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Abstract: The paper presents an improved sample based rule-
probability estimation that is an important indicator of the rule
quality and credibility in systems of machine learning. It concerns
rules obtained, e.g., with the use of decision trees and rough set
theory. Particular rules are frequently supported only by a small
or very small number of data pieces. The rule probability is mostly
investigated with the use of global estimators such as the frequency-,
the Laplace-, or the m-estimator constructed for the full probability
interval [0,1]. The paper shows that precision of the rule probability
estimation can be considerably increased by the use of m-estimators
which are specialized for the interval [phmin, phmax] given by the
problem expert. The paper also presents a new interpretation of the
m-estimator parameters that can be optimized in the estimators.
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1. Introduction

Probability is widely used in artificial intelligence for, e.g., quality evaluation of
decision rules in machine learning and data mining (Cestnik,1990, 1991; Chawla
and Cieslak 2006; Cichosz, 2000; Cussens,1993; Mozina et al., 2006; Starzyk and
Wang, 2004; Sulzmann and Furnkranz, 2009,2010; Witten and Frank, 2005;
Zadrozny and Elkan, 2001; Zhang, 1995), in the probabilistic version of rough
and fuzzy set theory and clusterization (Polkowski, 2002; Ziarko, 1999), etc.
Some of the evaluation methods are based (sometimes not explicitly) on the
assumption of a large number of sample pieces. However, in real problems this
assumption is frequently not satisfied. Even in the case when we possess an ap-
parently large number of sample pieces and the input space is partitioned into
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many influence subspaces of particular rules, the number of sample pieces be-
longing in a single rule subspace frequently becomes very small. Fig. 1 presents
an example of the input space partition typical for the rough set theory or deci-
sion trees. The problem of decision rules detected with the method of decision

Figure 1. Illustration of small number of sample items occurring in influence
subspaces of particular rules detected with the method of decision trees. Fig. 1a
– sample pieces in the whole input space. Fig. 1b – sample pieces in subspaces
of single rules (non-regular input space partition)

trees was described in Cestnik (1990, 1991), Chawla and Cieslak (2006), Rokach
and Maimon (2008), Sulzmann and Furnkranz (2009, 2010). In this case the
influence subspaces of particular rules do not involve the regular input-space
partition as in the case of rough sets. The problem of a small number of sam-
ple pieces in the influence subspaces of particular rules occurs frequently not
only in rough set models or decision tree models, but also in classification, clus-
terization, machine learning, data mining and classic modeling problems. The
problem of a small number of sample pieces supporting a rule can be very se-
vere. Sometimes a rule is supported by only one instance, sometimes even by
no instance. In general, the domain of a rule can contain both the sample items
which support the rule and the samples which negate it.

Now, let us consider one of the possible rules concerning the average gasoline
consumption of passenger cars.

IF
(mp ∈ [100, 140])AND(cw ∈ [1000, 1200])
THEN
P (afc ∈ [8.0, 9.0]) = ph
OR
P (afc /∈ [8.0, 9.0]) = ph̄ = 1− ph

(1)
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where: mp - motor power [HP], cw – car weight [kg], afc – average fuel con-
sumption [l/100km].

In the example rule (1) the first conclusion (afc ∈ [8.0, 9.0]) can be called
hypothesis h and the second conclusion - its negation or anti-hypothesis h̄. Data
obtained from the car owners can confirm the hypothesis h or negate it. Thus,
the rule conclusion consists of two hypotheses, h and h̄, whose probabilities
should be determined. Higher probability ph of the conclusion hypothesis (c-
hypothesis) increases its strength and credibility in the set of all k possible or
proposed conclusions.

In the first part of the paper the binary case will be analyzed, i.e. the
case when the conclusion consists only of the hypothesis h and its negation
h̄ = NOTh. However, in the general case a rule conclusion may consist of k
hypotheses {h1, h2, ..., hk}. An example of such conclusion is given by (2).

IF
(mp ∈ [100, 140])AND(cw ∈ [1000, 1200])
THEN
P (afc < 7.0) = ph1
OR
P (afc ∈ [7.0, 8.0]) = ph2
OR
P (afc ∈ [8.0, 9.0]) = ph3
OR
P (afc > 9.0) = ph4

(2)

where
4
∑

i=1

phi = 1.

