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Abstract: The paper describes an analytical study of open two-
node (tandem) network models with blocking. Here, a specific tan-
dem configuration is chosen: the first node is treated as an infinite
server (IS - often referred to as the ample-server), meaning that
any incoming task can find at least one empty line for service in
this node, and the second node has several parallel lines that can
serve input task streams simultaneously. Between these two nodes
there is a buffer with finite capacity. In this type of network, if the
buffer is full, the accumulation of new tasks by the second node is
temporarily suspended (blocking factor) and tasks must wait at the
first node until the transmission process is resumed. In this paper,
the two-node model is investigated using two different methods. The
first is the multi-step exact algorithm, involving a numerical part for
solving a set of linear equations, and the second is an approximate
algorithm using a product form solution. The numerical part is used
for solving a system of linear equations and for calculating the state
probability vector. Finally, after comparing both algorithms, some
recommendations as to when each method can be used are given.

Keywords: two-node network with blocking, multi-server tan-
dem queues, exact algorithm, product form solution

1. Introduction

In mathematical models of discrete flow systems, which are realistic and effec-
tive tools for performance analysis regarding a wide class of systems, such as
computer systems and networks, telecommunication networks, transportation
networks, production lines, or flexible manufacturing systems, the queuing net-
work models (QNM) with finite capacity queues and blocking are often used (see
Balsamo et al., 2003; Badrah et al., 2002; Brandwajn and Jow, 1988; Economou
and Fakinos, 1998; Kim et al., 2007; Martin, 2002; Oniszczuk, 2005, 2006, 2009;
Sereno, 1999; Zhuang, 1996). Over the years, many publications related to the
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analysis and application of QNMs with finite capacity queues and blocking in
the field of computer science, operations research, traffic engineering or indus-
trial engineering appeared (see Akyildiz, 1988; Balsamo and de Nitto Persone,
1994; Boucherie and van Dijk, 1997; Clo, 1998; Kouvatsos and Almond, 1988;
Morrison, 1996; Oniszczuk, 2010; Onvural, 1990; Sharma and Virtamo, 2002).

Most of results of investigations in these areas were selected and ordered in
well-known books such as “Queueing Networks with Blocking. Exact and Ap-
proximate Solutions” (Perros, 1994) and “Analysis of Queueing Networks with
Blocking” (Balsamo et al., 2001). Similarly, the entire issues of the Annals of
Operation Research, on Queueing Networks with Finite Capacity, Vol. 79 (1998)
and Performance Evaluation, Vol. 51 (2-4) (2003), were dedicated to queuing
networks with blocking, where some sections cover exact analysis, approximate
methods and applications. However, there is still great interest in the sys-
tems with buffer capacity limitations under different blocking mechanisms (see
Amador and Artalejo, 2009; Azadeh et al., 2010; Bose et al., 2006; Bouhchouch
et al., 1996; Casale et al., 2008; Gomez-Corral, 2002, 2006; Kwiecień and Fil-
ipowicz, 2012; Lenzini et al., 2008; Strelen et al., 1998; van Vuuren et al., 2005).
The blocking mechanism restricts the total intensity of input streams by forcing
certain limitations on the blocking and synchronization procedures (Kouvat-
sos et al., 2000; Kwiecień and Filipowicz, 2012; Oniszczuk, 2010; Sharma and
Virtamo, 2002; Strelen et al., 1998).

Most studies in the area of two-node (tandem) open networks with blocking
(see, e.g. Brandwajn and Jow, 1988; Perros, 1994) assume that each queue is
served by a single server, where the first node has an infinite or a finite capacity
and the second node has a finite capacity. The state of this queuing network
can be described by a pair of variables indicating the number of tasks in the
first node and the number of tasks in the second node. Several authors propose
approximate methods for single-server networks (or single-server tandems) with
blocking, based on the aggregation theorem and on network decomposition by
considering various network models and blocking types (see, e.g. Brandwajn
and Jow, 1988).

