Control and Cybernetics

vol. 43 (2014) No. 1

Calculus and applications of Studniarski's derivatives to sensitivity and implicit function theorems*

by

Nguyen Le Hoang Anh a and Phan Quoc Khanh ${ }^{b}$
${ }^{a}$ Department of Optimization and System Theory, University of Science of Hochiminh City, 227 Nguyen Van Cu, District 5, Hochiminh City, Vietnam
nlhanh@hcmus.edu.vn (corresponding author)
${ }^{b}$ Department of Mathematics, International University, Vietnam National University, Linh Trung, Thu Duc, Hochiminh City, Vietnam;
Federation University, Ballarat, Victoria 3350, Australia pqkhanh@hcmiu.edu.vn

Abstract

We first discuss basic calculus rules for Studniarski's derivatives. Then, we apply these derivatives to sensitivity analysis of solutions to inclusions and to computing the derivative of implicit multifunctions.

Keywords: Studniarski's derivatives, sum rule, chain rule, product rule, quotient rule, sensitivity analysis, implicit multifunction theorems

1. Introduction

In set-valued analysis, one of the most popular and useful higher-order derivatives is the following contingent derivative introduced by Aubin (1981). Let X and Y be normed spaces, $F: X \rightarrow 2^{Y}, y_{0} \in F\left(x_{0}\right)$, and $\left(u_{1}, v_{1}\right), \ldots,\left(u_{m-1}, v_{m-1}\right) \in X \times Y$. The value at $u \in X$ of the contingent derivative of order m of F at $\left(x_{0}, y_{0}\right)$ relative to $\left(u_{1}, v_{1}\right), \ldots,\left(u_{m-1}, v_{m-1}\right)$ is
$D^{m} F\left(x_{0}, y_{0}, u_{1}, v_{1}, \ldots, u_{m-1}, v_{m-1}\right)(u):=\left\{v \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}\right) \rightarrow(u, v)\right.$,
$\left.\forall n, y_{0}+t_{n} v_{1}+\ldots+t_{n}^{m-1} v_{m-1}+t_{n}^{m} v_{n} \in F\left(x_{0}+t_{n} u_{1}+\ldots+t_{n}^{m-1} u_{m-1}+t_{n}^{m} u_{n}\right)\right\}$.

[^0]Observe that $D^{m} F\left(x_{0}, y_{0}, u_{1}, v_{1}, \ldots, u_{m-1}, v_{m-1}\right)(u)$ is nonempty only if $v_{1} \in$ $D F\left(x_{0}, y_{0}\right)\left(u_{1}\right), \ldots, v_{m-1} \in D^{m-1} F\left(x_{0}, y_{0}, u_{1}, v_{1}, \ldots, u_{m-2}, v_{m-2}\right)\left(u_{m-1}\right)$. In Studniarski (1986), another higher-order derivative was proposed, but only for an extended-real-valued function. As a direct extension to the case of a setvalued map, we have: the value at $u \in X$ of the Studniarski derivative of order m of F at $\left(x_{0}, y_{0}\right)$ is

$$
\begin{aligned}
D^{m} F\left(x_{0}, y_{0}\right)(u): & =\left\{v \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}\right) \rightarrow(u, v), \forall n\right. \\
& \left.y_{0}+t_{n}^{m} v_{n} \in F\left(x_{0}+t_{n} u_{n}\right)\right\}
\end{aligned}
$$

We can write the following two equivalent formulations for this derivative, where Limsup is the Painlevé-Kuratowski upper set-limit,

$$
D^{m} F\left(x_{0}, y_{0}\right)(u)=\underset{\left(t, u^{\prime}\right) \rightarrow\left(0^{+}, u\right)}{\operatorname{Limsup}} \frac{F\left(x_{0}+t u^{\prime}\right)-y_{0}}{t^{m}}
$$

and, by setting $\left(x_{n}, y_{n}\right):=\left(x_{0}+t_{n} u_{n}, y_{0}+t_{n}^{m} v_{n}\right), \gamma_{n}=t_{n}^{-1}$, and $\operatorname{gr} F$ as the graph of F,

$$
\begin{aligned}
D^{m} F\left(x_{0}, y_{0}\right)(u)= & \left\{v \in Y: \exists \gamma_{n}>0, \exists\left(x_{n}, y_{n}\right) \in \operatorname{gr} F:\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)\right. \\
& \left.\left(\gamma_{n}\left(x_{n}-x_{0}\right), \gamma_{n}^{m}\left(y_{n}-y_{0}\right)\right) \rightarrow(u, v)\right\}
\end{aligned}
$$

In nonsmooth optimization, this object was applied in obtaining optimality conditions, e.g., in Studniarski (1986), Jiménez (2003), Jimenez and Novo (2008), Luu (2008), Sun and Li (2012), and Li et al. (2012), and in discussing sensitivity analysis in Sun and Li (2011).

In Anh et al. (2011) and Diem et al. (2013), several notions of higher-order derivatives were developed, combining the Studniarski derivative and the extension of the radial derivative proposed in Taa (1998) (for the first-order) to higher orders. In that way, global (not local as with the above two derivatives) higherorder optimality conditions were established for nonconvex optimization. (The main technical change in the above definitions is replacing $\exists t_{n} \rightarrow 0^{+}$by $\exists t_{n}>0$.) But for some other topics like sensitivity analysis or implicit function theorems, this may be inconvenient. In Diem et al. (2013), further modifications of the derivatives of Anh et al. (2011) were introduced in order to obtain other objects suitable for higher-order sensitivity analysis.

In this paper we return to the Studniarski derivative proposed in Studniarski (1986), since it is simpler than the derivatives in Anh et al. (2011) and Diem et al. (2013). Namely, we are concerned with two topics. First, we develop calculus
rules for this derivative, observing that these rules have not been studied, but a kind of derivatives is significant only if it is endowed with sufficiently developed calculus rules. Next, we use the Studniarski derivative to sensitivity analysis and implicit function theorems to ensure that we can investigate the issues that are difficult for the derivatives considered in Anh et al. (2011).

Throughout the paper, if not otherwise specified, let X, Y, Z be normed spaces, and $C \subset Y$ a closed convex cone. For a subset A of a normed space, $\operatorname{cl} A$ denotes its closure. B_{Y} stands for the closed unit ball in $Y . \mathcal{U}\left(x_{0}\right)$ and $\mathcal{U}\left(y_{0}\right)$ are used for the collections of the neighborhoods of x_{0} in X and of y_{0} in Y, respectively. \mathbb{N}, \mathbb{R}, and \mathbb{R}_{+}^{n} are the set of the natural numbers, the set of the real numbers, and the nonnegative orthant of the n-dimensional space. For a set-valued map $F: X \rightarrow 2^{Y}$, its profile map F_{+}is defined by $F_{+}(x):=F(x)+C$. The domain, graph, and epigraph of F are defined as
$\operatorname{dom} F=\{x \in X: F(x) \neq \emptyset\}, \operatorname{gr} F=\{(x, y) \in X \times Y: y \in F(x)\}$, epi $F=\operatorname{gr} F_{+}$. The closure map of F, denoted by $\operatorname{cl} F$, is defined by $\operatorname{gr}(\operatorname{cl} F):=\mathrm{cl}(\operatorname{gr} F)$. If $(\operatorname{cl} F)(x)=F(x)$, one says that F is closed at x.
DEFINITION 1.1 Let $F: X \rightarrow 2^{Y},\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$.
(i) F is a convex map on a convex set $S \subset X$ if, for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in S$,

$$
(1-\lambda) F\left(x_{1}\right)+\lambda F\left(x_{2}\right) \subset F\left((1-\lambda) x_{1}+\lambda x_{2}\right) .
$$

(ii) F is lower semicontinuous at $\left(x_{0}, y_{0}\right)$ if, for each $V \in \mathcal{U}\left(y_{0}\right)$, there is some neighborhood $U \in \mathcal{U}\left(x_{0}\right)$ such that for each $x \in U, V \cap F(x) \neq \emptyset$.
(iii) F is locally pseudo-Hölder calm of order m at $\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$ if $\exists \lambda>0$, $\exists U \in \mathcal{U}\left(x_{0}\right), \exists V \in \mathcal{U}\left(y_{0}\right), \forall x \in U$,

$$
F(x) \cap V \subset\left\{y_{0}\right\}+\lambda\left\|x-x_{0}\right\|^{m} B_{Y}
$$

When $m=1$, the word "Hölder" is replaced by "Lipschitz". If $V=Y$, then "locally pseudo-Hölder calm" is replaced by "locally Hölder calm".
EXAMPLE 1.1 (i) The set-valued map $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ defined by $F(x)=\left\{y:-x^{2} \leq\right.$ $\left.y \leq x^{2}\right\}$ is locally pseudo-Hölder calm of order 2 at $(0,0)$.
(ii) Let $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be defined by

$$
F(x)= \begin{cases}\{0,1 / x\}, & \text { if } x \neq 0 \\ \left\{0,(1 / n)_{n \in \mathbb{N}}\right\}, & \text { if } x=0\end{cases}
$$

For any $m \geq 1, F$ is not locally pseudo-Hölder calm of order m at $(0,0)$.
Observe that if F is locally pseudo-Hölder calm (or locally Hölder calm) of order m at $\left(x_{0}, y_{0}\right)$, it is also locally pseudo-Hölder calm (locally Hölder calm,
respectively) of order n at $\left(x_{0}, y_{0}\right)$ for all $m>n$. However, the converse may not hold. The following example shows the case.
EXAMPLE 1.2 Let $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be defined by

$$
F(x)= \begin{cases}\left\{x^{2} \sin (1 / x)\right\}, & \text { if } x \neq 0 \\ \{0\}, & \text { if } x=0\end{cases}
$$

Obviously, F is locally Hölder calm of order 2 at $(0,0)$, but F is not locally Hölder calm of order 3 at $(0,0)$.

2. Studniarski's derivatives

Let $F: X \rightarrow 2^{Y},\left(x_{0}, y_{0}\right) \in \operatorname{gr} F, u \in X$, and $m \geq 1$.
DEFINITION 2.1 Let $F: X \rightarrow 2^{Y}$ and $\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$.
(i) (Li et al., 2012) The m th-order Studniarski derivative of F at $\left(x_{0}, y_{0}\right)$ is defined by, for $u \in X$,

$$
D^{m} F\left(x_{0}, y_{0}\right)(u)=\underset{\left(t, u^{\prime}\right) \rightarrow\left(0^{+}, u\right)}{\operatorname{Limsup}} \frac{F\left(x_{0}+t u^{\prime}\right)-y_{0}}{t^{m}}
$$

or, equivalently,

$$
\begin{aligned}
& D^{m} F\left(x_{0}, y_{0}\right)(u)=\left\{v \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}\right) \rightarrow(u, v), \forall n,\right. \\
&\left.y_{0}+t_{n}^{m} v_{n} \in F\left(x_{0}+t_{n} u_{n}\right)\right\} .
\end{aligned}
$$

(ii) (Sun and Li, 2012) The lower m th-order Studniarski derivative of F at $\left(x_{0}, y_{0}\right)$ is defined by, for $u \in X$,

$$
\begin{aligned}
D_{l}^{m} F\left(x_{0}, y_{0}\right)(u) & =\left\{v \in Y: \forall t_{n} \rightarrow 0^{+}, \forall u_{n} \rightarrow u, \exists v_{n} \rightarrow v, \forall n,\right. \\
& \left.y_{0}+t_{n}^{m} v_{n} \in F\left(x_{0}+t_{n} u_{n}\right)\right\}
\end{aligned}
$$

(iii) If $D^{m} F\left(x_{0}, y_{0}\right)(u)=D_{l}^{m} F\left(x_{0}, y_{0}\right)(u)$ for all $u \in X$, then $D^{m} F\left(x_{0}, y_{0}\right)$ is called the m th-order proto Studniarski derivative of F at $\left(x_{0}, y_{0}\right)$.
(iv) (Sun and Li, 2012) If

$$
\begin{gathered}
D^{m} F\left(x_{0}, y_{0}\right)(u)=\left\{v \in Y: \forall t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}\right) \rightarrow(u, v), \forall n,\right. \\
\left.y_{0}+t_{n}^{m} v_{n} \in F\left(x_{0}+t_{n} u_{n}\right)\right\},
\end{gathered}
$$

then $D^{m} F\left(x_{0}, y_{0}\right)$ is called the m th-order strict Studniarski derivative of F at $\left(x_{0}, y_{0}\right)$.