Probability of the binomial c-hypotheses h and h̄ of the rules is estimated
with various estimators. In case of machine learning, the most popular esti-
mators are: the frequency estimator frh, the Laplace estimator EphL, and the
m-estimator EphM (Cestnik, 1990, 1991; Chawla and Cieslak, 2006; Cichosz,
2000; Cussens, 1993; Sulzmann and Furnkranz, 2009, 2010). The authors of the
present paper purposefully use notations frh, EphL, and EphM instead of p or
Pr (which are frequently used in the literature) in order to prevent false sug-
gestion that the estimation results are true probabilities. Results of estimation
are, of course, only approximate values (estimates) of true probabilities. The
frequency estimate frh = nh/n of c-hypothesis probability is referred to as the
naive one (Sulzmann and Furnkranz, 2009, 2010), because it is characterized by
many shortcomings. Perhaps its greatest shortcoming is that a single evidence
sample piece produces drastic and non-acceptable conclusions concerning prob-
ability. If a single sample piece (n = 1) is the sample piece of type (1h), which
means that the sample piece confirms the c-hypothesis h, then the frequency
estimate is frh = nh/n = 1/1 = 1. This suggests the full truth of the hypothesis
h and the full falsity of its negation, i.e. of the anti-hypothesis h̄. If a single
sample piece is of type (1h̄), which means that it confirms the anti-hypothesis
h̄, then the situation turns to reverse. Generally, the frequency estimator has
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great average errors of probability estimation for the small number n of sample
pieces.

Because of many shortcomings of the frequency estimator, Cestnik (1990,
1991) proposed application of the Laplace estimator EphL (3) and m-estimator
EphM (4).

EphL = nh+1
n+a

Eph̄L = 1− EphL = nh̄+a−1
n+a .

(3)

Coefficient a can be interpreted in different ways. According to Furnkranz
(2005); Sulzmann and Furnkranz (2009, 2010), Laplace modified the frequency
estimator frh by adding one sample to each possible c-hypothesis. Thus, a
means, according to this interpretation, the sample number and should be an
integer. Next, because the binomial rule conclusion has two hypotheses, h and
h̄, the coefficient a takes value of 2.

The estimator EphL can be viewed as a trade-off between the naive frequency
estimator frh and the uniform distribution of a priori probability for conclusion
hypotheses, namely that h and h̄ equals 1/2 in this case. The m-estimator EphM
is a generalization of the Laplace-estimator and it enables taking into account
differentiated a priori knowledge about probabilities ph and ph̄.

EphM = nh+aEph(0)
n+a = frh

n
n+a + Eph(0)

a
n+a

Eph̄M = 1− EphM .
(4)

The parameter Eph(0) is interpreted by Cestnik as the prior estimate of
probability ph based on expert knowledge. The trade-off parameter a should be
adapted to the prior Eph(0) to allow for the optimal probability estimation. An
interesting fact is that Cestnik (1990, 1991), Furnkranz (2005) and Sulzmann
nad Furnkranz (2009, 2010) did not suggest that the coefficient a should be an
integer. Cestnik only stated that a is a parameter which can be used to manage
the trade-off between the prior and the posterior probability and that higher
values should be used for noisy data (where the prior should be weighed higher)
and lower values should be used for clean data (where the frequency frh should
be weighed higher). In the case of the binomial conclusion the parameter a
has to be equal in EphM and Eph̄M . Thus, at complete lack of sample pieces
(n = nh = nh̄ = 0) the estimates (4) take the form of (5):

EphM = 0+aEph(0)
0+a = Eph(0)

Eph̄M = 1− EphM = 1− Eph(0).
(5)

As it will be shown further on, a different interpretation of parameters
Eph(0) and a is also possible. It should be noticed that the m-estimate has
certain shortcomings.

