
Control and Cybernetics

vol. 43 (2014) No. 1

Cost-efficient project management based on critical chain

method with partial availability of resources∗†

by

Grzegorz Pawiński and Krzysztof Sapiecha

Department of Computer Science
Kielce University of Technology
al.1000-lecia P.P. 7, 25-314 Kielce

Poland
g.pawinski@tu.kielce.pl, krzysztof.sapiecha@gmail.com

Abstract: Cost-efficient project management based on Critical
Chain Method (CCPM) is investigated in this paper. This is a vari-
ant of the resource-constrained project scheduling problem (RCPSP)
when resources are only partially available and a deadline is given,
but the cost of the project should be minimized. RCPSP is a well-
known NP-hard problem but originally it does not take into con-
sideration the initial resource workload. A metaheuristic algorithm
driven by a metric of a gain was adapted to solve the problem when
applied to CCPM. Refinement methods enhancing the quality of the
results are developed. The improvement expands the search space
by inserting the task in place of an already allocated task, if a bet-
ter allocation can be found for it. The increase of computation time
is reduced by distributed calculations. The computational experi-
ments showed significant efficiency of the approach, in comparison
with the greedy methods and with genetic algorithm, as well as high
reduction of time needed to obtain the results.

Keywords: project management and scheduling, resource allo-
cation, resource constraints, metaheuristic algorithms, parallel pro-
cessing

1. Introduction

Researchers’ attention has been focused on making the best use of the scarce
resources available since PERT and CPM were developed in the late 1950’s.
Resource allocation, in the framework of the Resource-Constrained Project
Scheduling Problem (RCPSP), attempts to reschedule the project tasks effi-
ciently using limited renewable resources minimizing the maximal completion

∗Submitted: January 2013; Accepted: December 2013
†This is an extended and modified version of the paper presented at the Congress of Young

IT Scientists, SMI 2012.



96 G. Pawiński and K. Sapiecha

time of all activities. It assumes that resources are available from the beginning.
Thus, allocation conflicts can only occur between the project tasks.

Critical Chain Project Management (CCPM) method is the successor of
the project scheduling techniques. CCPM is based on the theory of constraint
(TOC) - a philosophy used to develop specific management techniques, focus-
ing on constraints that prevent project from reaching its goals. Rand (2000)
described the relationships between the Goldratt’s ideas (Goldratt, 1997) and
the CPM/PERT approach.

In this paper a cost-efficient project management based on the CCPM is
investigated when resources are partially available. Such constraint better fits
the real world project management problems. Dealing with more than one
project is common in IT business, for example, and so managers have to use the
resource-sharing approach.

The RCPSP is an NP-hard problem. Allowing for the use of resources only
in specified time periods, makes RCPSP computationally very complex. To our
best knowledge this is the first approach taking into consideration the resources
having initial workload for the solved RCPSP. A metaheuristic algorithm from
Deniziak (2004) was adopted to work with human resources and the CCPM
method. System refinement methods were enhanced by an extra step in order
to expand the search space. Performance of the algorithm was increased by the
distributed calculations. The efficiency of the approach is also investigated.

The next section of the paper contains a brief overview of related work. The
problem statement and the research purpose are given in Section 3. Section 4
describes the algorithm and presents a concept of enhancement of scheduling
methods. Results of evaluation of both centralized and distributed computing
models for the algorithm, as well as a comparison with two other methods are
given in Section 5. The paper ends with conclusions.

2. Related work

Related work considers RCPSP with dedicated resources but without initial
schedules of already assigned tasks. A lot of researchers studied RCPSP and
suggested two different approaches to solve this problem: exact procedures and
heuristics. The branch and bound methods (see, e.g., Brucker et al., 1998,
Demeulemeester and Herroelen, 1997, 2002) are the only exact methods which
allow for generation of optimal solutions with an acceptable computational ef-
fort. Mingozzi et al. (1998) presented another method - a tree search algorithm.
It is based on a new mathematical formulation that uses lower bounds and dom-
inance criteria.