EXAMPLE 2.1 Let $X=Y=\mathbb{R}$ and $F_{n}: X \rightarrow 2^{Y}, n \in \mathbb{N}$, be defined by $F_{n}(x)=\left\{y \in Y: y \geq x^{n}\right\}$ for $x \in X$. By direct calculations, we can find the m th-order Studniarski derivative of F_{n} at $\left(x_{0}, y_{0}\right)=(0,0)$ as follows:

If $m=n$, then $D^{m} F_{n}\left(x_{0}, y_{0}\right)(u)=\left\{y \in Y: y \geq u^{n}\right\}$ for $u \in X$.
If $m<n$, then $D^{m} F_{n}\left(x_{0}, y_{0}\right)(u)=\mathbb{R}_{+}$for $u \in X$.
If $m>n$, then

$$
D^{m} F_{n}\left(x_{0}, y_{0}\right)(u)= \begin{cases}\mathbb{R}, & \text { if } n=2 k-1(k=1,2, . .) \text { and } u \leq 0 \\ \mathbb{R}_{+}, & \text {if } n=2 k(k=1,2, . .) \text { and } u=0 \\ \emptyset, & \text { otherwise. }\end{cases}
$$

In the following example, we compute the Studniarski derivative of a map into an infinite dimensional space.
EXAMPLE 2.2 Let $X=\mathbb{R}$ and $Y=l^{2}$, the Hilbert space of the numerical sequences $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ with $\sum_{i=1}^{\infty} x_{i}^{2}$ being convergent. By $\left(e_{i}\right)_{i \in \mathbb{N}}$ we denote the standard unit basis of l^{2}. Let $F: X \rightarrow 2^{Y}$ be defined by

$$
F(x)= \begin{cases}\left\{\frac{1}{n}\left(-e_{1}+2 e_{n}\right)\right\}, & \text { if } x=\frac{1}{n} \\ \{0\}, & \text { otherwise }\end{cases}
$$

and $\left(x_{0}, y_{0}\right)=(0,0)$. We see that $v \in D^{m} F\left(x_{0}, y_{0}\right)(u)$ means the existence of $t_{k} \rightarrow 0^{+}, u_{k} \rightarrow u$, and $v_{k} \rightarrow v$ such that

$$
\begin{equation*}
y_{0}+t_{k}^{m} v_{k} \in F\left(x_{0}+t_{k} u_{k}\right) \tag{2.1}
\end{equation*}
$$

For all $u \in X$, we can choose $t_{k} \rightarrow 0^{+}, u_{k} \rightarrow u$ such that $t_{k} u_{k} \neq 1 / k$. So, for all $u \in X,\{0\} \subset D^{m} F\left(x_{0}, y_{0}\right)(u)$. We now prove that, for each $v \in Y \backslash\{0\}$, $v \notin D^{m} F\left(x_{0}, y_{0}\right)(u)$ for any $u \in X$. Suppose, to the contrary, that there exist $u \in U$ and $v \in Y \backslash\{0\}$ such that $v \in D^{m} F\left(x_{0}, y_{0}\right)(u)$, i.e., there are $t_{k} \rightarrow 0^{+}$, $u_{k} \rightarrow u, v_{k} \rightarrow v$ such that (2.1) holds. If $t_{k} u_{k} \neq 1 / k$ for infinitely many $k \in \mathbb{N}$, we get a contradiction easily. Hence, assume that $t_{k} u_{k}=1 / k$. Then, (2.1) becomes $v_{k}=\frac{1}{k t_{k}^{m}}\left(-e_{1}+2 e_{k}\right)$. If $1 / k t_{k}^{m} \rightarrow+\infty$, we get a contradiction with the convergence of the sequence $\left(-e_{1}+2 e_{k}\right) / k t_{k}^{m}$. Suppose $1 / k t_{k}^{m} \rightarrow a \geq 0$. As $e_{1} / k t_{k}^{m} \rightarrow a e_{1}$, the sequence $e_{k} / k t_{k}^{m}$ converges to some c, i.e.,

$$
\left\|\frac{2}{k t_{k}^{m}} e_{k}-c\right\|^{2} \rightarrow 0
$$

that is,

$$
\begin{equation*}
\left\|\frac{2}{k t_{k}^{m}} e_{k}-c\right\|^{2}=\left(\frac{2}{k t_{k}^{m}}\right)^{2}+\|c\|^{2}+2\left\langle\frac{2}{k t_{k}^{m}} e_{k},-c\right\rangle \rightarrow 0 \tag{2.2}
\end{equation*}
$$

Since $\left(e_{k}\right)$ converges to 0 with respect to the weak topology, then $\left\langle e_{k},-c\right\rangle \rightarrow$ 0 . From (2.2), we get $4 a^{2}+\|c\|^{2}=0$. If $a=0$, then $c=v(\neq \emptyset)$ since $\left(-e_{1}+2 e_{k}\right) / k t_{k}^{m} \rightarrow v$. If $a>0$, then $4 a^{2}+\|c\|^{2} \neq 0$. Therefore, we always have a contradiction. Thus, for all $u \in X, D^{m} f\left(x_{0}, y_{0}\right)(u)=\{0\}$.

We now present a condition for m th-order Studniarski's derivatives to be nonempty.
PROPOSITION 2.1 Let $\operatorname{dim} Y<+\infty,\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$, and $x_{0} \in \operatorname{int}(\operatorname{dom} F)$.
Suppose that
(i) F is lower semicontinuous at $\left(x_{0}, y_{0}\right)$;
(ii) F is locally pseudo-Hölder calm of order m at $\left(x_{0}, y_{0}\right)$.

Then, $D^{m} F\left(x_{0}, y_{0}\right)(x) \neq \emptyset$ for all $x \in X$.
Proof. For $x=0$, this is trivial because we always have $0 \in D^{m} F\left(x_{0}, y_{0}\right)(0)$. By assumption (ii), there exist $\lambda>0, U_{1} \in \mathcal{U}\left(x_{0}\right)$ and $V \in \mathcal{U}\left(y_{0}\right)$ such that, for all $x^{\prime} \in U_{1}$,

$$
F\left(x^{\prime}\right) \cap V \subset\left\{y_{0}\right\}+\lambda\left\|x^{\prime}-x_{0}\right\|^{m} B_{Y}
$$

By assumption (i), with V above, there exists $U_{2} \in \mathcal{U}\left(x_{0}\right)$ such that $\forall \hat{x} \in U_{2}$, $V \cap F(\hat{x}) \neq \emptyset$. By setting $\hat{U}=U_{1} \cap U_{2}$, we get $\hat{U} \in \mathcal{U}\left(x_{0}\right)$. Let an arbitrary $x \in X$ $(x \neq 0)$ and $t_{n} \rightarrow 0^{+}$. Because $x_{0}+t_{n} x \rightarrow x_{0}$, we get $x_{0}+t_{n} x \in \hat{U}$ for large n. Hence, there eixsts $y_{n} \in F\left(x_{0}+t_{n} x\right) \cap V$ such that $t_{n}^{-m}\left\|y_{n}-y_{0}\right\| \leq \lambda\|x\|^{m}$. So, $t_{n}^{-m}\left(y_{n}-y_{0}\right)$ is a bounded sequence and hence has a convergent subsequence. By definition, the limit of this subsequence is an element of $D^{m} F\left(x_{0}, y_{0}\right)(x)$.

EXAMPLE 2.3 (assumption (ii) is essential) Let $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be defined by

$$
F(x)= \begin{cases}\left\{x^{1 / 3}\right\}, & \text { if } 0 \leq x \leq 1 \\ \{x\}, & \text { if } x>1, \\ \{-x\}, & \text { if }-1 \leq x<0 \\ \left\{-x^{1 / 3}\right\}, & \text { if } x<-1\end{cases}
$$

Direct computations yield that $D^{m} F(0,0)(1)=\emptyset$ for all $m \geq 1$. Here, F is lower semicontinuous at $(0,0)$, but the locally pseudo-Hölder calmness of order m at $(0,0)$ fails.
EXAMPLE 2.4 (assumption (i) cannot be dropped) Let $F: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ be defined by

$$
F(x)= \begin{cases}\{1\}, & \text { if } x=0 \\ \{y: y \leq x\}, & \text { if } x \neq 0\end{cases}
$$

Then, assumption (ii) is satisfied at (0,1). Direct calculations give that $D^{m} F(0,1)(1)=\emptyset$ for all $m \geq 1$. The cause is that F is not lower semicontinuous
at $(0,1)$, since F is locally pseudo-Holder calm of order m at $(0,1)$. Indeed, pick $\lambda=1, U=\{x \in \mathbb{R}:-1 / 2<x<1 / 2\}$ and $V=\{y \in \mathbb{R}: 1 / 2<y<3 / 2\}$. Then, $F(x)=\{y \in \mathbb{R}: y \leq x\} \subset(-\infty, 1 / 2)$ for all $x \in U \backslash\{0\}$. Therefore, $F(x) \cap V=\emptyset$ for all $x \in U \backslash\{0\}$, and

$$
F(0) \cap V=\{1\} \subset\left\{y_{0}\right\}+\|x\|^{m} B_{Y}
$$

for all $m \geq 1$.
PROPOSITION 2.2 Let $F: X \rightarrow 2^{Y},\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$, and F be a convex map and have a strict Studniarski derivative at $\left(x_{0}, y_{0}\right)$. Then, $D^{m} F\left(x_{0}, y_{0}\right)$ is convex.
Proof. Let $x^{1}, x^{2} \in X$ and $y^{i} \in D^{m} F\left(x_{0}, y_{0}\right)\left(x^{i}\right), i=1,2$, i.e., for any $t_{n} \rightarrow 0^{+}$, there exists $\left(x_{n}^{i}, y_{n}^{i}\right) \rightarrow\left(x^{i}, y^{i}\right)$ such that, for all $n, y_{n}^{i} \in t_{n}^{-m}\left(F\left(x_{0}+t_{n} x_{n}^{i}\right)-y_{0}\right)$. Since F is convex, for all $\lambda \in[0,1]$,

$$
\begin{gathered}
\lambda\left(\frac{F\left(x_{0}+t_{n} x_{n}^{1}\right)-y_{0}}{t_{n}^{m}}\right)+(1-\lambda)\left(\frac{F\left(x_{0}+t_{n} x_{n}^{2}\right)-y_{0}}{t_{n}^{m}}\right) \subset \\
\frac{F\left(\lambda\left(x_{0}+t_{n} x_{n}^{1}\right)+(1-\lambda)\left(x_{0}+t_{n} x_{n}^{2}\right)\right)-y_{0}}{t_{n}^{m}} .
\end{gathered}
$$