The various closed-form results related to the single-server queuing network
include the following two limiting cases: when a task at the first node receives
an infinitesimal amount of service, and when the first node is saturated. In
the former case, if the task arrives at the tandem point when the second node
buffer is not full, the task goes through the first node and it immediately joins
the second node. In the case of a saturated first node (the node is never empty),
the server is either busy serving or blocked. This case is often described in pro-
duction systems as a server with an unlimited supply of raw material. In view
of this, the second node becomes an M/M/1 finite waiting capacity queue with
an overall arrival rate equal to the first node service rate (single-node approx-
imation). Another special tandem model with blocking assumes that multiple
servers serve each queue. In this case, upon completion of service at the first
node, a task will get blocked if at that moment the second node is full. A closed-
form solution for the queue-length distribution of this model was obtained with
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the assumption that the first node is saturated (single-node approximation).
This model is equivalent to a queue with state-dependent arrivals. We say that
a node is saturated when there is always at least one task waiting for service,
i.e. the node is never empty. Another way of studying a tandem configuration is
motivated by a kanban scheme, where the first node is assumed to be saturated
and it continues to serve tasks during the time when the second node is full (the
served tasks remain in the first node). This approach belongs to single-node
decompositions. Similarly, other authors studied the tandem configuration with
exponential service times and no intermediate buffers, and no queue in front
of the first node or where the first node was assumed to have an infinite (or a
finite) capacity.

From a practical application point of view, it is very important to investigate
a multiple server tandem configuration in two different limiting cases: with
heavy traffic (saturation) and with a light tandem load. In the heavy traffic
case, the first node is with probability close to 1 never empty (saturation) and
it is a “peak” input intensity period or period for serving the tasks accumulated
in the first node buffer. In this case it is possible to investigate the maximum
possible throughput in the tandem network. When the tandem works on a
“light” load, the throughput and hence the network utilization increases as the
input stream is increased and tasks with the probability close to 1 find at least
one free service line at the first node (conditions similar to an infinite server -
IS). This is some kind of simplification for the two-node network functioning
when the input stream intensity temporary falls down.

This paper extends the author’s previous research on open tandem models
with blocking (see Oniszczuk, 2006). The former paper only considered the
multiple server two-node queuing networks with blocking separated serving lines,
assuming that the first node is under a heavy load. The current article examines
an open tandem (two-node approximation) with blocking separated lines at the
first node, assuming that the first node works with a light load condition. In
both cases, when a departure occurs from the second node, one of the blocked
tasks will enter the second node and its associated serving line will become
unblocked.

This paper provides the mathematical study of a special type of network
configuration (tandem), as shown in Fig. 1. This kind of network has N+1
parallel lines at the first node, this being designated as an infinite server (IS),
meaning that any input task incoming to this node, can find with probability
equal 1 at least one free service line (it is the light load condition where only N
serving lines can simultaneously be occupied), and the other node has c parallel
servicing lines. Between these nodes there is a common waiting buffer with
finite capacity, for example equal m. When the buffer is full, the accumulation
of new tasks from the first node is temporarily suspended and the phenomenon
called blocking occurs, until the queue empties and allows new inserts. This is
the classical mechanism for controlling the intensity of an arriving task stream,
which comes to the two-node network. There are also other well-known mech-
anisms of input process regulation, such as in the systems with truncation, in
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which tasks are rejected from service nodes if the waiting buffer is full. In such
systems, the rejected tasks, if necessary, are sent back and reprocessed.

In this kind of tandem configuration, no more than N + m + c tasks can be
processed simultaneously and the tandem becomes idle, if there are no tasks in
both nodes. Assuming that the input stream to the tandem network represents
a Poisson process and the service time in both nodes corresponds to a random
variable with an exponential distribution, it is a Markovian model of tandem
with blocking.

The most common queuing models with blocking assume that the interarrival
and service times are exponentially distributed. One of the interesting properties
of the exponential distribution is the Markovian or memoryless property, which
states that the probability that a job currently in service is completed at some
future time t is independent of how long the job has already been in service. It
is mainly owing to this special property that the exponential distribution has
been the most widely used distribution in the analysis of queuing networks with
blocking. In practice, the arrival and service time distributions are not known
a priori and they often are not exponential. However, there are also many
arrival or service time distributions that fit an exponential. The popularity
of the exponential distribution arises out of the fact that it often yields to
computationally efficient procedures and obtaining system behavior under this
assumption is, in most cases, a relatively easy task.

At the beginning, all possible states of the tandem network are defined,
and then the steady state probabilities and the main tandem measures of effec-
tiveness are calculated. Additionally, algorithms for calculation of the blocking
probability, delay time in the buffer, blocking time in the node A, the percentage
of buffer filling, etc., are shown.

The structure of the paper is as follows. Section 2 specifies the model of the
tandem and shows the exact analysis, in Section 3, the product form approxima-
tion solution for two-node network with blocking is given. Section 4 describes the
procedures for calculating the main measures of effectiveness. Model implemen-
tation and numerical examples are described in Section 5. Finally, conclusions
are drawn in Section 6.