However, exact methods may require a significant amount of computation
time, not acceptable in most cases. The results of investigations of Hartmann
and Kolisch (2000) showed that the best performing approaches were the Ge-
netic Algorithms (GAs) of Hartmann (1998) and the Simulated annealing (SA)
procedure of Bouleimen and Lecocq (2003). The in-depth study of the perfor-
mance of the latest RCPSP heuristics can be found in Kolisch and Hartmann



Project management based on critical chain method with partial availability of resources 97

(2006). Heuristics described by these authors, include X-pass methods, also
known as priority rule based heuristics, classical metaheuristics, such as GAs,
Tabu search (TS), SA, and Ant Systems. Non-standard metaheuristics and
other methods were presented, as well. The former consist of a local search and
population-based approaches which have been proposed to solve the RCPSP.
The authors, referred to, investigated a heuristic which applied a forward-
backward and backward-forward improvement passes. They have found out
that the technique gives excellent results. For detailed description of the heuris-
tic schedule generation schemes, priority rules, and representations, we refer the
Reader to Hartmann and Kolisch (2000).

3. Problem statement

A single project consists ofm tasks, which are precedence related by finish–start
relationships with zero time lags. The relationship means that all predecessors
have to be finished before a given task can be started. With each task an
aggressive and safe time estimates are associated, corresponding to 50% (T0.5)
and 90% (T0.9) confidence that the task will be completed on time, respectively.

To be processed, each task requires a human resource R. Resources are lim-
ited to one unit and therefore have to be applied to different tasks sequentially.
To use a resource in a project, we have to cover the cost of its deployment, called
unit cost (Cu). Since resources are unique, they may have individual costs of
task execution per time unit (Ce). Whether the resource has allocated tasks or
not its maintenance costs apply to the entire duration of the project. The cost
is proportional to the resource cost Ce and project duration (Tp). Consequently,
the total cost (C) of the project may be specified using the following equation:

C =

r
∑

j=1

Ce(j) · Tp +

n
∑

j=1

(

Cu(j) +

m
∑

i=1

T0.9(i, j) · Ce(j)

)

(1)

where Ce(j) - cost of task execution per time unit by the resource j, Tp - project
duration, Cu(j) - resource j unit cost, T0.9(i, j) - task i safe time estimate when
executed by the resource j, n - the number of resources used in the project
schedule, m - the number of tasks, r - the number of resources in the resource
library.

Furthermore, we assume that resources may have already allocated dummy
tasks from a different project schedule. Such tasks cannot be moved. Hence, the
resources are available only in particular time periods. Our goal is to allocate
resources to the project tasks, taking into consideration availability of resources,
in order to minimize the total cost of the project and to complete it before a
deadline.



98 G. Pawiński and K. Sapiecha

4. An algorithm of task scheduling

4.1. The algorithm

The metaheuristic algorithm from Deniziak (2004) was adapted to take into
account specific features of human resources participating in a project schedule.
It starts with an initial point and searches for the cheapest solution satisfying
given time constraints. The initial schedule is a suboptimal solution generated
by the greedy procedures. The procedures identify currently eligible activities,
i.e. tasks without predecessors, trying to find a resource for each task. The
resource is sought according to the smallest increase of project duration or
project total cost.

In each pass of the iterative process, the current project schedule is being
modified in order to get closer to the minimum of cost C. Direction of the
search is determined by the metric of a gain. The gain defines the quality
of improvement of the schedule. In order to avoid being trapped in a local
minimum, total impact of modifications is measured for every new solution, as
an increase of slack time ∆Ω:

∆Ω =

m
∑

i=1

(Li − Ei) (2)

where Li - the latest task i start time, Ei - the earliest task i start time, m -
the number of tasks (Tukel et al., 2006). Usually, the bigger the slack time, the
broader the possibilities of resource allocation. If for any of the tasks Li is less
than Ei, the current solution does not satisfy time constraints and is rejected.