• The a priori estimate Eph(0) is understood as a point value, e.g. 0.15.
However, because we have no precise knowledge about the true value of
probability ph, it would be more reasonable to assume certain interval
[phmin, phmax] in which, according to a problem expert, the estimated
probability is contained.
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• Both the Laplace estimator and the m-estimator are global estimators,
i.e. they are based on the assumption that the estimated probability can
take any value in interval [0,1]. However, in many real problems such
assumption is not reasonable. Let us consider the task of estimating the
probability that a certain political party (party P) will win in the future
elections. If we know that the party has at present the popularity of
about 5% in the public opinion polls, then in the investigation the global
estimators for ph ∈ [0, 1] should not be used. It is more useful to apply
an m-estimator that is specialized in probability estimation in the interval
ph ∈ [0, 0.1] and produces more precise predictions within it.

• The parameter Eph(0) is in case of the m-estimate interpreted as the
suspected value of probability ph. As it will be shown, this interpretation
cannot always be used.

The general organization of the paper is as follows: in Section 2 the optimal
estimate Eph(1h) of hypothesis h from one data piece (1h) and the global prob-
ability estimator Eph(n) for the case of no expert knowledge will be derived.
In Section 3 specialized, local m-estimator of probability in limited intervals
ph ∈ [phmin, phmax] resulting from expert knowledge for the binary case will be
derived. In Section 4 specialized m-estimator for non-binary rule conclusions
with k-hypothesis (k-nary case) are presented.

2. The optimal probability estimate Eph(1h) of hypothesis
h from one data piece (1h) and the global probability
estimator Eph(n) for the case of no expert knowledge

In the section, the derivation of the optimal m-estimate of the global character
(ph ∈ [0, 1]) will be presented. The result of this derivation is not new. However,
this time the derivation will be oriented on the ’single case’ problem, i.e. on
concluding about probability from only one, single sample item. This problem
has often been discussed in the literature of the subject and is in principle
not solved. Some specialists are of the opinion that probability from single
evidence pieces has no sense (Hajek, 2010; Mises, 1957). We disagree. In the
presented derivation, it will be shown that such a probability estimate is useful
for improving probability estimates based on small number of sample items.
The optimal value Eph(1h) of the probability estimate from one sample item
will be derived. Such estimate has very small credibility because it is based
on only one piece of evidence. This optimal estimate Eph(1h) is the basis for
probability estimation for larger number of sample items. It will also be very
important for determination of the parameters Eph(0) and a in the formula of
the m-estimate, both in the global and in the specialized case.

Let us assume a rule with the binomial conclusion c = {h, h̄}, where ph means
probability of the conclusion hypothesis h and ph̄ probability of its negation
h̄ = NOTh, and ph + ph̄ = 1. Let us next assume that only one sample piece
(1) concerning the considered rule (n = 1) is at our disposal. If the sample
item confirms the c-hypothesis h (nh = 1, n = 1) then it is denoted by (1h), if
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it negates the hypothesis h and confirms the anti-hypothesis h̄ (nh̄ = n = 1),
it will be denoted by (1h̄). Now, let us analyze the case of the sample piece
(1h) confirming the c-hypothesis. Which value Eph(1h) should we infer from
this sample piece about probability of the c-hypothesis? Let us notice that the
naive frequency estimator infers a drastic estimate from the confirming sample
piece:

frh(1h) = nh/n = 1/1 = 1
frh(1h̄) = nh̄/n = 0/1 = 0
frh(1h) + frh(1h̄) = 1.

(6)

Such estimate value seems unacceptable. Thus, the question arises: which
estimate value Eph(1h) or Eph(1h̄) from one sample piece would be acceptable?
Both estimates should satisfy the condition (7):

Eph(1h) + Eph(1h̄) = 1. (7)

To determine the optimal value that would hopefully be acceptable, an opti-
mality criterion has to be chosen. In this case the MSE criterion (mean-square-
error) was chosen. The probability estimate Eph(1h) inferred from one sample
piece can not in the general case be precise and it will have the MSE error
expressed by (8):

∆sqr(1h) = [ph − Eph(1h)]
2. (8)

In a similar way the m-estimate of anti-hypothesis h̄ will also have the MS
error expressed by (9):

∆sqr(1h̄) = [ph − Eph(1h̄)]
2 = [ph − [1− Eph(1h)]]

2. (9)

Usually, for probability estimation we have N sample pieces (N > 1) and Nh

of them confirm the c-hypothesis of the rule and Nh̄ confirm the anti-hypothesis
h̄ (Nh +Nh̄ = N).