2. Exact analysis of Markovian tandems with blocking

Let us consider the two-node network with blocking as shown in Fig. 1. The
input task stream to the network is assumed to come from a Poisson source
with parameter λ to node A and each task is processed on the parallel service
lines. Upon service completion at the first node, the tasks are sent to node B.
If there are free lines at this node, the service process starts immediately, if not,
the tasks must wait in the buffer. If the buffer is full, any task upon service
completion at the node A, is forced to wait and blocks this service line.

The general assumptions for this tandem model are:

• the external tasks stream arriving at node A is assumed to be a Poisson
stream, with rate λ = 1/a, where a is the mean inter-arrival time,
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Figure 1. Tandem model with blocking

• node A has N+1 parallel service lines, but no more than N tasks can be
served simultaneously,

• c is the number of service lines that are available at the node B,
• in both nodes the service time for each task represents an exponentially

distributed random variable, with means sA = 1/µA and sB = 1/µB ,
where µ is the mean service rate,

• the buffer capacity is finite, for example equal to m.

Under these assumptions, a continuous-time homogeneous Markov chain can
represent the tandem network and the model reaches a steady-state condition.
It means that the Markov chain has a stationary state distribution.

If there are (m+c) < N conditions, we have a classical tandem with blocking
(see Perros, 1994). If the buffer is full, any task upon completion of service at
node A, is forced to wait in this service line, because the transfer process from
node A depends only on the service process at node B. Physically, blocked
tasks stay at node A, but the nature of the service process at node B allows for
treating them as located in the additional places in the buffer and belonging to
node B. In this case, there can be a maximum of c + m + N tasks assigned to
the second node including all tasks in the first node that can be blocked (the
maximum number of states in the two-dimensional tandem state space that
belong to the second node is equal to c + m + N).

In turn, the possible number of non-blocked tasks in the first node is equal
to N. According to the initial assumptions, the maximum number of tasks in
the two-node network can be N +m+ c, which means that the current number
of tasks that belong to the second node depends on the number of non-blocked
tasks in the node A (let it be fixed as i). It means that the current number of
possible states at node B (denoted as j) is equal to j = c + m + N − i.

This kind of a tandem configuration and state definition can be treated as
a Markovian series of service stations with Infinite Server (IS – queue with
unlimited service, that is – without a queue in front of the node) at node A
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and with buffer enlarged to m + N places in front of node B. If the numbers
of tasks located simultaneously at the tandem in the first and second nodes are
denoted by i and j, respectively, then a Markov chain with a two-dimensional
state space, with unique one path from the state (0, 0) to any state (i, j) and
back to the state (0, 0) is defined in this model.

Generally, queuing networks with blocking are difficult to solve, because their
steady state probabilities can not be shown to have a product form solution.
Hence, most of the techniques that are employed to analyze these networks are
in the form of approximations or numerical techniques. Numerical methods are
particularly useful in cases for which it is not possible to obtain an analytic
solution for the queuing system under study. The queuing system under study
is first formulated as a continuous time Markov process with discrete states, and
subsequently its steady-state probability vector is calculated using an equation
solving technique (e.g. Balsamo et al., 2001; Bolch et al., 1998; Gaver et al.,
1984; Oniszczuk, 2006; Stewart, 1994). A queuing network with blocking, under
appropriate assumptions, can be formulated as a Markov process and the sta-
tionary probability vector can be obtained using numerical methods for a linear
system of equations. In general, obtaining the steady state probability vector is
a four-step procedure:

1. determine the states and the state space of the network with blocking,
2. enumerate all the transitions that can possibly occur among the states,
3. determine the state transition structure to construct the rate matrix (in-

finitesimal generator matrix) Q ,
4. solve the linear system of equations numerically (compute appropriate

probability vectors of the Markov chain, from which measures of effective-
ness of the queuing network are derived).

It sometimes happens that the infinitesimal generator matrix of a given
Markov chain is so highly structured (as in the case of the special type network
with blocking) that it is more efficient to write a specific solution procedure for
that problem than to use the existing software (for example MARCA, XMARCA
or other packages, see Stewart, 1994), this being due to the repetitive nature
of the rate matrix (where the resulting rate matrix Q has a block tri-diagonal
structure). The process of constructing the full set of the steady-state equations
for this special tandem type with blocking requires building the complete two-
dimensional state space graph as well as determination of all transition rates
from state to state. The framework to describe the state space for open tandem
networks as an irregular two-dimensional graph was introduced and formally
demonstrated in Oniszczuk (2005).