Finally, the gain obtained from the modifications of the current solution,
taking into account the changes of the project total cost and the slack time, is
evaluated using the following formula (Deniziak, 2004):

∆E =







−∆C
∆Ω

for ∆Ω < 0
−∆C for ∆Ω = 0
−∆C ·∆Ω for ∆Ω > 0







. (3)

The input to the algorithm includes: project plan, resource library and
maximal allowed project duration (a deadline).

4.2. Schedule refinement methods

Each pass in the iterative improvement process is an attempt to enhance the
current solution in two stages. In the first stage a new resource is inserted (if it
was not in the schedule). All tasks, giving a positive gain, are moved from other
resources to the new resource and inserted in the position with the highest slack
time. A task can be inserted if the resource has enough free time to execute
it. Afterwards, resources without allocated tasks are removed from the current
schedule. Finally, the best schedule goes to the next stage. If the project



Project management based on critical chain method with partial availability of resources 99

contains N tasks, D dummy tasks from the initial schedule and R resources,
there are (N +D) · R possible modifications, in the worst case.

The second stage is performed only if at least two resources are left. Contrary
to the first stage, resources are removed in order to get rid of the more expensive
ones. Only a resource without allocated tasks from the current project can be
removed. Hence, the algorithm tries to move all tasks from a resource onto
other resources that still remain in the project schedule. A new resource with
enough free time and giving the best gain is chosen for the task. If a new project
schedule has a positive gain, it becomes the best one. In the worst case there
are (N +D) · (R− 1) modifications. The iterative process is repeated for every
resource from the resource library until no improvement can be found.

The original algorithm does not check the gain resulting from inserting a
task in a gap between dummy tasks, when there are already assigned tasks.
The task may be allocated there in another iteration, but only if tasks from
the gap were moved. Moreover, different tasks from other resources could take
their place earlier. We have improved the algorithm by expanding the search
space. This is done by inserting the task in place of an already allocated task,
if a better allocation can be found for it. However, in this step, tasks may be
moved only to the resources having enough free time to execute them. The
improvement requires at most (N + D) · (R − 1) more modifications in each
stage. However, considering task relation dependencies, reduced availability of
resources and their removal from the schedule, the possibilities are considerably
limited.

At the very end, project tasks may be shifted right using ALAP algorithm
to the latest feasible position into their forward free slack. It should be noticed
that all the tasks are scheduled without violating their logical relationships or
resource constraints. Moreover, the obtained project schedule has to satisfy
given time constraints. Project schedules not meeting a deadline are rejected.
Influence of the deadline on the project duration and cost is shown in Fig. 1.
It is also illustrated how the project tasks are allocated to resources.

5. Evaluation of the algorithm

5.1. Centralized processing

The efficiency of the algorithm was estimated on projects from PSPLIB, devel-
oped by Kolisch and Sprecher (1996). The library for RCPSP consists of 480
project instances in groups of ten, which have been systematically generated
by varying three parameters: network complexity, resource factor, and resource
strength. The parameters have a big impact on the hardness of the project in-
stances (Kolisch and Sprecher, 1996). The set with 30 non-dummy activities is
the hardest standard set of RCPSP-instances for which all optimal solutions are
currently known (Demeulemeester and Herroelen, 1997). Thus, in our study, we
used project instances with 30 non-dummy activities and from 4 to 8 resources
with random data. Resource unit cost and cost of task execution may vary