The sum of the estimation errors ∆sqr(Nh) from Nh sample pieces (1h)
confirming the c-hypothesis h is expressed by formula (10) and the error sum
∆sqr(Nh̄) from all Nh̄ sample pieces (1h) confirming the anti-hypothesis h is
expressed by formula (11):

∆sqr(Nh) = [ph − Eph(1h)]
2Nh (10)

∆sqr(Nh̄) = [ph − Eph(1h̄)]
2Nh̄ = [ph − [1− Eph(1h)]]

2Nh̄. (11)

The error sum ∆sqr(N) of probability estimations from all N sample items,
both from Nh sample items confirming the c-hypothesis h and Nh̄ sample items
confirming the anti-hypothesis h̄ is determined by formula (12):

∆sqr(N) = [ph − Eph(1h)]
2Nh + [ph − [1− Eph(1h)]]

2Nh̄. (12)

Let us assume that the number of sample pieces at disposal, N , approaches
infinity. Then, the number Nh of sample items confirming the hypothesis h,
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according to the probability definition, approaches Nh = N ·ph and the number
Nh̄ of sample items negating the hypothesis h̄ approachesNh̄ = N ·ph̄=N(1−ph).
Thus, for N → ∞, equation (12) takes the form of (13):

∆sqr
N→∞

(N) = [ph −Eph(1h)]
2Nph + [ph − [1−Eph(1h)]]

2N(1− ph).(13)

Thus, the average MSE error, denoted by ∆sqr
aver(1), of one sample item,

independently of the fact whether the sample piece confirms (1h) or negates
(1h̄), the hypothesis, has a finite value:

∆sqr
aver(1) =

1

N
∆sqr

N→∞
(N) = [ph−Eph(1h)]

2ph+[ph−[1−Eph(1h)]]
2(1−ph).(14)

Fig. 2 shows the functional surface of the average square error resulting from
sample items (1h) confirming the hypothesis h.
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Figure 2. The functional surface of the first component ∆sqr
aver(1h) = [ph −

Eph(1h)]
2 · ph of the average error ∆sqr

aver(1), resulting from the sample items
confirming the hypothesis h

The functional surfaces ∆sqr
aver(1h) and ∆sqr

aver(1h̄) are mutually symmetrical.
Fig. 3 shows the complete functional surface of the full error ∆sqr

aver(1).
Fig. 3 allows for interesting observations. The true probability value ph is

not known. It is to be estimated. But we can choose such a value Eph(1) of the
probability estimate for one confirming sample item (1h) that will be optimal
in the sense of the MSE-criterion. The optimal estimate will minimize the risk
of making large errors of probability estimation. Fig. 4 presents the section
of the functional surface of the square error ∆sqr

aver(1) for the estimate value
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Figure 3. The functional surface ∆sqr
aver(1) = ∆sqr

aver(1h) + ∆sqr
aver(1h̄) of the

average error ∆sqr
aver(1), resulting from the sample items both confirming and

negating the hypothesis h, formula (14)

Eph(1h) = 1. This estimate value corresponds to the probabilistic conclusion
drawn from one sample item (1h) by the naive frequency estimator frh.

The visual analysis of Fig. 3 shows that there are many values of the esti-
mate Eph(1h), which generate smaller values of the square error than the value
Eph(1h) = 1. It means that assigning the radical confirmation strength equal to
1 by the universally used frequency estimator frh = nh/n to the single sample
item 1h is not the best idea. Thus, the optimal value of the one-sample item
estimate Eph(1h) that minimizes the cross section area A of the one-sample
item square-error function ∆sqr

aver(1) should be determined.
The square-error area A that should be minimized is expressed by (15):

A =

ph max
∫

phmin

∆sqr
aver(1)dph =

1
∫

0

∆sqr
aver(1)dph. (15)

In formula (15) the interval ph ∈ [phmin, phmax] is the probability interval
in which, according to the problem expert, lies the true probability ph of the
hypothesis h contained in the rule conclusion. Let us first analyze the situa-
tion, in which the problem expert has no knowledge about the true probability
ph. Therefore, the expert assumes the full probability interval ph ∈ [0, 1] as
admissible.

