2.1, x ∈ F . This shows that Ω ⊂ F , and hence Ω ⊂ F .

Next, we show that F ⊂ Ω.
Indeed, for every x ∈ F , there exists a subsequence {xnk}∞k=1 of {Ωn}∞n=1,

where xnk ∈ Ωnk for every k ∈ N, such that xnk → x as k → ∞. By Remark
3.1, there exists a Cnk ⊂ Ωnk such that xnk is the vertex of Cnk for every k ∈ N.

Assume that Cnk
ρ
→ C̃ and Cnk

δ
→ D. Then x ∈ D, D = (C̃), Int(D) = C̃, and

C̃ is congruent with C0 owing to Lemma 3.3. These facts show that x ∈ Ω; and
hence F ⊂ Ω. �

The next Lemma 3.7 is crucial for the proof of Theorem 2.3.

Lemma 3.7 Assume that p 6= N and Ω ∈ C. Then W 1,p
0 (Ω) =W 1,p

0 (Ω), that is,

W 1,p
0 (Ω) = {u ∈W 1,p(UR)| u = 0 a.e. on UR \ Ω}, (3.5)

where W 1,p
0 (Ω) = ∩G⊃ΩW

1,p
0 (G) with open sets G ⊂ R

N .

Proof To prove Lemma 3.7, we need some definitions of capacity in poten-
tial theory, for which we refer to Adams and Hedberg (1999), Hedberg (1980),
Heinonen, Kilpelainen, and Martio (2006), as well as Landkof (1972).

First, by the arguments from Section 2 of Landkof (1972), (3.5) holds nat-
urally for p > N , so we need only to show that (3.5) for p < N . Following
Theorem 2.17 of Hedberg (1980), it suffices to show that UR \ Ω is (1, p)-
thick for every x ∈ ∂Ω. By Theorem 2.16 of Hedberg (1980), this is equiv-
alent to showing that

∑∞
n=1 an(x, UR \ Ω)q−1 = ∞, where an(x, UR \ Ω) =
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2n(N−p)C1,p([UR \Ω] ∩ U(x, 2−n)) with 1
p
+ 1

q
= 1. However, this is an obvious

fact since Ω ∈ C means that Ω satisfies the exterior C0-cone condition, and hence
for 1 < p < N , limn→∞ an(x, UR \ Ω) is finite and positive (see, e.g., Hedberg,
1980, p.10). This concludes the result for 1 < p < N . �

Open question: Our method here is not applied to the case of p = N . We
leave this case as an open problem.

Proof of Theorem 2.3. Let d = minΩ∈C

∫

Ω |uΩ − u0|p dx ≥ 0. Then, there
exists a minimizing sequence {Ωn}

∞
n=1 ⊂ C such that

d = lim
n→∞

∫

Ωn

|un − u0|
p dx, (3.6)

where un ≡ uΩn
is the (weak) solution of equation (1.1) in Ωn. By Theorem

2.1, there exists a subsequence of {Ωn}∞n=1, still denoted by itself, and Ω0 ∈ C

such that Ωn
ρ
→ Ω0.

By equation (1.2), it follows that
∫

Ωn

|∇un|
p−2∇un · ∇un dx =

∫

Ωn

f · un dx,

and hence
∫

Ωn

|∇un|
p dx =

∫

Ωn

f · un dx. (3.7)

By virtue of the Poincaré-type inequality, we have

‖un‖Lp(Ωn) ≤ L|UR|
1

N ‖∇un‖Lp(Ωn)

where and in what follows we use L = L(N,R) to denote a positive constant
independent of n although its value may vary in different contexts. Therefore,

∫

Ωn

|∇un|
p dx ≤ L. (3.8)

Let

ûn(x) =

{

un(x) in Ωn,

0 in UR \ Ωn.
(3.9)

Then {ûn}∞n=1 is bounded in W 1,p
0 (UR). By the Sobolev embedding theorem,

there exists a subsequence of {ûn}∞n=1, still denoted by itself, such that

ûn → û in W 1,p
0 (UR) weakly and in Lp(UR) strongly (3.10)

for some û ∈W 1,p
0 (UR). We claim that

û(x) ∈ W 1,p
0 (Ω0). (3.11)
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To this end, by Lemma 3.7, we need only to show that

û(x) = 0 a.e. in UR \ Ω0. (3.12)

Indeed, for any open subset K with K ⊂ UR \ Ω0, it follows from Theorem 2.2
that there exists an nK > 0 such that K ⊂ UR \ Ωn for all n ≥ nK . Thus

∫

K

|û(x)|p dx = lim
n→∞

∫

K

|ûn(x)|
p dx ≤ lim

n→∞

∫

UR\Ωn

|ûn(x)|
p dx = 0,

which implies that û(x) = 0 almost everywhere in K. Since K ⊂ K ⊂ UR \ Ω0

is arbitrary, we obtain (3.12), and so is for (3.11).