100 G. Pawiński and K. Sapiecha

Figure 1. Influence of the deadline on project cost and duration



Project management based on critical chain method with partial availability of resources 101

by up to 10% from default values, which are 20 and 1 respectively. In each
project, resource availability was reduced by randomly allocating 30 tasks from
a project instance, which is located in the same group. We tested 96 projects
that comprise two randomly selected instances from each of the groups. How-
ever, our results cannot be compared with optimal results from PSPLIB because
of a different problem statement. So, we have compared them with the results
obtained by Genetic Algorithm (GA) of Hartmann (1998). The GA population
consisted of 30 individuals. In the evolution process, pairs of individuals were
randomly drawn from the population and subjected to the operation of one-
point crossover and mutation. If newly created genotypes did satisfy the time
constraints, they were added to the current population. Thus, population size in
each of the generations was at most 60. Finally, the 3-tournament reproduction
operator was used 30 times to reduce the population to its former size. This
iterative process was repeated until 100 generations were reached. The obtained
results were averaged over 10 runs.

At first, we tested the improvement in the solutions achieved by the proposed
refinement methods. Fig. 2 shows a task graph of project 3015 1, which contains
30 tasks. Scheduling results by the metaheuristic algorithm and its improvement
are shown in Fig. 3. Dummy tasks, which could not be moved, were randomly
assigned to 6 resources. The improvement allowed for decreasing the project cost
by 8% owing to completion of the project 9 days earlier. Its advantage is the
capability of backtracking from the earlier allocation decisions due to increased
possibility of moving tasks. Tasks that are more critical are assigned earlier and
therefore their successors may also be assigned earlier (e.g. task #13 in Fig.
3). As a result, tasks are better fitted into the gaps between the dummy tasks.
Experimental results showed that the improvement of the refinement methods
is suitable for projects with more restricted availability of resources (having lots
of gaps).

Further tests were supposed to examine the project cost and the project
time gain with respect to the resource number and the deadline. The results of
comparison of methods, showing the arithmetic mean of 96 test instances, are
given in Tables 1 and 2. The cost of projects with four resources was the lowest
with the use of GA. However, the metaheuristic algorithm gives better results
along with the increase of the number of resources. Other methods assign tasks
to all resources, while in our approach the resources with deployment cost bigger
than the gain resulting from executing tasks by them are unused. The longer the
project, the more flexibility in the resource allocation is observed. So, tasks can
be delayed and consequently moved from unprofitable resources. Afterwards,
the resources can be removed from the schedule. On the other hand, a too long
deadline in GAs decreases the quality of the newly created chromosomes and
gives worse results. The best result was obtained for the deadline of 100 in
projects with 4 resources, while in projects with 8 resources for the deadline of
40.

Experimental tests showed that the improvement makes it possible to reduce
the project cost by 3.83% and the project duration by 3.31% in projects with



102 G. Pawiński and K. Sapiecha

Figure 2. A task graph of project 3015 1 from PSPLIB

Figure 3. Comparison of the metaheuristic algorithm (b) and its improvement
(a) while scheduling a project with 30 tasks and 6 resources



Project management based on critical chain method with partial availability of resources 103