Therefore,

$$
\lambda y_{n}^{1}+(1-\lambda) y_{n}^{2} \in \frac{F\left(x_{0}+t_{n}\left(\lambda x_{n}^{1}+(1-\lambda) x_{n}^{2}\right)\right)-y_{0}}{t_{n}^{m}} .
$$

Hence, $\lambda y^{1}+(1-\lambda) y^{2} \in D^{m} F\left(x_{0}, y_{0}\right)\left(\lambda x^{1}+(1-\lambda) x^{2}\right)$.
The next statement is a relation between the Studniarski derivative of F and that of the profile map.
PROPOSITION 2.3 Let $F: X \rightarrow 2^{Y}$, and $\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$. Then, for all $x \in X$,

$$
\begin{equation*}
D^{m} F\left(x_{0}, y_{0}\right)(x)+C \subset D^{m} F_{+}\left(x_{0}, y_{0}\right)(x) \tag{2.3}
\end{equation*}
$$

If $\operatorname{dim} Y<+\infty$ and F is locally Hölder calm of order m at $\left(x_{0}, y_{0}\right)$, then (2.3) becomes an equality.
Proof. Let $w \in D^{m} F\left(x_{0}, y_{0}\right)(x)+C$, i.e., there exist $v \in D^{m} F\left(x_{0}, y_{0}\right)(x)$ and $c \in C$ such that $w=v+c$. We then have sequences $t_{n} \rightarrow 0^{+}, x_{n} \rightarrow x$, and $v_{n} \rightarrow v$ such that, for all n,

$$
y_{0}+t_{n}^{m}\left(v_{n}+c\right) \in F\left(x_{0}+t_{n} x_{n}\right)+t_{n}^{m} c \subset F\left(x_{0}+t_{n} x_{n}\right)+C .
$$

So, $v+c \in D^{m} F_{+}\left(x_{0}, y_{0}\right)(x)$.

Let $w \in D^{m} F_{+}\left(x_{0}, y_{0}\right)(x)$, i.e., there exist $t_{n} \rightarrow 0^{+}, x_{n} \rightarrow x, w_{n} \rightarrow w$ such that $y_{0}+t_{n}^{m} w_{n} \in F\left(x_{0}+t_{n} x_{n}\right)+C$. Then, there exist $y_{n} \in F\left(x_{0}+t_{n} x_{n}\right)$ and $c_{n} \in C$ satisfying

$$
\begin{equation*}
w_{n}=t_{n}^{-m}\left(y_{n}-y_{0}\right)+t_{n}^{-m} c_{n} . \tag{2.4}
\end{equation*}
$$

Because F is locally Hölder calm of order m at $\left(x_{0}, y_{0}\right)$, there exists $\lambda>0$ such that, for large n,

$$
y_{n} \in F\left(x_{0}+t_{n} x_{n}\right) \subset\left\{y_{0}\right\}+\lambda\left\|t_{n} x_{n}\right\|^{m} B_{Y}
$$

So,

$$
t_{n}^{-m}\left\|y_{n}-y_{0}\right\| \leq \lambda\left\|x_{n}\right\|^{m}
$$

Since $\operatorname{dim} Y<+\infty, t_{n}^{-m}\left(y_{n}-y_{0}\right)$ (using a subsequence, if necessary) converges to some v and $v \in D^{m} F\left(x_{0}, y_{0}\right)(x)$. From (2.4), the sequence c_{n} / t_{n}^{m} converges to some $c \in C$ and $w=v+c$. Thus, $w \in D^{m} F\left(x_{0}, y_{0}\right)(x)+C$.

Observe that, for the special case of $m=1,(2.3)$ collapses to the result of Proposition 2.1 of Tanino (1988) and also of Theorem 3 of Jahn and Rauh (1997). Moreover, the equality

$$
D^{m} F\left(x_{0}, y_{0}\right)(x)+C=D^{m} F_{+}\left(x_{0}, y_{0}\right)(x)
$$

asserted in Proposition 2.3 was also asserted in Proposition 2 of Bednarczuk and Song (1998) for C being a pointed closed convex cone (under assumptions different from those imposed in Proposition 2.3) since, for such a pointed C, the above equality implies that

$$
\operatorname{Min} D^{m} F_{+}\left(x_{0}, y_{0}\right)(x)=\operatorname{Min}\left(D^{m} F\left(x_{0}, y_{0}\right)(x)\right)
$$

where $a_{0} \in \operatorname{Min} A$ means $\left(A-a_{0}\right) \cap(-C)=\{0\}$, i.e., a_{0} is a Pareto minimum of the set A.

3. Calculus rules

PROPOSITION 3.1 (sum rule) Let $F_{1}, F_{2}: X \rightarrow 2^{Y}, x_{0} \in \operatorname{dom} F_{1} \cap \operatorname{dom} F_{2}$, $y_{i} \in F\left(x_{i}\right)(i=1,2)$ and $u \in X$. Suppose either F_{1} or F_{2} has an mth-order proto Studniarski's derivative at $\left(x_{0}, y_{1}\right)$ or $\left(x_{0}, y_{2}\right)$, respectively. Then,

$$
\begin{equation*}
D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)+D^{m} F_{2}\left(x_{0}, y_{2}\right)(u) \subset D^{m}\left(F_{1}+F_{2}\right)\left(x_{0}, y_{1}+y_{2}\right)(u) \tag{3.1}
\end{equation*}
$$

If, additionally, $\operatorname{dim} Y<+\infty$ and either F_{1} or F_{2} is locally Hölder calm of order m at $\left(x_{0}, y_{1}\right)$ or at $\left(x_{0}, y_{2}\right)$, respectively, then (3.1) becomes an equality.

Proof. Suppose F_{2} has an m th-order proto Studniarski's derivative at $\left(x_{0}, y_{2}\right)$ and $v^{i} \in D^{m} F_{i}\left(x_{0}, y_{i}\right)(u), i=1,2$. For v^{1}, there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $v_{n}^{1} \rightarrow v^{1}$ such that $y_{1}+t_{n}^{m} v_{n}^{1} \in F_{1}\left(x_{0}+t_{n} u_{n}\right)$ for all n. For these t_{n} and u_{n}, there exists $v_{n}^{2} \rightarrow v^{2}$ such that $y_{2}+t_{n}^{m} v_{n}^{2} \in F_{2}\left(x_{0}+t_{n} u_{n}\right)$. Hence, $y_{1}+y_{2}+t_{n}^{m}\left(v_{n}^{1}+v_{n}^{2}\right) \in$ $\left(F_{1}+F_{2}\right)\left(x_{0}+t_{n} u_{n}\right)$ and $v^{1}+v^{2} \in D^{m}\left(F_{1}+F_{2}\right)\left(x_{0}, y_{1}+y_{2}\right)(u)$.

To consider the equality case, suppose F_{1} is locally Hölder calm of order m at $\left(x_{0}, y_{1}\right)$. Let $v \in D^{m}\left(F_{1}+F_{2}\right)\left(x_{0}, y_{1}+y_{2}\right)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $v_{n} \rightarrow v$ such that, for all n,

$$
y_{1}+y_{2}+t_{n}^{m} v_{n} \in\left(F_{1}+F_{2}\right)\left(x_{0}+t_{n} u_{n}\right)=F_{1}\left(x_{0}+t_{n} u_{n}\right)+F_{2}\left(x_{0}+t_{n} u_{n}\right)
$$

This means that there exist $y_{n}^{i} \in F_{i}\left(x_{0}+t_{n} u_{n}\right), \mathrm{i}=1,2$, such that

$$
\begin{equation*}
v_{n}=t_{n}^{-m}\left(y_{n}^{1}-y_{1}\right)+t_{n}^{-m}\left(y_{n}^{2}-y_{2}\right) . \tag{3.2}
\end{equation*}
$$

Applying a Hölder calmness argument similarly as for Propositions 2.1 and 2.3, we obtain $v^{1} \in D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)$ and $v^{2} \in D^{m} F_{2}\left(x_{0}, y_{2}\right)(u)$ such that $v^{2}=v-v^{1}$. Thus, $v \in D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)+D^{m} F_{2}\left(x_{0}, y_{2}\right)(u)$.

PROPOSITION 3.2 (chain rule) Let $F: X \rightarrow 2^{Y}, G: Y \rightarrow 2^{Z},\left(x_{0}, y_{0}\right) \in \operatorname{gr} F$, $\left(y_{0}, z_{0}\right) \in \operatorname{gr} G$, and $\operatorname{Im} F \subset \operatorname{dom} G$.
(i) Suppose G has an mth-order proto Studniarski's derivative at $\left(y_{0}, z_{0}\right)$. Then, for all $u \in X$,

$$
\begin{equation*}
D^{m} G\left(y_{0}, z_{0}\right)\left(D^{1} F\left(x_{0}, y_{0}\right)(u)\right) \subset D^{m}(G \circ F)\left(x_{0}, z_{0}\right)(u) \tag{3.3}
\end{equation*}
$$

If, additionally, $\operatorname{dim} Y<+\infty$ and F is locally Lipschitz calm at $\left(x_{0}, y_{0}\right)$, then (3.3) becomes an equality.
(ii) Suppose G has a first order proto Studniarski derivative at $\left(y_{0}, z_{0}\right)$. Then, for all $u \in X$,

$$
\begin{equation*}
D^{1} G\left(y_{0}, z_{0}\right)\left(D^{m} F\left(x_{0}, y_{0}\right)(u)\right) \subset D^{m}(G \circ F)\left(x_{0}, z_{0}\right)(u) \tag{3.4}
\end{equation*}
$$

If, additionally, $\operatorname{dim} Y<+\infty$ and F is locally Hölder calm of order m at $\left(x_{0}, y_{0}\right)$, then (3.4) becomes an equality.
Proof. By the similarity, we prove only (i). Let $w \in D^{m} G\left(y_{0}, z_{0}\right)\left(D^{1} F\left(x_{0}, y_{0}\right)(u)\right)$, i.e., there exists $v \in D^{1} F\left(x_{0}, y_{0}\right)(u)$ such that $w \in D^{m} G\left(y_{0}, z_{0}\right)(v)$. There exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $v_{n} \rightarrow v$ such that, for all $n, y_{0}+t_{n} v_{n} \in F\left(x_{0}+t_{n} u_{n}\right)$. With t_{n}, v_{n} above, we have $w_{n} \rightarrow w$ such that, for all $n, z_{0}+t_{n}^{m} w_{n} \in G\left(y_{0}+t_{n} v_{n}\right)$. So, $z_{0}+t_{n}^{m} w_{n} \in G\left(F\left(x_{0}+t_{n} u_{n}\right)\right)$. Thus, $w \in D^{m}(G \circ F)\left(x_{0}, z_{0}\right)(u)$.