Figs. 2 and 3 show two parts of this non-trivial state space diagram (in
this case the rate matrix is irreducible, aperiodic and has no clearly defined
form). The second part of the graph shows the states with blocking and their
interpretation. In this case we may denote the state of tandem with blocking by
the pair (i, j) where i represents the number of tasks in node A and j denotes
the number of tasks in node B. Node B includes the tasks that are both serviced
and blocked.
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Figure 2. Two-dimensional tandem state space graph (first part)
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Figure 3. Two-dimensional tandem state space graph (second part)
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Based on the analysis of these state space diagrams, the process of con-
structing the steady-state equations can be divided into several independent
steps, which describe several similar, repeatable schema. These steady-state
equations are:

0 = −λ · p0,0 + µB
1 · p0,1 for i = 0, j = 0

0 = −(λ + µB
j ) · p0,j + µA

1 · p1,j−1 + µB
j+1 · p0,j+1 for i = 0, j = 1, ..., c + m

0 = −(λ + µA
i ) · pi,0 + λ · pi−1,0 + µB

1 · pi,1 for i = 1, ..., N − 1, j = 0
0 = −(λ + µB

j + µA
i ) · pi,j + λ · pi−1,j + µA

i+1 ṗi+1,j−1 + µB
j+1 · pi,j+1 (1)

for i = 1, ..., N − 1, j = 1, ..., c + m
0 = −µA

N · pN,0 + λ · pN−1,0 + µB
1 · pN,1 for i = N, j = 0

0 = −(µB
j +µA

N)·pN,j+λ·pN−1,j+µB
j+1 ·pN,j+1 for i = N, j = 1, ..., c+m−1

0 = −(µB
c+m + µA

N ) · pN,c+m + λ · pN−1,c+m for i = N, j = c + m.

And for the states with blocking the equations are:

0 = −(λ + µB
j ) · p0,j + µA

1 · p1,j−1 + µB
j+1 · p0,j+1

for i = 0, j = c + m + 1, ..., c + m + N − 1
0 = −µB

c+m+N · p0,c+m+N + µA
1 · p1,c+m+N−1 for i = 0, j = c + m+ N (2)

0 = −(λ + µB
j + µA

i ) · pi,j + λ · pi−1,j + µA
i+1 · pi+1,j−1 + µB

j+1 · pi,j+1

for i = 1, ..., N − 2, j = c + m + 1, ..., c + m + N − 1 − i
0 = −(µB

c+m+N−i + µA
i ) · pi,j + λ · pi−1,j + µA

i+1 · pi+1,c+m+N−(i+1)

for i = 1, ..., N − 1, j = c + m + N − i.

The process of solving the set of equations given by (1) and (2) with common
algorithms, independently of the initial tandem configuration, is not trivial, be-
cause a part of the graph has an irregular and triangle shape. There are many
methods for the solution of a system of linear algebraic equations but some of
these are restricted to certain regular structures of the parameter matrix. In
this paper, some methods are proposed, in which the whole graph, column by
column, is sequentially re-numbered in order to solve this problem (to get a stan-
dard finite-state one-dimensional Markov chain). Additionally, for the triangle
part of the graph a special re-numbering method with reduction of column size
is applied. This operation is necessary for solving a set of linear equations in
MATLAB based on the well-known MATLAB efficient sparse storage schemas
and efficient sparsity-preserving algorithms. The state of any Markov chain may
be represented as an integer-valued row vector, and this is the means of repre-
sentation adopted by the above mentioned MATLAB algorithms.

Let some supporting parameter be defined as k = N + 1. For the first part
of the graph (the states without blocking), the re-numbering algorithm is real-
ized according to the following scheme (state description → state number):
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(0, 0)→0·k+0 (0, 1)→1·k+0 ... (0, c)→c · k + 0 ... (0, c + m) →

(c + m) · k
(1, 0)→0·k+1 (1, 1)→1·k+1 ... (1, c)→c · k + 1 ... (1, c + m) →

(c + m) · k + 1
... ... ... ... ... ...
(N, 0)→k − 1 (N, 1)→2 ·k−

1
... (N, c)→(c+1)·

k − 1
... (N, c + m) →

(c+m+1)·k−1

In turn, for the second part of the state graph with blocking, the column
with number c + m is denoted as:

bj = (c + m) · k for j = c + m
and the subsequent column numbers are calculated using the following expres-
sion:

bj = bj−1 + (N + 2) − (j − c−m) for j = c + m + 1, ..., c + m + N .
In this case, the re-numbering algorithm is (state description → state number):