Table 1. Comparison of results of methods for the fastest initial schedule

greedy opt impr GA

resnum deadline time cost time cost time cost time cost

4

40 80.78 572.61 78.38 560.12 78.24 559.21 74.63 544.15

50 80.68 572.17 78.24 559.57 78.18 558.95 74.5 543.81

60 80.59 571.79 78.16 559.22 78.14 558.56 74.55 543.85

70 80.55 571.69 77.96 558.68 77.89 557.8 74.65 544.29

80 80.55 571.69 77.95 557 77.44 554.85 74.13 542.26

90 80.55 571.69 77.52 552.75 76.54 549.82 74.11 541.17

100 80.55 571.69 78.09 554.13 76.94 550.01 73.88 540.02

6

40 67.04 686.59 65.48 663.95 65.03 660.21 66.65 658.94

50 67.04 686.86 65.49 663.81 64.99 659.77 66.4 657.77

60 67.03 686.77 65.41 663.09 64.81 658.33 66.55 658.9

70 67.03 686.77 65.26 659.81 64.72 655.4 66.44 656.9

80 67.03 686.77 65.22 657 64.88 650.63 66.19 655.27

90 67.03 686.77 65.33 658.23 65.2 653.01 66.44 656.7

100 67.03 686.77 65.43 658.1 65.25 653.76 66.22 655.78

8

40 59.21 797.75 58.54 763.99 57.96 758.94 62.01 766.96

50 59.18 797.5 58.5 763.6 57.98 758.66 62.33 769.92

60 59.18 797.5 58.53 761.49 57.96 756.68 62.32 769.06

70 59.18 797.5 58.7 760.9 57.96 752.66 62.48 769.21

80 59.18 797.5 58.79 759.28 58.34 753.1 62.28 768.65

90 59.18 797.5 58.79 759.43 58.41 754.46 61.85 768.16

100 59.18 797.5 58.86 760.76 58.59 754.95 61.86 769.01

resnum - number of resources, greedy - greedy algorithm, opt - optimization algorithm, impr

- the improved algorithm, GA - genetic algorithm.

four resources, by 5.24% and 4.31% in projects with six resources and by 5.65%
and 2.11% in projects with eight resources. The approach is better than GA
for projects with more resources than four. In projects with eight resources it
allowed for reducing the project cost by 2.3% and the project duration by 6.6%
compared to GA. However, the computation time dramatically grows due to the
increased number of schedule modifications. Fortunately, it can be significantly
reduced by distributed calculations.

5.2. Distributed processing

Schedule modifications can be done independently at every stage of the iterative
improvement process. To start with, there are several attempts in the process
to add a resource to the current schedule. Main computer (server) is responsible
for distributing each attempt to remote computers doing calculations (workers).
Workers reschedule the current solution according to the received project data
and search parameters. Each worker calculates the schedule modifications for a
different resource. Afterwards, the results of modifications are sent back to the
server and passed to the next stage. After every attempt to add a resource, the
second stage of the procedure starts, in which attempts to remove a resource
are performed, similarly. Finally, the server chooses the best schedule in the
second stage and then from all the second stages.



104 G. Pawiński and K. Sapiecha

Table 2. Comparison of the results of methods for the cheapest initial schedule
greedy opt impr GA

resnum deadline time cost time cost time cost time cost

4

40 82.24 577.94 79.88 565.53 79.55 564.33 74.63 544.15

50 82.09 577.33 79.74 565.17 79.41 563.72 74.5 543.81

60 82.05 577.2 79.7 565.06 79.32 563.63 74.55 543.85

70 82.05 577.2 79.63 564.77 79.29 563.47 74.65 544.29

80 82.05 577.2 79.28 562.44 78.7 559.92 74.13 542.26

90 82.05 577.2 79.54 560.71 78.78 557.08 74.11 541.17

100 82.05 577.2 79.31 558.93 78.65 555.72 73.88 540.02

6

40 68 692.52 66.54 672.01 66.08 666.25 66.65 658.94

50 68 692.46 66.52 671.23 66.09 666.3 66.4 657.77

60 68 692.46 66.48 670.52 65.96 664.7 66.55 658.9

70 68 692.46 66.55 667.72 65.79 659.85 66.44 656.9

80 68 692.46 66.27 663.74 65.75 656.68 66.19 655.27

90 68 692.46 66.43 663.61 65.89 657.04 66.44 656.7

100 68 692.46 66.6 663.36 66.67 660.19 66.22 655.78

8

40 59.6 799.25 58.57 766.92 58.23 763.44 62.01 766.96

50 59.6 799.25 58.58 766.54 58.26 763.68 62.33 769.92

60 59.6 799.25 58.6 764.41 58.22 761.16 62.32 769.06

70 59.6 799.25 58.85 762.19 58.34 759.2 62.48 769.21

80 59.6 799.25 58.82 760.45 58.38 756.31 62.28 768.65

90 59.6 799.25 58.83 761.07 58.69 758.41 61.85 768.16

100 59.6 799.25 59.04 762.06 58.9 759.01 61.86 769.01

resnum - number of resources, greedy - greedy algorithm, opt - optimization algorithm, impr

- the algorithm improvement, GA - genetic algorithm.