Let $w \in D^{m}(G \circ F)\left(x_{0}, z_{0}\right)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $w_{n} \rightarrow w$ such that $z_{0}+t_{n}^{m} w_{n} \in G\left(F\left(x_{0}+t_{n} u_{n}\right)\right)$ for all n. Then, there exists $y_{n} \in$
$F\left(x_{0}+t_{n} u_{n}\right)$ such that $z_{0}+t_{n}^{m} w_{n} \in G\left(y_{n}\right)$. Due to the local Lipschitz calmness of F and the finiteness of $\operatorname{dim} Y$, the sequence $v_{n}:=t_{n}^{-1}\left(y_{n}-y_{0}\right)$, or a subsequence, converges to some v and $v \in D^{1} F\left(x_{0}, y_{0}\right)(u)$. This implies that $z_{0}+t_{n}^{m} w_{n} \in$ $G\left(y_{0}+t_{n} v_{n}\right)$ and hence $w \in D^{m} G\left(y_{0}, z_{0}\right)(v)$.

We next discuss calculus rules for the following operations.
DEFINITION 3.1 (i) For $F_{1}, F_{2}: X \rightarrow 2^{\mathbb{R}^{k}}, \mathbb{R}^{k}$ being an Euclidean space, the product of F_{1} and F_{2} is the set-valued map $\left\langle F_{1}, F_{2}\right\rangle: X \rightarrow 2^{\mathbb{R}}$ defined by $\left\langle F_{1}, F_{2}\right\rangle(x):=\left\{\left\langle y_{1}, y_{2}\right\rangle: y_{1} \in F_{1}(x), y_{2} \in F_{2}(x)\right\}$.
(ii) For $F_{1}, F_{2}: X \rightarrow 2^{\mathbb{R}}$, the quotient of F_{1} and F_{2} is the set-valued map $F_{1} / F_{2}: X \rightarrow 2^{\mathbb{R}}$ defined by $\left(F_{1} / F_{2}\right)(x):=\left\{y_{1} / y_{2}: y_{1} \in F_{1}(x), y_{2} \in F_{2}(x), y_{2} \neq 0\right\}$. PROPOSITION 3.3 (product rule) Let $F_{1}, F_{2}: X \rightarrow 2^{\mathbb{R}^{k}}, x_{0} \in \operatorname{dom} F_{1} \cap \operatorname{dom} F_{2}$, $y_{i} \in F_{i}\left(x_{0}\right), i=1$,2. Suppose either F_{1} or F_{2} has an mth-order proto Studniarski's derivative at $\left(x_{0}, y_{1}\right)$ or $\left(x_{0}, y_{2}\right)$, respectively. Then, for all $u \in X$,

$$
\begin{equation*}
\left\langle y_{2}, D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)\right\rangle+\left\langle y_{1}, D^{m} F_{2}\left(x_{0}, y_{2}\right)(u)\right\rangle \subset D^{m}\left(\left\langle F_{1}, F_{2}\right\rangle\right)\left(x_{0},\left\langle y_{1}, y_{2}\right\rangle\right)(u) . \tag{3.5}
\end{equation*}
$$

If, additionally, both F_{i} are locally Hölder calm of order m at $\left(x_{0}, y_{i}\right)$, then (3.5) becomes an equality.
Proof. Suppose F_{2} has an m th-order proto Studniarski's derivative at $\left(x_{0}, y_{2}\right)$ and $v^{i} \in D^{m} F_{i}\left(x_{0}, y_{i}\right)(u), i=1,2$. Then, there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u, v_{n}^{1} \rightarrow v^{1}$, and $v_{n}^{2} \rightarrow v^{2}$ such that, for all $n, y_{1}+t_{n}^{m} v_{n}^{1} \in F_{1}\left(x_{0}+t_{n} u_{n}\right)$ and $y_{2}+t_{n}^{m} v_{n}^{2} \in$ $F_{2}\left(x_{0}+t_{n} u_{n}\right)$. We have

$$
\left\langle y_{1}+t_{n}^{m} v_{n}^{1}, y_{2}+t_{n}^{m} v_{n}^{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle+t_{n}^{m}\left(\left\langle y_{1}, v_{n}^{2}\right\rangle+\left\langle y_{2}, v_{n}^{1}\right\rangle+t_{n}^{m}\left\langle v_{n}^{1}, v_{n}^{2}\right\rangle\right),
$$

and

$$
\left\langle y_{1}+t_{n}^{m} v_{n}^{1}, y_{2}+t_{n}^{m} v_{n}^{2}\right\rangle \in\left\langle F_{1}, F_{2}\right\rangle\left(x_{0}+t_{n} u_{n}\right)
$$

This implies that $\left\langle y_{1}, v^{2}\right\rangle+\left\langle y_{2}, v^{1}\right\rangle \in D^{m}\left(\left\langle F_{1}, F_{2}\right\rangle\right)\left(x_{0},\left\langle y_{1}, y_{2}\right\rangle\right)(u)$.
Let $v \in D^{m}\left(\left\langle F_{1}, F_{2}\right\rangle\right)\left(x_{0},\left\langle y_{1}, y_{2}\right\rangle\right)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, $v_{n} \rightarrow v$, and $y_{n}^{i} \in F_{i}\left(x_{0}+t_{n} u_{n}\right)$ such that $\left\langle y_{1}, y_{2}\right\rangle+t_{n}^{m} v_{n}=\left\langle y_{n}^{1}, y_{n}^{2}\right\rangle$ for all n. We have

$$
\begin{gathered}
\left\langle y_{n}^{1}, y_{n}^{2}\right\rangle=\left\langle y_{n}^{1}-y_{1}+y_{1}, y_{n}^{2}-y_{2}+y_{2}\right\rangle= \\
=\left\langle y_{n}^{1}-y_{1}, y_{n}^{2}-y_{2}\right\rangle+\left\langle y_{n}^{1}-y_{1}, y_{2}\right\rangle+\left\langle y_{n}^{2}-y_{2}, y_{1}\right\rangle+\left\langle y_{1}, y_{2}\right\rangle .
\end{gathered}
$$

This implies that

$$
\begin{equation*}
v_{n}=\left\langle\frac{y_{n}^{1}-y_{1}}{t_{n}^{m}}, y_{2}\right\rangle+\left\langle\frac{y_{n}^{2}-y_{2}}{t_{n}^{m}}, y_{1}\right\rangle+t_{n}^{m}\left\langle\frac{y_{n}^{1}-y_{1}}{t_{n}^{m}}, \frac{y_{n}^{2}-y_{2}}{t_{n}^{m}}\right\rangle \tag{3.6}
\end{equation*}
$$

Because F_{i} are locally Hölder calm of order m at $\left(x_{0}, y_{i}\right)$, there exist $L_{i}>0$ such that, for $i=1,2$ and large n,

$$
y_{n}^{i} \in F_{i}\left(x_{0}+t_{n}^{m} u_{n}\right) \subset\left\{y_{i}\right\}+L_{i}\left\|t_{n} u_{n}\right\|^{m} B_{Y} .
$$

This implies that there exists a subsequence $\left\{n_{k}\right\}$ such that $t_{n_{k}}^{-m}\left(y_{n_{k}}^{i}-y_{i}\right)$ converges to some $v^{i} \in \mathbb{R}^{k}$ and $v^{i} \in D^{m} F_{i}\left(x_{0}, y_{i}\right)(u), i=1,2$. Thus, from (3.6), $v \in\left\langle D^{m} F_{1}\left(x_{0}, y_{1}\right)(u), y_{2}\right\rangle+\left\langle D^{m} F_{2}\left(x_{0}, y_{2}\right)(u), y_{1}\right\rangle$.

PROPOSITION 3.4 (quotient rule) Let $F_{1}, F_{2}: X \rightarrow 2^{\mathbb{R}}, x_{0} \in \operatorname{dom} F_{1} \cap \operatorname{dom} F_{2}$, and $y_{i} \in F_{i}\left(x_{0}\right)(i=1,2)$ with $y_{2} \neq 0$. Suppose either F_{1} or F_{2} has an mth-order proto Studniarski's derivative at $\left(x_{0}, y_{1}\right)$ or $\left(x_{0}, y_{2}\right)$, respectively. Then, for all $u \in X$,

$$
\begin{equation*}
\frac{1}{y_{2}^{2}}\left(y_{2} D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)-y_{1} D^{m} F_{2}\left(x_{0}, y_{2}\right)(u)\right) \subset D^{m}\left(\left(F_{1} / F_{2}\right)\left(x_{0}, y_{1} / y_{2}\right)(u) .\right. \tag{3.7}
\end{equation*}
$$

If, in addition, F_{2} is locally Hölder calm of order m at $\left(x_{0}, y_{2}\right)$, then (3.7) becomes an equality.
Proof. Assume that F_{2} has an m th-order proto Studniarski's derivative at $\left(x_{0}, y_{2}\right)$ and $v^{i} \in D^{m} F_{i}\left(x_{0}, y_{i}\right)(u), i=1,2$. There exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $v_{n}^{1} \rightarrow v^{1}$ such that $y_{1}+t_{n}^{m} v_{n}^{1} \in F_{1}\left(x_{0}+t_{n} u_{n}\right)$ for all n. With these t_{n}, u_{n}, there exists $v_{n}^{2} \rightarrow v^{2}$ such that $y_{2}+t_{n}^{m} v_{n}^{2} \in F_{2}\left(x_{0}+t_{n} u_{n}\right)$. We have

$$
\frac{y_{1}+t_{n}^{m} v_{n}^{1}}{y_{2}+t_{n}^{m} v_{n}^{2}}=\frac{y_{1}}{y_{2}}+t_{n}^{m}\left(\frac{y_{2} v_{n}^{1}-y_{1} v_{n}^{2}}{y_{2}^{2}+t_{n}^{m} v_{n}^{2} y_{2}}\right) \in\left(F_{1} / F_{2}\right)\left(x_{0}+t_{n} u_{n}\right)
$$

This implies that $y_{2}^{-2}\left(y_{2} v^{1}-y_{1} v^{2}\right) \in D^{m}\left(\left(F_{1} / F_{2}\right)\left(x_{0}, y_{1} / y_{2}\right)(u)\right.$.
Let $v \in D^{m}\left(F_{1} / F_{2}\right)\left(x_{0},\left(y_{1} / y_{2}\right)\right)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}, u_{n} \rightarrow u$, and $v_{n} \rightarrow v$ such that $\left(y_{1} / y_{2}\right)+t_{n}^{m} v_{n} \in\left(F_{1} / F_{2}\right)\left(x_{0}+t_{n} u_{n}\right)$ for all n. So, there exist $y_{n}^{i} \in F_{i}\left(x_{0}+t_{n} u_{n}\right)$ such that $\left(y_{1} / y_{2}\right)+t_{n}^{m} v_{n}=y_{n}^{1} / y_{n}^{2}$. Therefore,

$$
\frac{y_{n}^{1}}{y_{n}^{2}}=\frac{y_{1}}{y_{2}}+\frac{y_{2}\left(y_{n}^{1}-y_{1}\right)-y_{1}\left(y_{n}^{2}-y_{2}\right)}{y_{2}^{2}+y_{2}\left(y_{n}^{2}-y_{2}\right)}
$$

and hence

$$
\begin{equation*}
v_{n}=\frac{y_{2}\left(y_{n}^{1}-y_{1}\right) / t_{n}^{m}-y_{1}\left(y_{n}^{2}-y_{2}\right) / t_{n}^{m}}{y_{2}^{2}+t_{n}^{m} y_{2}\left(y_{n}^{2}-y_{2}\right) / t_{n}^{m}} \tag{3.8}
\end{equation*}
$$

Applying a Hölder calmness argument as above, we obtain $v^{2} \in D^{m} F_{2}\left(x_{0}, y_{2}\right)(u)$ and $v^{1} \in D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)$ such that $v=y_{2}^{-2}\left(y_{2} v^{1}-y_{1} v^{2}\right)$. Thus,

$$
v \in y_{2}^{-2}\left(y_{2} D^{m} F_{1}\left(x_{0}, y_{1}\right)(u)-y_{1} D^{m} F_{2}\left(x_{0}, y_{2}\right)(u) .\right.
$$

COROLLARY 3.5 (reciprocal rule) Let $F: X \rightarrow 2^{\mathbb{R}}, y_{0} \in F\left(x_{0}\right)$ with $y_{0} \neq 0$, and $u \in X$. Then,

$$
\begin{equation*}
-y_{0}^{-2} D^{m} F\left(x_{0}, y_{0}\right)(u) \subset D^{m}(1 / F)\left(x_{0}, 1 / y_{0}\right)(u) . \tag{3.9}
\end{equation*}
$$

If, in addition, F is locally Hölder calm of order m at $\left(x_{0}, y_{0}\right)$, then (3.9) becomes an equality.