(0, c+m+1)→
bc+m+1 + 0

(0, c+m+2)→
bc+m+2 + 0

... (0, c+m+N−1)→
bc+m+N−1 + 0

(0, c+m+N)→
bc+m+N + 0

(1, c+m+1)→
bc+m+1 + 1

(1, c+m+2)→
bc+m+2 + 1

... (1, c+m+N−1)→
bc+m+N−1 + 1

... ... ...
(N−2, c+m+
1)→bc+m+1 +
N − 2

(N−2, c+m+
2)→ bc+m+2 +
N − 2

(N−1, c+m+
1)→bc+m+1 +
N − 1

The re-numbering algorithm, presented above, allows for transforming the
set of equations from (1) and (2) to the following kind of set:

0 = −λ · q0 + µB
1 · qk for i = 0, j = 0

0 = −(λ+µB
j )·qj .k+µA

1 ·q(j−1).k+1+µB
j+1 ·q(j+1).k for i = 0, j = 1, ..., c+m

0 = −(λ + µA
i ) · qi + λ · qi−1 + µB

1 · qk+i for i = 1, ..., N − 1, j = 0
0 = −(λ+µB

j +µA
i )·qj .k+i+λ·qj.k+i−1+µA

i+1 ·q(j−1).k+i+1+µB
j+1 ·q(j+1).k+i

for i = 1, ..., N − 1, j = 1, ..., c + m
0 = −µA

N · qk−1 + λ · qk−2 + µB
1 · q2.k−1 for i = N, j = 0

0 = −(µB
j + µA

N ) · q(j+1).k−1 + λ · q(j+1).k−2 + µB
j+1 · q(j+2).k−1

for i = N, j = 1, ..., c + m− 1
0 = −(µB

c+m +µA
N ) · q(c+m+1).k−1 +λ · q(c+m+1).k−2 for i = N, j = c+m (3)

And for the states with blocking:
0 = −(λ + µB

j ) · qb(j) + µA
1 · qb(j−1)+1 + µB

j+1 · qb(j+1)

for i = 0, j = c + m + 1, ..., c + m + N − 1
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0 = −µB
c+m+N · qb(c+m+N) + µA

1 · qb(c+m+N−1)+1 for i = 0, j = c + m + N

0 = −(λ+µB
j +µA

i ) ·qb(j)+i +λ ·qb(j)+i−1+µA
i+1 ·qb(j−1)+i+1 +µB

j+1 ·qb(j+1)+i

for i = 1, ..., N − 2, j = c + m + 1, ..., c + m + N − 1 − i

0 = −(µB
c+m+N−i + µA

i ) · qb(j)+i + λ · qb(j)+i−1 + µA
i+1 · qb(j−1)+i+1

for i = 1, ..., N − 1, j = c + m + N − i.

This set of linear equations can be solved using classical numerical methods,
based on algorithms typical for sparse and diagonal matrices (for example –
numerical experiments in MATLAB using efficient sparse storage schemas and
efficient sparsity-preserving algorithms). The generation of the rate matrix Q

can now be accomplished by going through the list of states and generating all
the feasible transitions out of each state and the associated rate of transition.
For this kind of Markov process in a steady state, we simply have (see, e.g.
Balsamo et al., 2001; Bolch et al., 1998; Gaver et al., 1984; Stewart, 1994):

xQ = 0 (4)

where x is the stationary probability vector whose k−th element xkis the steady-
state probability that the system is in state k. Vector x can be obtained from
(4) and the normalizing condition

∑

all states xk = 1, using equation-solving
techniques.

In the next step, the calculated state probabilities are assigned to each state
shown on the two-dimensional tandem state graph.

3. An approximate method for tandems with blocking
(product form solution)

According to the definition from Section 2, the tandem model represents a
Markov chain, therefore based on Jackson’s theorem (“if in an open network
ergodicity holds for all nodes, then the steady-state probability of the network
can be expressed as the product form of the state probabilities of the individual
nodes”, see Bolch et al., 1998) for queuing networks with exponential service
times and a Poisson arrival distribution, the joint probabilities of the tandem
states are the product of the marginal probabilities for each node:

pi,j = pAi · pBj . (5)

In an open series queue (e.g. tandem) with blocking, each particular node
(station) can be described as an independent M/M/c/L finite capacity system,
where the maximum number of tasks in the system is L. An arriving task (job)
enters the queue if it finds fewer than L tasks in the system. This behavior can
be modeled by a birth-death process with:

λk =

{
λ, 0 ≤ k < L
0, k > L

(6)
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and

µk =

{
k · µ, 0 6 k 6 c
c · µ, c < k 6 L

(7)

In a classical single-node Markovian queuing model with finite capacity, the
steady-state probability of k tasks in the system is given by:

pk =







λk

µ·2µ·3µ···kµ · p0 = λk

k!·µk · p0, 0 6 k 6 c
λk

µ · 2µ · · · cµ
︸ ︷︷ ︸

c!·µc

· cµ · · · cµ
︸ ︷︷ ︸
k−c terms

· p0 = λk

c!·µk
·ck−c · p0 = cc·λk

c!·ck·µk · p0, c < k 6 L

(8)