Tests were performed on computers with Intel R© CoreTM i5-760 Processor
(8M Cache, 2,80 GHz) and 2 GB of RAM memory. The server was using
multithreading for spreading and gathering data, in parallel. It contained a pool
of workers that were running on remote computers as independent processes.
Calculations could be done by any available worker. In order to use the entire
computing power, each computer was running as many processes as the number
of processor cores. As the result, computer resources were better utilized and
fewer computers had to be used (four times less). Moreover, multiprocessing
has no costs of context switching and synchronization. On the other hand, the
cost of transmitting data has to be considered.

Results of the tests are shown in Figs. 4 and 5. The two figures present how
changing the number of workers affects the time of computations in respect of the
number of resources (Fig. 4) and the number of tasks (Fig. 5). The number of
tasks added from the initial schedule is the same as in the current schedule. The
computation time significantly falls as the number of workers grows. This decline
is particularly visible for the small number of resources. It is worth noticing
that the computation time was reduced down to even 6% of the sequential
computation time for the project with 60 tasks and 12 resources. Generally, if
the project contained more resources, the result was obtained faster, because the
number of schedule modifications depends on the number of resources. As for
the number of tasks, the bigger it was, the bigger the amount of data that had



Project management based on critical chain method with partial availability of resources 105

Figure 4. Time of computations compared with the number of workers for the
constant number of tasks



106 G. Pawiński and K. Sapiecha

Figure 5. Time of computations compared with the number of workers for the
constant number of resources



Project management based on critical chain method with partial availability of resources 107

Figure 6. Number of workers used in the schedule refinement method

to be transmitted between the server and the workers. Yet, the computation
time fluctuated with a growing trend.

Further tests were meant to examine how many workers should be used to
schedule a project in parallel. In the process there are (N +D)2 · (R − 1) · R
schedule modifications, in the worst case. Workers calculate modifications for a
resource, so no more than (R−1)·R will be needed at the same time. Test results
showed that for a project with R resources a maximum number of R · 3 workers
is sufficient. Thus, Fig. 6 shows the usage of 36 workers during scheduling of a
project with 35 tasks and 10 resources. Squares below the horizontal axis show
the end of each of the iterations. The first stage of the iteration requires R

resources. If some adding attempt ends, other R − 1 workers are used. All of
them are busy when several second stages begin. Afterwards, worker usage falls
due to waiting for the completion of all second stages. Workers are better utilized
in the last iterations because these iterations are shorter. The average number
of workers used for project scheduling is shown in Table 3. It was calculated as a
weighted mean where weight is proportional to the period of time during which
workers were used. Although the average worker usage grows as the number of
resources increases, it does not reach 2 · R. Moreover, it falls as the number of
tasks grows because calculations last longer for a greater number of tasks and
the need for workers is spread in time. Workers also spend more time waiting
when the number of tasks is increased.

6. Conclusions

In this paper, a new constraint for the RCPSP was added. The algorithm
can allocate tasks to resources only in particular time periods. It minimizes
the project total cost taking into consideration time requirements. We have
proposed an improvement of the refinement methods in order to increase the
possibility of finding the best resource allocation. Various tests were performed
on projects containing 30 new tasks and 30 tasks from the previous schedule.
Statistics show that the gain resulting from the application of the algorithm



108 G. Pawiński and K. Sapiecha

Table 3. Average number of workers used for project scheduling

No. tasks

No. resources 30 35 40 45
6 12.4 4.39 5.67 7.92
8 6.63 6.09 7.04 6.37
10 15.26 10.1 10.06 5.06
12 13.4 11.13 9.98 6.07
14 23.64 13.98 13.77 9.18
16 12.96 16.15 15.21 7.39

varies depending on the number of resources used and the time constraints. It
appears that it is more beneficial to use fewer resources and finish the project
later. As resource deployment costs are high, using a resource in the project
schedule has to be beneficial. Unused resources can then be dedicated to other
projects. The later the deadline, the more schedule results are allowed and the
flexibility of the algorithm grows. Usually this allows the algorithm to obtain
better results. Yet, too low deadline requirements decrease algorithm efficiency.
The number of precedence relationships in the project plan is also important.
A high number of task dependencies reduces the search space and deteriorates
the results.