In the rest of this section, we discuss other sum and chain rules, which may be more useful in some cases (see, e.g., Section 4). To investigate the sum $M+N$ of multifunctions $M, N: X \rightarrow 2^{Y}$, we express $M+N$ as a composition as follows: Define $F: X \rightarrow 2^{X \times Y}$ and $G: X \times Y \rightarrow 2^{Y}$ by, for I being the identity map on X and $(x, y) \in X \times Y$,

$$
\begin{equation*}
F=I \times M \quad \text { and } \quad G(x, y)=y+N(x) \tag{3.10}
\end{equation*}
$$

Then, clearly $M+N=G \circ F$.
First, we develop a chain rule. Let general multimaps $F: X \rightarrow 2^{Y}$ and G : $Y \rightarrow 2^{Z}$ be considered. The so-called resultant set-valued map $C: X \times Z \rightarrow 2^{Y}$ is defined by

$$
C(x, z):=F(x) \cap G^{-1}(z) .
$$

Then, $\operatorname{dom} C=\operatorname{gr}(G \circ F)$. We need the following compactness property:
DEFINITION 3.2 (Penot, 1983) A set-valued map $H: X \rightarrow 2^{Y}$ is said to be compact at $x \in \operatorname{cl}(\operatorname{dom} H)$ if any sequence $y_{n} \in H\left(x_{n}\right)$ satisfying $x_{n} \rightarrow x$ has a convergent subsequence.

Note that when H is compact at x, the image $H(x)$ still may be not closed. Simply think of $H: \mathbb{R} \rightarrow 2^{\mathbb{R}}$ equal to $(0,1)$ if $x=0$, and to $\{0\}$ if $x \neq 0$. Then, H is compact at 0 , but $H(0)=(0,1)$ is not closed.

We define other kinds of m th-order Studniarski's derivatives of $G \circ F$ with respect to variable y as follows.

DEFINITION 3.3 Let $((x, z), y) \in \operatorname{gr} C$.

(i) The m th-order y-Studniarski derivative of $G \circ F$ at $((x, z), y)$ is defined as, for $u \in X$,

$$
\begin{aligned}
D^{m}\left(G \circ_{y} F\right)(x, z)(u)= & \left\{w \in Z: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, y_{n}, w_{n}\right) \rightarrow(u, y, w), \forall n,\right. \\
& \left.y_{n} \in C\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)\right\}
\end{aligned}
$$

(ii) For an integer k, the m th-order pseudo-Studniarski derivative of the map C at (x, z) with respect to k is defined as, for $(u, w) \in X \times Z$,

$$
\begin{aligned}
D_{p s}^{m(k)} C((x, z), y)(u, w)= & \left\{\bar{y} \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, \bar{y}_{n}, w_{n}\right) \rightarrow(u, \bar{y}, w), \forall n,\right. \\
& \left.y+t_{n}^{k} \bar{y}_{n} \in C\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)\right\} .
\end{aligned}
$$

If $k=m$, the set in Definition 3.3(ii) is denoted shortly by $D_{p s}^{m} C((x, z), y)(u, w)$. One has a relationship between $D^{m}\left(G \circ_{y} F\right)(x, z)(u)$ and $D^{m}(G \circ F)(x, z)(u)$ in the following statement:
PROPOSITION 3.6 Let $(x, z) \in \operatorname{gr}(G \circ F)$ and $u \in X$.
(i) For $y \in C(x, z)$, one has

$$
D^{m}\left(G \circ_{y} F\right)(x, z)(u) \subset D^{m}(G \circ F)(x, z)(u)
$$

(ii) If C is compact and closed at (x, z), then

$$
\bigcup_{y \in C(x, z)} D^{m}\left(G \circ_{y} F\right)(x, z)(u)=D^{m}(G \circ F)(x, z)(u) .
$$

Proof. (i) This follows immediately from the definitions.
(ii) " \subset " follows from (i). For " \supset ", let $w \in D^{m}(G \circ F)(x, z)(u)$, i.e., there exist sequences $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, w_{n}\right) \rightarrow(u, w)$ such that $z+t_{n}^{m} w_{n} \in(G \circ F)\left(x+t_{n} u_{n}\right)$. So, there exists $y_{n} \in Y$ with $y_{n} \in C\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)$. Since C is compact at $(x, z), y_{n}$ (or a subsequence) has a limit y. Since $\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}, y_{n}\right) \rightarrow$ $(x, z, y),(x, z, y) \in \operatorname{cl}(\operatorname{gr} C)=\operatorname{gr}(\operatorname{cl} C)$. It follows from the closedness of C at (x, z) that $y \in C(x, z)$, and $w \in D^{m}\left(G \circ_{y} F\right)(x, z)(u)$ with this y.

The first chain rule for $G \circ F$ using these new Studniarski derivatives is PROPOSITION 3.7 Let $(x, z) \in \operatorname{gr}(G \circ F)$ and $y \in C(x, z)$. Suppose, for all $(u, w) \in X \times Z$,

$$
\begin{equation*}
D^{m} F(x, y)(u) \cap\left(D^{1} G(y, z)\right)^{-1}(w) \subset D_{p s}^{m} C((x, z), y)(u, w) . \tag{3.11}
\end{equation*}
$$

Then,

$$
D^{1} G(y, z)\left[D^{m} F(x, y)(u)\right] \subset D^{m}\left(G \circ_{y} F\right)(x, z)(u)
$$

Proof. Let $v \in D^{1} G(y, z)\left[D^{m} F(x, y)(u)\right]$, i.e., there exists $\bar{y} \in D^{m} F(x, y)(u)$ such that $\bar{y} \in\left(D^{1} G(y, z)\right)^{-1}(v)$. Then, (3.11) ensures that $\bar{y} \in D_{p s}^{m} C((x, z), y)(u, v)$. This means the existence of $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, \bar{y}_{n}, v_{n}\right) \rightarrow(u, \bar{y}, v)$ such that $y+$ $t_{n}^{m} \bar{y}_{n} \in C\left(x+t_{n} u_{n}, z+t_{n}^{m} v_{n}\right)$ for all n. We have $y_{n}:=y+t_{n}^{m} \bar{y}_{n} \in C\left(x+t_{n} u_{n}, z+\right.$ $\left.t_{n}^{m} v_{n}\right)$. So, $v \in D^{m}\left(G \circ_{y} F\right)(x, z)(u)$ and we are done.

PROPOSITION 3.8 Let $(x, z) \in \operatorname{gr}(G \circ F)$ and $y \in C(x, z)$. Suppose, for all $(u, w) \in X \times Z$,

$$
\begin{equation*}
D^{1} F(x, y)(u) \cap\left(D^{m} G(y, z)\right)^{-1}(w) \subset D_{p s}^{m(1)} C((x, z), y)(u, w) \tag{3.12}
\end{equation*}
$$

Then,

$$
D^{m} G(y, z)\left[D^{1} F(x, y)(u)\right] \subset D^{m}\left(G \circ_{y} F\right)(x, z)(u)
$$

Proof. The proof is similar to that of Proposition 3.7.
Note that, when $m=1$, we have $\left(D^{1} G(y, z)\right)^{-1}=D^{1} G^{-1}(z, y)$. However, this is not true for $m \geq 2$ as shown in the following example.
EXAMPLE 3.1 Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $F(x)=x^{2}$. Then,

$$
F^{-1}(y)= \begin{cases}\{-\sqrt{y}, \sqrt{y}\}, & \text { if } y \geq 0 \\ \emptyset, & \text { if } y<0\end{cases}
$$

Direct computations yield that $D^{1} F(0,0)(u)=\{0\}$ for all $u \in \mathbb{R}$, which implies that $\left(D^{1} F(0,0)\right)^{-1}(0)=\mathbb{R}$ and $\left(D^{1} F(0,0)\right)^{-1}(v)=\emptyset$ for $v \neq 0$. It is easy to check that $D^{1} F^{-1}(0,0)$ coincides with $\left(D^{1} F(0,0)\right)^{-1}$.

For $m=2, D^{2} F(0,0)(u)=\left\{u^{2}\right\}$ for all $u \in \mathbb{R}$, which implies

$$
\left(D^{2} F(0,0)\right)^{-1}(y)= \begin{cases}\{-\sqrt{y}, \sqrt{y}\}, & \text { if } y \geq 0 \\ \emptyset, & \text { if } y<0\end{cases}
$$

However,

$$
D^{2} F^{-1}(0,0)(v)= \begin{cases}\mathbb{R}, & \text { if } v=0 \\ \emptyset, & \text { if } v \neq 0\end{cases}
$$

To get a chain rule for Studniarski's derivatives in the form of equalities, we first prove the inclusions reverse to those in Propositions 3.7 and 3.8 under additional assumptions as follows:
PROPOSITION 3.9 Let $y \in C(x, z)$ and Y be finite dimensional.
(i) If

$$
\begin{equation*}
D_{p s}^{m} C((x, z), y)(0,0)=\{0\}, \tag{3.13}
\end{equation*}
$$

then

$$
D^{m}\left(G \circ_{y} F\right)(x, z)(u) \subset D^{1} G(y, z)\left[D^{m} F(x, y)(u)\right]
$$

(ii) If

$$
\begin{equation*}
D_{p s}^{m(1)} C((x, z), y)(0,0)=\{0\}, \tag{3.14}
\end{equation*}
$$

then

$$
D^{m}\left(G \circ_{y} F\right)(x, z)(u) \subset D^{m} G(y, z)\left[D^{1} F(x, y)(u)\right] .
$$

Proof. By the similarity, we prove only (i). Let $w \in D^{m}\left(G \circ_{y} F\right)(x, z)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, y_{n}, w_{n}\right) \rightarrow(u, y, w)$ such that $y_{n} \in C\left(x+t_{n} u_{n}, z+\right.$ $t_{n}^{m} w_{n}$) for all n. If $y_{k}=y$ for infinitely many $k \in \mathbb{N}$, one has $0 \in D^{m} F(x, y)(u)$, $w \in D^{1} G(y, z)(0)$ and we are done. Thus, suppose $y_{n} \neq y$ for all n and, for $s_{n}:=\left\|y_{n}-y\right\|^{1 / m}$, the sequence $v_{n}:=s_{n}^{-m}\left(y_{n}-y\right)$ or some subsequence has a limit v of norm one. If $t_{n} / s_{n} \rightarrow 0$, since

$$
y+s_{n}^{m} v_{n}=y_{n} \in C\left(x+s_{n}\left(\frac{t_{n} u_{n}}{s_{n}}\right), z+s_{n}^{m}\left(\frac{t_{n}^{m} w_{n}}{s_{n}^{m}}\right)\right)
$$

one sees that $v \in D_{p s}^{m} C((x, z), y)(0,0)$, contradicting (3.13). Consequently, $t_{n}^{-1} s_{n}$ has a bounded subsequence and one may assume that $t_{n}^{-1} s_{n}$ tends to $q \in R_{+}$. So,

$$
y+t_{n}^{m}\left(s_{n}^{m} v_{n} / t_{n}^{m}\right)=y_{n} \in C\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)
$$

and then one gets $q^{m} v \in D_{p s}^{m} C((x, z), y)(u, w)$. It follows from the definition of $D_{p s}^{m} C((x, z), y)(u, w)$ that $q^{m} v \in D^{m} F(x, y)(u)$ and $w \in D^{1} G(y, z)\left(q^{m} v\right)$.