The boundary condition
L∑

k=0

pk = 1 will yield p0; that is:

p0 =

[
c∑

k=0

1

k!
·

(
λ

µ

)k

+

L∑

k+c+1

cc

c! · ck
·

(
λ

µ

)k
]
−1

. (9)

In the here investigated two-node network with blocking, the maximum number
of tasks L in node A is equal to N and in node B this number is equal to
c + m + N . Before describing the calculation algorithm for tandem marginal
probabilities, we need to define the service rates for node A:

µA
1 = µA, µA

2 = 2 · µA, ..., µA
i = i · µA, ..., µA

N = N · µA (10)

and node B:

µB
1 = µB , µB

2 = 2 · µB, ..., µB
c = c · µB, ..., µB

c+m+N = c · µB. (11)

Then, according to formula (8), the marginal steady-state probabilities for each
tandem node can be calculated in the following way:

pAi =
λi

i! · (µA)i
· pA0 for i = 0, ..., N (12)

pBj =
λj

j! · (µB)j
· pB0 for j = 0, ..., c (13)

pBj =
cc

c!
· (

λ

c · µB
)j · pB0 for j = c + 1, ..., c + m + N. (14)

Using these marginal probabilities, all the joint probabilities of the tandem can
be calculated as (see formula (5)):

pi,j =
λi · λj

i! · j!(µA)i(µB)j
· p0,0 for i = 0, ..., N and j = 0, ..., c, (15)
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pi,j =
cc · λi · λj

i! · c!(µA)i(c · µB)j
· p0,0 for i = 0, ...,N and j = c + 1, ...,c + m+N− i

also i + j 6 c + m + N. (16)

Now we only have to find the value of p0,0. This can be accomplished by
utilizing the boundary condition:

N∑

i=0

c+m+N−i∑

j=0

pi,j = 1. (17)

4. Main measures of effectiveness for a tandem with block-
ing

The procedures for calculating basic measures of effectiveness use the steady-
state probabilities in the following manner:

1. Probability of the tandem blocking pbl:

pbl =

N−1∑

i=0

c+m+N−i∑

j=c+m+1

pi,j . (18)

2. Idle tandem probability pidle:

pidle = p0,0. (19)

3. The average number of blocked lines in node A:

nbl =

N−1∑

i=0

c+m+N−i∑

j=c+m+1

(j − c−m) · pi,j . (20)

4. The average number of active (non-blocked) tasks in node A:

lA =

N∑

i=1

c+m+N−i∑

j=0

i · pi,j . (21)

5. The average number of tasks in the buffer v:

v =

N∑

i=0

c+m∑

j=c+1

(j − c) · pi,j + m ·

N−1∑

i=0

c+m+N−i∑

j=c+m+1

pi,j. (22)
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6. The average number of tasks in node B (buffer + node) n:

n =

N∑

i=0

c+m∑

j=1

j · pi,j + (m + c) ·

N−1∑

i=0

c+m+N−i∑

j=c+m+1

pi,j . (23)

7. The average number of tasks on the service lines in node B:

lB =

N∑

i=0

c∑

j=1

j · pi,j + c ·

N−1∑

i=0

c+m+N−i∑

j=c+1

pi,j . (24)

8. The mean blocking time in node A:

tbl =
nbl

c · µB
. (25)

9. The mean waiting time in the buffer:

w =
v

c · µB
(26)

10. The mean response time in node B:

q = w +
1

µB
. (27)

11. The tandem throughput time:

tthr =
1

µA
+ tbl + q. (28)

12. The tandem throughput parameter:

thr =
N

tthr
. (29)

5. Numerical examples

In this section, we describe the tests of these two approaches on a number of
examples. The product form algorithm is simpler than the exact solution based
on numerical techniques. Hence, there arises the question of accuracy of the here
presented product form solution and the possibility of using the product form
algorithms for the investigation of networks with blocking. The results obtained
indicate that, in terms of the expected queue lengths, blocking probabilities,
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waiting times in the buffer, throughput times and etc., the accuracy of the
product form approximation is generally good except for one specific case. To
illustrate this fact, in this section the results obtained for four examples were
chosen so as to cover a reasonable selection of parameters. Additionally, the
investigations will answer the question as to in what cases the product form
algorithm can be applied.