Experimental results showed a significant reduction of the project cost as well
as the project duration, compared to the greedy procedures and to the genetic
algorithm. The improvement of refinement methods is suitable for projects with
more restricted availability of resources. In such projects, it gave a reduction of
the project cost by 8% and of the project duration by 14% when compared with
the original algorithm. However, only parallelization of the algorithm may al-
low for solving efficiently, faster and better, the more complex real life problem.
The performance of the algorithm was increased by the distributed process-
ing, in which ”workers” on many computers were calculating different schedule
modifications in the same time. Hence, the computation time required by the se-
quential scheduling can be significantly decreased. Even few workers may lower
the computation time several times over. A maximum of R ·3 workers suffices to
reduce the computation time even by the factor of 10. Furthermore, computer
resources were well utilized due to multithreading and multiprocessing. The
number of computers is inversely proportional to the number of cores. Apart
from the project total cost, the algorithm takes into account the changes of the
slack time and therefore has the capacity of getting out of the local minimum.
Future work will concentrate on both the impact of other factors on reduction
of cost and better worker utilization.



Project management based on critical chain method with partial availability of resources 109

References

Bouleimen, K. and Lecocq, H. (2003) A new efficient simulated annealing
algorithm for the resource-constrained project scheduling problem and its
multiple modes version. European Journal of Operational Research 149,
268–281.

Brucker, P., Knust, S., Schoo, A. and Thiele, O. (1998) A branch-and-
bound algorithm for the resource-constrained project scheduling problem.
European Journal of Operational Research 107, 272–288.

Demeulemeester, E. L. and Herroelen, W. S. (1997) New benchmark
results for the resource-constrained project scheduling problem. Manage-

ment Science 43, 1485–1492.
Demeulemeester, E. L. and Herroelen, W. S. (2002) Project Scheduling.

A Research Handbook. Springer.
Deniziak, S. (2004) Cost-efficient synthesis of multiprocessor heterogeneous

systems. Control and Cybernetics 33, 341-355.
Goldratt, E.M. (1997) Critical Chain. The North River Press Publishing

Corporation, Great Barrington.
Hartmann, S. (1998) A Competitive Genetic Algorithm for Resource-Con-

strained Project Scheduling. Naval Research Logistics 45, 733-750.
Hartmann, S. and Kolish, R. (2000) Experimental evaluation of state-of-

the-art heuristics for the resource-constrained project scheduling problem.
European Journal of Operational Research 127, 394-407.

Kolish, R. and Sprecher, A. (1996) PSPLIB A project scheduling library.
European Journal of Operational Research 96, 205-216.

Kolish, R. and Hartmann, S. (2006) Experimental investigation of heuris-
tics for resource-constrained project scheduling: An update. European

Journal of Operational Research 174, 23–37.
Mingozzi, A., Maniezzo, V., Ricciardelli, S. and Bianco, L. (1998) An

exact algorithm for the resource-constrained project scheduling problem
based on a new mathematical formulation. Management Science 44, 714–
729.

Rand, G.K. (2000) Critical chain: the Theory of Constraints applied to
project management. International Journal of Project Management 18

(3), 173–177.
Tukel, O.I., Rom, W.O. and Eksioglu, S.D. (2006) An investigation of

buffer sizing techniques in critical chain scheduling. European Journal of

Operational Research 172, 401–416.