Combining Propositions 3.6-3.9, we arrive at the following chain rule:
PROPOSITION 3.10 Suppose Y is finite dimensional and $(x, z) \in \operatorname{gr}(G \circ F)$ is such that C is compact and closed at (x, z).
(i) Assume that (3.13) holds for every $y \in C(x, z)$. Then,

$$
\begin{equation*}
D^{m}(G \circ F)(x, z)(u) \subset \bigcup_{y \in C(x, z)} D^{1} G(y, z)\left[D^{m} F(x, y)(u)\right] . \tag{3.15}
\end{equation*}
$$

If, additionally, (3.11) holds for every $y \in C(x, z)$, then (3.15) is an equality.
(ii) Assume that (3.14) holds for every $y \in C(x, z)$. Then,

$$
\begin{equation*}
D^{m}(G \circ F)(x, z)(u) \subset \bigcup_{y \in C(x, z)} D^{m} G(y, z)\left[D^{1} F(x, y)(u)\right] . \tag{3.16}
\end{equation*}
$$

If, additionally, (3.12) holds for every $y \in C(x, z)$, then (3.16) is an equality.
Now we apply the preceding chain rules to establish sum rules for $M, N: X \rightarrow$ 2^{Y}. For this purpose we use $F: X \rightarrow 2^{X \times Y}$ and $G: X \times Y \rightarrow 2^{Y}$ defined in (3.10). For $(x, z) \in X \times Y$, set

$$
S(x, z):=M(x) \cap(z-N(x)) .
$$

Then, the so-called resultant map $C: X \times Y \rightarrow 2^{X \times Y}$ associated to these F and G is

$$
C(x, z)=\{x\} \times S(x, z)
$$

Given $((x, z), y) \in \operatorname{gr} S$, the m th-order y-Studniarski derivative of $M+N$ at (x, z) is defined as, for $u \in X$,

$$
\begin{aligned}
D^{m}\left(M+{ }_{y} N\right)(x, z)(u) & :=\left\{w \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, y_{n}, w_{n}\right) \rightarrow(u, y, w), \forall n\right. \\
& \left.y_{n} \in S\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)\right\}
\end{aligned}
$$

Observe that

$$
\begin{equation*}
D^{m}\left(M+{ }_{y} N\right)(x, z)(u)=D^{m}\left(G \circ_{y} F\right)(x, z)(u) \tag{3.17}
\end{equation*}
$$

One has a relationship between $D^{m}\left(M+{ }_{y} N\right)(x, z)(u)$ and $D^{m}(M+N)(x, z)(u)$ as noted in the next statement.
PROPOSITION 3.11 Let $(x, z) \in \operatorname{gr}(M+N)$ and $y \in S(x, z)$.
(i) $D^{m}\left(M+{ }_{y} N\right)(x, z)(u) \subset D^{m}(M+N)(x, z)(u)$.
(ii) If S is compact and closed at (x, z), then

$$
\bigcup_{y \in S(x, z)} D^{m}\left(M+_{y} N\right)(x, z)(u)=D^{m}(M+N)(x, z)(u)
$$

Proof. (i) This is an immediate consequence of the definitions.
(ii) When S is compact and closed at $(x, z), C$ is compact and closed at (x, z). Hence, the equality in Proposition 3.6(ii) holds. In view of (3.17), this relation implies the required equality.

For higher-order sum rules, we have
PROPOSITION 3.12 Let $(x, z) \in \operatorname{gr}(M+N)$ and $y \in S(x, z)$. Suppose, for all $(u, v) \in X \times Y$,

$$
\begin{equation*}
D^{m} M(x, y)(u) \cap\left[v-D^{m} N(x, z-y)(u)\right] \subset D_{p s}^{m} S((x, z), y)(u, v) \tag{3.18}
\end{equation*}
$$

Then,

$$
D^{m} M(x, y)(u)+D^{m} N(x, z-y)(u) \subset D^{m}\left(M+_{y} N\right)(x, z)(u)
$$

Proof. Let $w \in D^{m} M(x, y)(u)+D^{m} N(x, z-y)(u)$, i.e., there exists $\bar{y} \in$ $D^{m} M(x, y)(u)$ such that $\bar{y} \in w-D^{m} N(x, z-y)(u)$. Hence, (3.18) ensures that $\bar{y} \in D_{p s}^{m} S((x, z), y)(u, w)$. Therefore, there exist $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, \bar{y}_{n}, w_{n}\right) \rightarrow$ (u, \bar{y}, w) such that $y+t_{n}^{m} \bar{y}_{n} \in S\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)$. Setting $y_{n}=y+t_{n}^{m} \bar{y}_{n}$, we have $y_{n} \in S\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)$. Consequently, $w \in D^{m}\left(M+{ }_{y} N\right)(x, z)(u)$.

We can impose an additional condition to get equalities in the above sum rules as follows:
PROPOSITION 3.13 Let Y be finite dimensional and $(x, z) \in \operatorname{gr}(M+N)$.
(i) Suppose, for $y \in S(x, z)$,

$$
\begin{equation*}
\left.D_{p s}^{m} S((x, z), y)\right)(0,0)=\{0\} . \tag{3.19}
\end{equation*}
$$

Then,

$$
D^{m}\left(M+{ }_{y} N\right)(x, z)(u) \subset D^{m} M(x, y)(u)+D^{m} N(x, z-y)(u)
$$

(ii) If S is compact and closed at (x, z) and (3.19) holds for every $y \in S(x, z)$, then one has

$$
\begin{equation*}
D^{m}(M+N)(x, z)(u) \subset \bigcup_{y \in S(x, z)}\left(D^{m} M(x, y)(u)+D^{m} N(x, z-y)(u)\right) \tag{3.20}
\end{equation*}
$$

If, additionally, (3.18) holds for every $y \in S(x, z)$, then (3.20) becomes an equality.
Proof. (i) Let $w \in D^{m}\left(M+{ }_{y} N\right)(x, z)(u)$, i.e., there exist $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, y_{n}, w_{n}\right) \rightarrow$ (u, y, w) such that, for all $n, y_{n} \in S\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)$. If $y_{k}=y$ for infinitely many $k \in \mathbb{N}$, one has $0 \in D^{m} M(x, y)(u)$ and $w \in D^{m} N(x, z-y)(u)$, and we are done. Thus, suppose $y_{n} \neq y$ for all n and, for $s_{n}:=\left\|y_{n}-y\right\|^{1 / m}$, the sequence $v_{n}:=s_{n}^{-m}\left(y_{n}-y\right)$ converges to some v of norm one. If $t_{n} / s_{n} \rightarrow 0$, since

$$
y+s_{n}^{m} v_{n}=y_{n} \in S\left(x+s_{n}\left(\frac{t_{n} u_{n}}{s_{n}}\right), z+s_{n}^{m}\left(\frac{t_{n}^{m} w_{n}}{s_{n}^{m}}\right)\right)
$$

one sees that $v \in D_{p s}^{m} S((x, z), y)(0,0)$, contradicting (3.19). Consequently, s_{n} / t_{n} has a bounded subsequence and we may assume that s_{n} / t_{n} tends to $q \in R_{+}$. So,

$$
y+t_{n}^{m}\left(\frac{s_{n}^{m}}{t_{n}^{m}} v_{n}\right)=y_{n} \in S\left(x+t_{n} u_{n}, z+t_{n}^{m} w_{n}\right)
$$

and then $q^{m} v \in D_{p s}^{m} S((x, z), y)(u, w)$. It follows from the definition of $D_{p s}^{m} S((x, z), y)$ (u, w) that $q^{m} v \in D^{m} M(x, y)(u)$ and $w-q^{m} v \in D^{m} N(x, z-y)(u)$.
(ii) This follows from (i) and Propositions 3.11 and 3.12.

Next, we define two other m th-order Studniarski's derivatives, which are slight modifications of those in the above definitions and suitable for applications to variational inequalities in Section 4. Let P be also a normed space, $F: P \times X \rightarrow$ 2^{Y} and $N: P \times X \rightarrow 2^{Y}$. Let $\hat{S}: P \times X \times Y \rightarrow 2^{Y}$ be given by

$$
\hat{S}(p, x, y):=F(p, x) \cap(y-N(p, x)) .
$$

DEFINITION 3.4 Given $y_{0} \in \hat{S}(p, x, y)$ and $(u, v) \in P \times X$, we define

$$
\begin{gathered}
D^{m}\left(F+_{y_{0}} N\right)((p, x), y)(u, v):=\left\{w \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}, y_{n}, w_{n}\right) \rightarrow\left(u, v, y_{0}, w\right),\right. \\
\left.y_{n} \in \hat{S}\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}, y+t_{n}^{m} w_{n}\right)\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
D_{p s}^{m} \hat{S}\left((p, x, y), y_{0}\right)(u, v, s):= & \left\{w \in Y: \exists t_{n} \rightarrow 0^{+}, \exists\left(u_{n}, v_{n}, s_{n}, w_{n}\right) \rightarrow(u, v, s, w)\right. \\
& \left.y_{0}+t_{n}^{m} w_{n} \in \hat{S}\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}, y+t_{n}^{m} s_{n}\right)\right\}
\end{aligned}
$$

PROPOSITION 3.14 Let Y be finite dimensional and $((p, x), y) \in \operatorname{gr}(F+N)$.
(i) Suppose, for $y_{0} \in \hat{S}(p, x, y)$,

$$
\begin{equation*}
\left.D_{p s}^{m} \hat{S}\left((p, x, y), y_{0}\right)\right)(0,0,0)=\{0\} \tag{3.21}
\end{equation*}
$$

Then,
$D^{m}\left(F+{ }_{y_{0}} N\right)((p, x), y)(u, v) \subset D_{p s}^{m} F\left((p, x), y_{0}\right)(u, v)+D_{p s}^{m} N\left((p, x), y-y_{0}\right)(u, v)$.
(ii) If \hat{S} is compact and closed at (p, x, y) and (3.21) holds for every $y_{0} \in \hat{S}(p, x, y)$, then one has

$$
\begin{gathered}
D_{p s}^{m}(F+N)((p, x), y)(u, v) \subset \\
\bigcup_{y_{0} \in \hat{S}(p, x, y)}\left(D_{p s}^{m} F\left((p, x), y_{0}\right)(u, v)+D_{p s}^{m} N\left((p, x), y-y_{0}\right)(u, v)\right) .
\end{gathered}
$$