Now, we show that

∫

Ω0

|∇û|p−2∇û · ∇ϕdx =

∫

Ω0

f · ϕdx, ∀ ϕ ∈ C∞
0 (Ω0), (3.13)

that is,

∫

supp(ϕ)
|∇û|p−2∇û · ∇ϕdx =

∫

supp(ϕ)
f · ϕdx, ∀ ϕ ∈ C∞

0 (Ω0). (3.14)

To this end, let

ϕ̂ =

{

ϕ in Ω0,
0 in UR \ Ω0.

(3.15)

By Lemma 2.4, there exists a positive integer n1(ϕ) such that

sppp(ϕ̂) = supp(ϕ) ⊂ Ωn for all n ≥ n1(ϕ).

So, ϕ̂ ∈ C∞
0 (Ωn) for all n ≥ n1(ϕ). By equation (1.2),

∫

Ωn

|∇ûn|
p−2∇ûn · ∇ϕ̂ dx =

∫

Ωn

f · ϕ̂dx.

This, together with equation (3.15), gives

∫

supp(ϕ)
|∇ûn|

p−2∇ûn · ∇ϕdx =

∫

supp(ϕ)
f · ϕdx. (3.16)

We claim
∫

supp(ϕ)
|∇ûn|

p−2∇ûn · ∇ϕdx→

∫

supp(ϕ)
|∇û|p−2∇û · ∇ϕdx as n→∞. (3.17)

The proof of (3.17) is similar to the proof of Theorem 2.3.12 of Neittaan-
maki, Sprekels, and Tiba (2006) from pages 61-62. Indeed, set Ai(x,∇v) =
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|∇v(x)|p−2 ∂v̂
∂xi

for x = (x1, x2, · · · , xn). Then ∆pûn =
∑N

i=1Ai(x,∇ûn). For
any n ∈ N, it follows from (3.8) that

∫

UR

|Ai(x,∇ûn(x))|
p′ dx =

∫

UR

∣

∣

∣

∣

|∇ûn(x)|
p−2 ∂ûn

∂xi

∣

∣

∣

∣

p′

dx

≤

∫

UR

∣

∣|∇ûn(x)|
p−1
∣

∣

p′

dx=

∫

UR

|∇ûn(x)|
p dx ≤ L.

(3.18)

Hence, there exists ai ∈ Lp
′

(UR) such that

Ai(x,∇ûn) → ai in L
p′(UR) weakly, i = 1, · · · , N. (3.19)

LetK ⊂ Ω0 be any given compact set and pick any nonnegative test function
ψ ∈ C∞

0 (Ω0) so that ψ(x) = 1 for all x ∈ K. We estimate

In =

∫

Ω0

ψ

n
∑

i=1

(

Ai(x,∇ûn)−Ai(x,∇û)
)

(

∂ûn
∂xi

−
∂û

∂xi

)

dx. (3.20)

In makes sense by simply setting the integrand function on the right-hand side
of (3.20) to be zero in Ω0 \ supp(ψ), because by Theorem 2.2, supp(ψ) ⊂ Ωn for
all sufficiently large n. Therefore,

In =

∫

Ω0

N
∑

i=1

Ai(x,∇ûn)
∂

∂xi
(ψ(ûn − û))dx−

∫

Ω0

ψ
N
∑

i=1

Ai(x,∇û)

(

∂ûn
∂xi

−
∂û

∂xi

)

dx

−

∫

Ω0

N
∑

i=1

Ai(x,∇ûn)Z
i
ndx , I1n + I2n + I3n,

where we write shorthand

Zin =
∂

∂xi
(ψ(ûn − û))− ψ

(

∂ûn
∂xi

−
∂û

∂xi

)

= (ûn − û)
∂ψ

∂xi
. (3.21)

First, by (3.10), Zin → 0 in Lp(Ω0) strongly as n → ∞. This, together
with the fact that ‖Ai(x,∇ûn)‖Lp′(Ω0)

≤ L in terms of (3.18), shows that

limn→∞ I3n = 0. Second, by (3.10), ûn → û in W 1,p(supp(ψ)) weakly, which
leads immediately to limn→∞ I2n = 0. Third, by definition given in (1.2) with
ϕ = ψ(ûn − û)

I1n =

∫

Ω0

n
∑

i=1

Ai(x,∇ûn)
∂

∂xi
(ψ(ûn − û))dx =

∫

Ω0

fψ(ûn − û)dx.