First, we consider the tandem with the following configuration: N = 2,
c = 2, m = 2, with the inter-arrival and service rates equal to: λ = 4.5,
µA = 5.5, µB = 1.8. This model has 18 states, but only three of them are with
blocking: states (0,5), (0,6), and (1,5). Tables 1 and 2 show the results for the
first example.

Table 1. Tandem state probabilities, obtained with the product form solution –
pf, and the exact solution – ex

Type
State probabilities
(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (1,0) (1,1)

pf 0.0193 0.0482 0.0602 0.0752 0.0941 0.1176 0.1470 0.0158 0.0394

ex 0.0238 0.0594 0.0729 0.0822 0.0890 0.0984 0.1143 0.0203 0.0535

%
er-
ror

-23.32 -23.24 -21.10 -9.31 5.42 16.33 22.24 -28.48 -35.79

Type
State probabilities
(1,2) (1,3) (1,4) (1,5) (2,0) (2,1) (2,2) (2,3) (2,4)

pf 0.0493 0.0616 0.0770 0.0962 0.0088 0.0184 0.0201 0.0230 0.0292

ex 0.0628 0.0666 0.0701 0.0748 0.0126 0.0261 0.0257 0.0259 0.0216

%
er-
ror

-27.38 -8.12 8.96 22.25 -43.18 -41.85 -27.86 -12.61 26.03

We observe that relative errors for the joint probabilities are off by up to
44%, while the average numbers of blocked lines in node A reach 21%.

We selected our next example to illustrate the performance of our two meth-
ods with a large buffer. The model has the following configuration: N = 5,
c = 2, m = 10, with the inter-arrival and service rates equal to: λ = 2.3,
µA = 1.3, µB = 0.9. This model has 93 states, including 15 states with block-
ing. Showing all the state probabilities for this model has no sense, because
most of them have very small values. Thus, only those with the greatest val-
ues were chosen for presentation. The results obtained for this experiment are
presented in Tables 3 and 4.
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Table 2. Main measures of tandem effectiveness, obtained with the product
form solution – pf, and the exact solution – ex

Type
Main measures of effectiveness
pbl nbl v lA lB n q w tbl tthr thr

pf 0.3607 0.508 1.288 0.538 1.813 3.102 0.913 0.358 0.141 1.236 1.618

ex 0.2875 0.402 1.111 0.572 1.748 2.859 0.864 0.309 0.112 1.158 1.727

%
er-
ror

20.29 20.87 13.74 -6.32 3.59 7.83 5.37 13.69 20.57 6.31 -6.74

Table 3. Selected tandem state effectiveness, obtained with the product form
solution – pf, and the exact solution – ex

Type
State probabilities
(0,10) (0,11) (0,12) (0,13) (0,14) (0,15) (0,16) (0,17)

pf 0.0100 0.0128 0.0164 0.0209 0.0267 0.0341 0.0436 0.0557
ex 0.0102 0.0129 0.0163 0.0206 0.0261 0.0332 0.0422 0.0538
% error -2.00 -0.78 0.61 1.44 2.25 2.64 3.21 3.41

Type
State probabilities (continuation)
(2,8) (2,9) (2,10) (2,11) (2,12) (2,13) (2,14) (2,15)

pf 0.0097 0.0123 0.0157 0.0200 0.0256 0.0326 0.0418 0.0534
ex 0.0101 0.0128 0.0161 0.0203 0.0256 0.0322 0.0407 0.0515
% error -4.12 -4.07 -2.55 -1.50 0.00 1.23 2.63 3.63

Table 4. Main measures of tandem effectiveness, obtained with the product
form solution – pf, and the exact solution – ex

Type
Main measures of effectiveness

pbl nbl v lA lB n q w tbl tthr thr
pf 0.5833 1.605 8.767 1.363 1.989 10.756 5.982 4.871 0.892 7.643 0.654

ex 0.5665 1.555 8.670 1.376 1.987 10.657 1.633 4.817 0.864 7.561 0.661

%
er-
ror

2.88 3.12 1.11 -0.95 0.10 0.92 0.90 1.11 3.14 1.07 -1.07
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Here, the relative errors for the joint probabilities and for the main measures
of effectiveness are below 5%. Note that a large buffer does not cause poor
approximation.

The third investigated tandem configuration has the following parameters:
N = 10, c = 3, m = 4, with the inter-arrival and service rates equal to: λ = 8.0,
µA = 4.5, µB = 3.3. This model with a large number of servers at the first node
has 143 states, 88 states are without blocking and 55 states include blocking.
Table 5 shows the results obtained for this example. We observe that the relative
errors for the main measures of effectiveness are close to or equal 0%.