Proof. (i) Let $w \in D^{m}\left(F+_{y_{0}} N\right)((p, x), y)(u, v)$, i.e., there exist $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, v_{n}, y_{n}, w_{n}\right) \rightarrow\left(u, v, y_{0}, w\right)$ such that $y_{n} \in \hat{S}\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}, y+t_{n}^{m} w_{n}\right)$ for all n. If $y_{k}=y_{0}$ for infinitely many $k \in \mathbb{N}$, one has $0 \in D_{p s}^{m} F\left((p, x), y_{0}\right)(u, v)$ and $w \in D_{p s}^{m} N\left((p, x), y-y_{0}\right)(u, v)$, and we are done. Now suppose $y_{n} \neq y_{0}$ for all n and, for $s_{n}:=\left\|y_{n}-y_{0}\right\|^{1 / m}$, the sequence $l_{n}:=s_{n}^{-m}\left(y_{n}-y_{0}\right)$ converges to some l of norm one. If $t_{n} / s_{n} \rightarrow 0$, since

$$
y_{0}+s_{n}^{m} l_{n}=y_{n} \in \hat{S}\left(p+s_{n} \frac{t_{n} u_{n}}{s_{n}}, x+s_{n}\left(\frac{t_{n}^{m} v_{n}}{s_{n}}\right), y+s_{n}^{m}\left(\frac{t_{n}^{m} w_{n}}{s_{n}^{m}}\right)\right),
$$

one sees that $l \in D_{p s}^{m} \hat{S}\left((p, x, y), y_{0}\right)(0,0,0)$, contradicting (3.21). Consequently, one may assume that s_{n} / t_{n} tends to a number $q \in R_{+}$. So,

$$
y_{0}+t_{n}^{m}\left(\frac{s_{n}^{m}}{t_{n}^{m}} l_{n}\right)=y_{n} \in \hat{S}\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}, y+t_{n}^{m} w_{n}\right)
$$

and thus $q^{m} l \in D_{p s}^{m} \hat{S}\left((p, x, y), y_{0}\right)(u, v, w)$. By the definition of $D_{p s}^{m} \hat{S}\left((p, x, y), y_{0}\right)$ (u, v, w), one has $q^{m} l \in D_{p s}^{m} F\left((p, x), y_{0}\right)(u, v)$ and $w-q^{m} l \in D_{p s}^{m} N((p, x), y-$ $\left.y_{0}\right)(u, v)$.
(ii) We need to prove that, if \hat{S} is compact and closed at (p, x, y), then

$$
D_{p s}^{m}(F+N)((p, x), y)(u, v)=\bigcup_{y_{0} \in \hat{S}(p, x, y)} D^{m}\left(F+_{y_{0}} N\right)((p, x), y)(u, v)
$$

In fact, we only need to prove the inclusion " \subset ". Let $w \in D_{p s}^{m}(F+N)((p, x), y)(u, v)$. There exist $t_{n} \rightarrow 0^{+}$and $\left(u_{n}, v_{n}, w_{n}\right) \rightarrow(u, v, w)$ such that $y+t_{n}^{m} w_{n} \in F(p+$ $\left.t_{n} u_{n}, x+t_{n}^{m} v_{n}\right)+N\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}\right)$ for all n. Then, one can find $y_{n} \in$ $F\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}\right)$ such that $y+t_{n}^{m} w_{n}-y_{n} \in N\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}\right)$. Therefore, $y_{n} \in \hat{S}\left(p+t_{n} u_{n}, x+t_{n}^{m} v_{n}, y+t_{n}^{m} w_{n}\right)$ for all n. Since \hat{S} is compact at (p, x, y), one may assume that y_{n} converges to a point y_{0}. As $\left(p+t_{n} u_{n}, x+\right.$ $\left.t_{n}^{m} v_{n}, y+t_{n}^{m} w_{n}, y_{n}\right) \rightarrow\left(p, x, y, y_{0}\right)$, one has $y_{0} \in(\operatorname{cl} \hat{S})(p, x, y)$. It follows from the closedness of \hat{S} at (p, x, y) that $y_{0} \in \hat{S}(p, x, y)$.

4. Applications

4.1. Studniarski's derivatives of solution maps to inclusions

Let $M: P \times X \rightarrow 2^{Z}$ be a set-valued map between normed spaces. Then, the map S defined by

$$
\begin{equation*}
S(p):=\{x \in X: 0 \in M(p, x)\} \tag{4.1}
\end{equation*}
$$

is said to be the solution map of the parametrized inclusion $0 \in M(p, x)$.
THEOREM 4.1 For a solution map S defined by (4.1) and $\bar{x} \in S(\bar{p})$, we have, for $p \in P$,

$$
D^{m} S(\bar{p}, \bar{x})(p) \subset\left\{x \in X: 0 \in D_{p s}^{m} M((\bar{p}, \bar{x}), 0)(p, x)\right\}
$$

Proof. Let $(p, x) \in \operatorname{gr} D^{m} S(\bar{p}, \bar{x})$, i.e., there exist sequences $p_{n} \rightarrow p, x_{n} \rightarrow x$, and $t_{n} \rightarrow 0^{+}$such that $\bar{x}+t_{n}^{m} x_{n} \in S\left(\bar{p}+t_{n} p_{n}\right)$ for all n. This implies that 0 is an element of the set $M\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$. Hence, for $z_{n}=0$, the inclusion $0+t_{n}^{m} z_{n} \in M\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$ holds, i.e., $0 \in D_{p s}^{m} M((\bar{p}, \bar{x}), 0)(p, x)$.

In parameterized optimization, we frequently meet M of the form

$$
\begin{equation*}
M(p, x)=F(p, x)+N(p, x) \tag{4.2}
\end{equation*}
$$

where $F: P \times X \rightarrow 2^{Z}$ and $N: P \times X \rightarrow 2^{Z}$. Let $\hat{S}: P \times X \times Z \rightarrow 2^{Z}$ be defined by

$$
\hat{S}(p, x, z):=F(p, x) \cap(z-N(p, x)) .
$$

The following theorem gives an approximation of the m th-order Studniarski derivative of S when M is defined by (4.2).

THEOREM 4.2 For the solution map $S(p)=\{x \in X: 0 \in F(p, x)+N(p, x)\}$ and $\bar{x} \in S(\bar{p})$ with Z being finite dimensional, suppose either of the following conditions holds
(i) \hat{S} is compact and closed at $(\bar{p}, \bar{x}, 0)$ and $D_{p s}^{m} \hat{S}((\bar{p}, \bar{x}, 0), y)(0,0,0)=\{0\}$ for all $y \in \hat{S}(\bar{p}, \bar{x}, 0)$;
(ii) there exists $y \in \hat{S}(\bar{p}, \bar{x}, 0)$ such that either F or N is locally Hölder calm of order m at (\bar{p}, \bar{x}, y) or at $(\bar{p}, \bar{x},-y)$, respectively.

Then,

$$
\begin{gathered}
D^{m} S(\bar{p}, \bar{x})(p) \subset \\
\left\{x \in X: 0 \in \bigcup_{y \in(\mathrm{cl} \widehat{S})(\bar{p}, \bar{x}, 0)}\left(D_{p s}^{m} F((\bar{p}, \bar{x}), y)(p, x)+D_{p s}^{m} N((\bar{p}, \bar{x}), 0-y)(p, x)\right)\right\} .
\end{gathered}
$$

Proof. We first prove that
$D_{p s}^{m} M((\bar{p}, \bar{x}), 0)(p, x) \subset \bigcup_{y \in(\mathrm{cl} \hat{S})(\bar{p}, \bar{x}, 0)}\left(D_{p s}^{m} F((\bar{p}, \bar{x}), y)(p, x)+D_{p s}^{m} N((\bar{p}, \bar{x}), 0-y)(p, x)\right)$.
If (i) holds, the above inclusion follows from Proposition 3.14. For the case (ii), with $y \in \hat{S}(\bar{p}, \bar{x}, 0)$, we see that $y \in F(\bar{p}, \bar{x})$ and $-y \in N(\bar{p}, \bar{x})$. Let $v \in D_{p s}^{m} M((\bar{p}, \bar{x}), 0)(p, x)$, i.e., there exist $t_{n} \rightarrow 0^{+},\left(p_{n}, x_{n}\right) \rightarrow(p, x)$, and $v_{n} \rightarrow v$ such that, for all n,
$0+t_{n}^{m} v_{n} \in M\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)=F\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)+N\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$.
Then, there exist $y_{n}^{1} \in F\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$ and $y_{n}^{2} \in N\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$ such that

$$
\begin{equation*}
v_{n}=t_{n}^{-m}\left(y_{n}^{1}-y\right)+t_{n}^{-m}\left(y_{n}^{2}-(-y)\right) . \tag{4.3}
\end{equation*}
$$

For the case (ii), suppose F is locally Hölder calm of order m at at (\bar{p}, \bar{x}, y). Then, there exists $L>0$ such that, for large n,

$$
y_{n}^{1} \in F\left(\bar{p}+t_{n} p_{n}, \bar{x}+t_{n}^{m} x_{n}\right) \subset\{y\}+L\left\|\left(t_{n} p_{n}, t_{n}^{m} x_{n}\right)\right\|^{m} B_{Z}
$$

Because $\operatorname{dim} Z<+\infty, t_{n}^{-m}\left(y_{n}^{1}-y\right)$, or a subsequence, converges to some $v^{1} \in Z$ and so $v^{1} \in D_{p s}^{m} F((\bar{p}, \bar{x}), y)(p, x)$. From (4.3), the sequence $t_{n}^{-m}\left(y_{n}^{2}-(-y)\right)$ also converges to some v^{2} such that $v^{2}=v-v^{1}$, and $v^{2} \in D_{p s}^{m} N((\bar{p}, \bar{x}),-y)(p, x)$. Thus, $v \in D_{p s}^{m} F((\bar{p}, \bar{x}), y)(p, x)+D_{p s}^{m} N((\bar{p}, \bar{x}),-y)(p, x)$. Now, application of Theorem 4.1 completes the proof.