It then follows from (3.10) that

lim
n→∞

I1n = lim
n→∞

∫

supp(ψ)
fψ(ûn − û)dx→ 0.
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Combining the aforementioned facts, we have proved

lim
n→∞

In = 0. (3.22)

By the uniform monotonicity of ∆p (see Dinca, Jebelean, and Mawhin, 2001),
there exists γ > 0 such that

〈−∆pûn − (−∆pû), ûn − û〉p
W

1,p
0

≥ γ‖ûn − û‖p
W

1,p
0

,

and we finally obtain

lim
n→∞

(

γ

∫

Ω0

ψ

N
∑

i=1

∣

∣

∣

∣

∂ûn
∂xi

−
∂û

∂xi

∣

∣

∣

∣

2

dx

)

≤ lim
n→∞

In = 0. (3.23)

Since the test function ψ is nonnegative in Ω0 with ψ|K = 0, (3.23), shows that
we can select a subsequence of n so that

∂ûn
∂xi

→
∂û

∂xi
as n→ ∞, ∀ x ∈ K a.e., i = 1, · · · , N.

The above, together with the continuity of Ai(x,∇ûn) shows that

Ai(x,∇ûn) → Ai(x,∇û), ∀ x ∈ K a.e., i = 1, · · · , N.

This, together with (3.19), gives

Ai(x,∇û) = ai, ∀ x ∈ K a.e., i = 1, · · · , N.

Since K ⊂ Ω0 is arbitrary, it follows that

Ai(x,∇û) = ai, ∀ x ∈ Ω0 a.e., i = 1, · · · , N.

In other words,

Ai(x,∇ûn) → Ai(x,∇û) in L
p′(UR) weakly, i = 1, · · · , N. (3.24)

Therefore,

∫

supp(ϕ)
|∇ûn|

p−2∇ûn · ∇ϕdx =

N
∑

i=1

∫

supp(ϕ)
Ai(x,∇ûn)

∂ϕ

∂xi

=

N
∑

i=1

∫

supp(ϕ)
[Ai(x,∇ûn)−Ai(x,∇û)]

∂ϕ

∂xi

+

∫

supp(ϕ)
|∇û|p−2∇û · ∇ϕdx

→

∫

supp(ϕ)
|∇û|p−2∇û · ∇ϕdx as n→ ∞.

(3.25)
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This proves (3.17). Passing to the limit as n→ ∞ in the left of (3.16) one gets
(3.14) and hence (3.13).

Finally, we show that

d ≥

∫

Ω0

|û− u0|
p dx. (3.26)

Indeed, let Ω0 =
⋃∞
j=1Gj , where Gj , j = 1, 2, · · · , are open and bounded subsets

in Ω0 such that Gj ⊂ Gj+1. By Theorem 2.2, for each j, there exists a positive
integer nj such that

Gj ⊂ Ωn as n ≥ nj.

Hence

lim
n→∞

∫

B\Ωn

|ûn − u0|
p dx ≥ lim

n→∞

∫

Gj

|ûn − u0|
p dx. (3.27)

By Equations (3.6), (3.10), (3.27), and Fatou’s Lemma, we have, for each j,
that

d ≥

∫

Gj

|û− u0|
pdx. (3.28)

Since

lim
j→∞

χGj
(x) = χΩ0

(x),

where χGj
and χΩ0

are the characteristic functions of Gj and Ω0, respectively,
it follows from equation (3.28) and Fatou’s Lemma again that

d ≥ lim
j→∞

∫

Gj

|û− u0|
p dxdx = lim

j→∞

∫

Ω0

χGj
|û− u0|

pdx ≥

∫

Ω0

|û− u0|
pdx.

Equation (3.26) then follows.
By combining equations (3.11), (3.14), and (3.26), Ω0 is shown to be a

solution to problem (1.3). This ends the proof. �
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