Table 5. Main measures of tandem effectiveness, obtained with the product
form solution – pf, and the exact solution – ex

Type
Main measures of effectiveness
pbl nbl v lA lB n q w tbl tthr thr

pf 0.1943 0.677 1.492 1.760 2.399 3.891 0.454 0.151 0.068 0.744 13.435

ex 0.1944 0.677 1.492 1.760 2.400 3.891 0.454 0.151 0.068 0.744 13.435

%
er-
ror

-0.05 0.00 0.00 0.00 -0.04 0.00 0.00 0.00 0.00 0.00 0.00

Additionally, a new set of experiments was conducted with the third tandem
configuration, using the exact solution algorithms, for a wide range of tandem
utilization. In this case, the input stream intensity changed within the range of
2.0 to 12.0. The results of these investigations are presented in Fig. 4.

The last investigated tandem configuration has the following parameters:
N = 30, c = 10, m = 10, with the inter-arrival and service rates equal to:
λ = 6.0, µA = 0.5, µB = 0.65. This kind of model has 1 116 states, 651 states
are without blocking and 465 states include blocking. The results of the study
of the last tandem model are presented in Table 6. We observe that relative
errors for the main measures of effectiveness are below 1%.

Table 6. Main measures of tandem effectiveness, obtained with the product
form solution – pf, and the exact solution – ex

Type
Main measures of effectiveness
pbl nbl v lA lB n q w tbl tthr thr

pf 0.2497 1.859 4.467 11.918 9.168 13.635 2.225 0.687 0.286 4.511 6.650

ex 0.2515 1.877 4.483 11.917 9.171 13.654 2.228 0.690 0.289 4.517 6.642

%
er-
ror

-0.72 -0.96 -0.36 0.00 -0.04 -0.14 -0.13 -0.44 -1.05 -0.13 0.12
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Figure 4. The parameters related to the probability and utilization factors,
where bloc-prob – node A blocking probability, ut-node A – node A utiliza-
tion factor, ut-node B – node B utilization factor, buff-fill – the filling buffer
coefficient and idle-pr – the idle tandem probability

The results of comparison of solutions obtained for these four examples using
product form and exact solution show how and where we can use the less com-
plicated algorithm described in Section 3. This product form algorithm is not
precise enough for small tandem configurations, but gives results close to the
exact algorithm for configurations containing hundreds or thousands of tandem
states. In turn, exact analysis of big tandem configurations is more complicated
and includes several independent phases – it requires determination of the tan-
dem state space, determination of the state transition structure to construct the
rate matrix, as well as solving the linear system of equations using numerical
methods. Additionally, we can encounter problems with solving a set of linear
equations, because the rate matrix is usually sparse and quite diagonal with a
very small intensity (the ratio of the number of non-zero elements to the total
number of elements), see Bolch et al. (1998), Stewart (1994). In this case, the
simple product form algorithms can be more useful.

6. Conclusions

In this paper, a special configuration of the open two-node tandem network with
blocking is investigated. In this model, the first node of the tandem processes
the incoming input stream as an infinite server. Assuming Poisson arrivals flow,
two different algorithms are proposed. The first algorithm is related to an exact
steady-state solution, based on a numerical approach, whereas the second one
is based on the product-form solution. Derived from a theoretical analysis, the
efficient numerical procedures for calculating the main measures of effectiveness
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are proposed. In general, these performance measures are related to the quality
of service requirements, such as blocking probability, mean blocking time, mean
number of blocked service lines at the first node, etc.

Algorithms presented in this paper can be used as models during the de-
sign and modernization of, for example, computer sub-networks, as well as in
choosing service strategies, buffer sizes etc.

A comparison of these algorithms shows that the second, approximate, met-
hod (the product form solution) is simple and easy to apply, but can only be used
for the complex tandem network configuration, which may include hundreds or
thousands of states. Its application for smaller configurations may produce
serious errors. The first method gives the exact solution, but it requires several
independent steps in application. At the beginning, a special state diagram
must be constructed, where all intensity rates associated with each node must
be determined. Then the set of steady-state equations must be constructed.
Finally, the set of linear equations must be solved numerically using suitable
methods for sparse and diagonal rate matrices.

Further work has to be done concerning the extension of the analysis to the
case where the queuing tandem network with blocking includes multiple classes
of jobs, where the set of job classes is partitioned into several disjoint sets,
referred to as chains. Each chain is either open or closed. In an open chain,
jobs belonging to the chain arrive from outside and depart from the tandem
after having been serviced at two nodes. Finally, blocking mechanisms defined
for single class open tandem can be extended to multiclass queuing networks.
The blocking mechanism can be defined differently for each chain, and for each
class of jobs within a chain.
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