4.2. Implicit multifunction theorems

Let $M: P \times X \rightarrow Z$ and $S(p):=\{x \in X: M(p, x)=0\}$, be the set of solutions to the parameterized equation $M(x, p)=0$. We impose the condition
$(*)\left\{\begin{array}{l}\text { there exists } \bar{x} \in X \text { such that } M(0, \bar{x})=0 \text { and } \\ M_{p} \text { is continuous in a neighborhood }(U, V) \in \mathcal{U}(0) \times \mathcal{U}(\bar{x}),\end{array}\right.$
where M_{p} denotes the partial Fréchet derivative with respect to p. Let $H=$ $V \cap M(0, .)^{-1}$, i.e.,

$$
H(z)=\{x \in V: M(0, x)=z\}
$$

Under the hypotheses of the usual implicit function theorems for $M \in C^{1}, S$ and H are single-valued and smooth (with derivatives $D S, D H$), and there holds

$$
D S(0)=-D H(0) M_{p}(0, \bar{x})=-M_{x}(0, \bar{x})^{-1} M_{p}(0, \bar{x})
$$

Now we are interested in a similar formula of the m th-order Studniarski derivative $D^{m} S(0, \bar{x})($.$) of the map S$ under assumption (*). For (p, x) near $(0, \bar{x})$, we consider the map

$$
r(p, x):=M(p, x)-M(0, x)-M_{p}(0, \bar{x}) p
$$

By the mean-value theorem, one obtains

$$
r(p, x)=\int_{0}^{1}\left[M_{p}(\theta p, x)-M_{p}(0, \bar{x})\right] p d \theta
$$

and

$$
\alpha(p, x, \theta):=\left\|M_{p}(\theta p, x)-M_{p}(0, \bar{x})\right\|
$$

can be estimated (uniformly for $0<\theta<1$) by

$$
\alpha(p, x, \theta) \leq 0(p, x) \text { with } 0(p, x) \rightarrow 0^{+} \text {as } x \rightarrow \bar{x} \text { and }\|p\| \rightarrow 0^{+}
$$

Due to $\|r(p, x)\| \leq 0(p, x)\|p\|$, one easily sees that $\|p\|^{-1}\|r(p, x)\| \rightarrow 0^{+}$as $x \rightarrow$ \bar{x} and $\|p\| \rightarrow 0^{+}$, and also

$$
r(p(t), x(t))=o_{2}(t) \text { if } x(t) \rightarrow \bar{x} \text { and } p(t)=t q+o_{1}(t) \text { with some } q \in P
$$

where $o_{k}(t)$ means that $\left\|o_{k}(t)\right\| / t \rightarrow 0^{+}$as $t \rightarrow 0^{+}$.
For (p, x) near $(0, \bar{x})$, we have

$$
M(p, x)=0 \text { if and only if } M(0, x)=-M_{p}(0, \bar{x}) p-r(p, x)
$$

i.e.,

$$
x \in S(p) \text { if and only if } x \in H\left(-M_{p}(0, \bar{x}) p-r(p, x)\right)
$$

Let $\hat{M}: P \times X \rightarrow Z$ be defined by $\hat{M}(p, x):=-M_{p}(0, \bar{x})(p)-r(p, x)$. Then,

$$
\begin{equation*}
x \in S(p) \text { if and only if } x \in H(\hat{M}(p, x)) \tag{4.4}
\end{equation*}
$$

Set $C(p, x):=\hat{M}(p, x) \cap H^{-1}(x)$. It is easy to see that $C(0, \bar{x})=\{0\}$.
The following result is a modification of that in Proposition 3.9(ii).
LEMMA 4.1 Let Z be finite dimensional and either of the following conditions hold
(i) \hat{M} is locally Lipschitz calm at $(0, \bar{x}, 0)$;
(ii) C is compact and closed at $(0, \bar{x})$ and

$$
\begin{equation*}
D_{p s}^{m(1)} C((0, \bar{x}), 0)(0,0)=\{0\} . \tag{4.5}
\end{equation*}
$$

Then, $x \in D^{m} S(0, \bar{x})(q)$ implies that $x \in D^{m} H(0, \bar{x})\left[D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)\right]$. Proof. Let (i) hold and $x \in D^{m} S(0, \bar{x})(q)$, i.e., there exist $t_{n} \rightarrow 0^{+}, q_{n} \rightarrow q$, and $x_{n} \rightarrow x$ such that $\bar{x}+t_{n}^{m} x_{n} \in S\left(0+t_{n} q_{n}\right)$. It follows from (4.4) that

$$
\begin{equation*}
\bar{x}+t_{n}^{m} x_{n} \in H\left(\hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)\right) \tag{4.6}
\end{equation*}
$$

Then, there exists $y_{n} \in \hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$ such that $\bar{x}+t_{n}^{m} x_{n} \in H\left(y_{n}\right)$. Because \hat{M} is locally Lipschitz calm at $(0, \bar{x}, 0)$, there exists $L>0$ such that, for large n,

$$
y_{n} \in \hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right) \subset\{0\}+L\left\|\left(t_{n} q_{n}, t_{n}^{m} x_{n}\right)\right\| B_{Z}
$$

Since $\operatorname{dim} Z<+\infty, v_{n}:=t_{n}^{-1}\left(y_{n}-0\right)$ (or a subsequence) converges to some $v \in Z$. So, $v \in D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)$. This implies that $\bar{x}+t_{n}^{m} x_{n} \in H\left(0+t_{n} v_{n}\right)$. Thus, $x \in D^{m} H(0, \bar{x})(v)$.

If (ii) holds, it follows from (4.6) that there exists

$$
y_{n} \in \hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right) \cap H^{-1}\left(\bar{x}+t_{n}^{m} x_{n}\right)=C\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)
$$

Since C is compact at $(0, \bar{x}), y_{n}$ (or a subsequence) has a limit y. Since $(0+$ $\left.t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}, y_{n}\right) \rightarrow(0, \bar{x}, y)$, one has $y \in(\operatorname{cl} C)(0, \bar{x})$. It follows from the closedness of S at $(0, \bar{x})$ that $y \in C(0, \bar{x})=\{0\}$.

If $y_{k}=0$ for infinitely many $k \in \mathbb{N}$, one has $0 \in D_{p}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)$ and $x \in D^{m} H(0, \bar{x})(0)$, and we are done. Thus, one may suppose, for $s_{n}:=\left\|y_{n}\right\|$, that the sequence $v_{n}:=y_{n} / s_{n}$ has a limit v of norm one. If $t_{n} / s_{n} \rightarrow 0$, since

$$
0+s_{n} v_{n}=y_{n} \in C\left(0+s_{n}\left(\frac{t_{n} q_{n}}{s_{n}}\right), \bar{x}+s_{n}^{m}\left(\frac{t_{n}^{m} x_{n}}{s_{n}^{m}}\right)\right)
$$

one sees that $v \in D_{p s}^{m(1)} C((0, \bar{x}), 0)(0,0)$, contradicting (4.5). Consequently, one may assume that s_{n} / t_{n} converges to some $\xi \in R_{+}$. So,

$$
0+t_{n}\left(\frac{s_{n}}{t_{n}} v_{n}\right)=y_{n} \in C\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)
$$

and thus $\xi v \in D_{p s}^{m(1)} C((0, \bar{x}), 0)(q, x)$. It follows from the definition of $D_{p s}^{m(1)} C((0, \bar{x})$, $0)(q, x)$ that $\xi v \in D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)$ and $x \in D^{m} H(y, z)(\xi v)$.

LEMMA 4.2 Let Z be finite dimensional, the asumptions of Lemma 4.1 be satisfied. and

$$
\begin{equation*}
D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x) \cap\left(D^{m} H(0, \bar{x})\right)^{-1}(x) \subset D_{p s}^{m(1)} C((0, \bar{x}), 0)(q, x) \tag{4.7}
\end{equation*}
$$

Then, $x \in D^{m} S(0, \bar{x})(q)$ if and only if $x \in D^{m} H(0, \bar{x})\left[D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)\right]$.
Proof. By Lemma 4.1, we need to prove that $x \in D^{m} H(0, \bar{x})\left[D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)\right]$ implies $x \in D^{m} S(0, \bar{x})(q)$. $x \in D^{m} H(0, \bar{x})\left[D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)\right]$ means the existence of $v \in D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0) \quad(q, x) \cap\left(D^{m} H(0, \bar{x})\right)^{-1}(x)$. Then, (4.7) ensures that $v \in D_{p s}^{m(1)} C((0, \bar{x}), 0)(q, x)$. This means the existence of $t_{n} \rightarrow 0^{+}$and $\left(q_{n}, x_{n}, v_{n}\right) \rightarrow(q, x, v)$ such that, for all n,

$$
0+t_{n} v_{n} \in C\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)
$$

From the definition of C, we get $0+t_{n} v_{n} \in \hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)$ and $\bar{x}+t_{n}^{m} x_{n} \in$ $H\left(0+t_{n} v_{n}\right)$, which imply that $\bar{x}+t_{n}^{m} x_{n} \in H\left(\hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)\right)$. Thus, we have $\bar{x}+t_{n}^{m} x_{n} \in S\left(0+t_{n} q_{n}\right)$ and $x \in D^{m} S(0, \bar{x})(q)$.
THEOREM 4.3 Impose the assumptions of Lemma 4.1. Then,

$$
\begin{equation*}
D^{m} S(0, \bar{x})(q) \subset D^{m} H(0, \bar{x})\left[-M_{p}(0, \bar{x})(q)\right] . \tag{4.8}
\end{equation*}
$$

If, additionally, (4.7) holds, then (4.8) becomes an equality.
Proof. By Lemmas 4.1 and 4.2, we need to prove that $D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)=$ $-M_{p}(0, \bar{x})(q)$. Let $v \in D_{p s}^{m(1)} \hat{M}((0, \bar{x}), 0)(q, x)$. There exist $t_{n} \rightarrow 0^{+}$and $\left(q_{n}, x_{n}, v_{n}\right) \rightarrow$ (q, x, v) such that, for all n,

$$
0+t_{n} v_{n}=\hat{M}\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)=-M_{p}(0, \bar{x})\left(0+t_{n} q_{n}\right)-r\left(0+t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right)
$$

Therefore,

$$
v_{n}=-M_{p}(0, \bar{x})\left(q_{n}\right)-t_{n}^{-1} r\left(t_{n} q_{n}, \bar{x}+t_{n}^{m} x_{n}\right) \rightarrow-M_{p}(0, \bar{x})(q)
$$

Thus, $v=-M_{p}(0, \bar{x})(q)$ and we are done.

Acknowledgements

This research was supported by the Vietnam National University Hochiminh City (VNU-HCM) under the grant number B2013-28-01. The authors are indebted to the two anonymous referees for many valuable detailed remarks and suggestions which have helped them to improve significantly the paper.

References

ANH, N.L.H., KHANH, P.Q. and TUNG, L.T. (2011) Higher-order radial derivatives and optimality conditions in nonsmooth vector optimization. Nonlinear Anal. TMA, 74(18), 7365-7379.
AUBIN, J.-P. (1981) Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. In : Nachbin, L. (ed.) Advances in Mathematics, Supplementary studies. Acad. Press, 7A, 160-232.
BEDNARCZUK, E.M. and SONG, W. (1998) Contingent epiderivative and its applications to set-valued optimization. Control Cybern., 27 (3), 375-386.
DIEM, H.T.H., KHANH, P.Q. and TUNG, L.T. (2013) On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim. Theory Appl., DOI 10.1007/s10957-013-0424-3, OnlineFirst.
JAHN, J. and RAUH, R (1997) Contingent Epiderivatives and Set-Valued Optimization. Math. Meth. Oper. Res., 46 (2), 193-211.
JIMÉNEZ, B. (2003) Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl., 116 (1), 99-116.
JIMÉNEZ, B. and NOVO, V. (2008) Higher-order optimality conditions for strict local minima. Ann. Oper. Res., 157 (1), 183-192.
LI, S.J., SUN, X.K. and ZHU, S.K. (2012) Higher-order optimality conditions for strict minimality in set-valued optimization. J. Nonlinear Convex Anal., 13 (2), 281-291.
LUU, D.V. (2008) Higher-order necessary and sufficient conditions for strict local Pareto minima in terms of Studniarski's derivatives. Optimization, 57 (4), 593-605.
PENOT, J.-P. (1983) Compact nets, filters and relation. J. Math. Anal. Appl., 93 (2), 400-417.
STUDNIARSKI, M. (1986) Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim., 24 (5), 10441049.

SUN, X.K. and LI, S.J. (2011) Lower Studniarski derivative of the perturbation map in parametrized vector optimization. Optim. Lett., 5 (4), 601-614.
SUN, X.K. and LI, S.J. (2012) Weak lower Studniarski derivative in set-valued optimization. Pacific J. Optim., 8 (2), 307-320.
TAA, A. (1998) Set-valued derivatives of multifunctions and optimality conditions. Num. Funct. Anal. Optim., 19 (1), 121-140.
TANINO, T. (1988) Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl., 56 (3), 479-499.

[^0]: *Submitted: May 2013; Accepted: January 2014