If the full probability interval ph ∈ [0, 1] were assumed, then the MS-error
area A for this interval, given by formula (15), should be minimized.
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Figure 4. Cross section of the average single sample item square error ∆sqr
aver(1)

from Fig. 3 for the probability estimate Eph(1h) = 1 that corresponds to the
estimate calculated by the frequency estimator frh = nh/n

After integrating formula (15), the formula (16) for the error area A is ob-
tained:

A = Ep2h(1h)−
4

3
Ep(1h) +

1

2
. (16)

The derivative of A equated to 0 is given by (17):

∂A

∂Eph(1h)
= 2Ep(1h)−

4

3
= 0. (17)

The solution of equation (17) delivers the optimal value of the one-sample
item estimate:

Epopth (1h) =
2

3
(18)

where ph ∈ [0, 1].
After inserting the optimal value 2/3 in (16), the minimal value of the square-

error area A = 1/18 is obtained.
For visual comparison, Fig. 5 presents the cross section of the error-area

function for the value Eph(1h) = 1 and for Epopth (1h) = 2/3.
The error area A = 1/6 of the frequency estimator frh is three times larger

than the minimal area A = 1/18 that can be obtained with the optimum es-
timator. An interesting fact should be noted: from one, single sample item
(1h) confirming the c-hypothesis h, the frequency estimator draws the dras-
tic conclusion frh = nh/n = 1/1 = 1 meaning the complete certainty of the
c-hypothesis. It also draws a similar, drastic conclusion about the complete
falsehood of the c-anti-hypothesis h̄ (frh = nh̄/n = 0/1 = 0). Instead, the opti-
mal conclusion drawn from one sample item should be different: Eph(1h) = 2/3
and Eph(1h̄) = 1/3. Such inference is more rational.
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Figure 5. Comparison of the square error function ∆sqr
aver(1) for the value

Eph(1) = 1 corresponding to the frequency estimator frh = nh/n and of the
function for the optimal estimate Eph(1) = 2/3

In the literature of the subject, various probability estimators have been
proposed. The one-sample item estimate value Eph(1h), calculated by the con-
sidered estimator can be a good and simple test of its optimality in the sense of
the criterion (14), minimizing the expected square-error.

M-estimator (4) contains the coefficient a which enables the existence of
the prior estimate Eph(0) in the case of complete lack of sample items (n = 0).
However, the task of this coefficient, according to Cestnik, was to enable a trade-
off between the prior estimate and the relative frequency estimate based on
evidence. Cestnik (1990, 1991) proposed using higher values of a for low-quality
experimental data (noisy data) and lower values for high-quality experimental
data. It should be noted that the choice of a concrete value of a has to be made
by the problem expert. The problem expert has to choose both the prior Eph(0)
and the coefficient a. Based on (4) we have:

Eph(n) = w1Eph(0) + w2frh(n) (19)

where w1 = a
n+a and w2 = n

n+a , w1 + w2 = 1.
Only for a sufficiently high number of data pieces the influence of the expert-

opinion decreases and the estimate becomes more and more objective. This
statement constitutes the basis for a new interpretation of the coefficient a.
The coefficient w1 in formula (19) of the m-estimate is a relative value of the
expert-knowledge expressed in the form of the prior Eph(0). The coefficient w2

expresses the relative value of the experimental knowledge frh(n). With the
increase of the number of data pieces, n, the value of w1(n) decreases to zero
(20) and the value of the experimental knowledge w2(n) increases to 1:

lim
n→∞

w1(n) = lim
n→∞

a

n+ a
= 0 (20)

lim
n→∞

w2(n) = lim
n→∞

n

n+ a
= 1. (21)



MSE-optimal m-estimators of rule probability 143

It can be easily concluded from these two facts that for a certain number
of sample items, n, values of both weight coefficients w1(n) and w2(n) of the
prior- and of the experimental knowledge must be equal and will have the value
of 1/2:

w1(n) =
a

n+ a
= w2(n) =

n

n+ a
=

1

2
. (22)

Solution of equation (22) yields the value of n = a. Thus, the coefficient
a can be interpreted as the sample item number n at which the knowledge
relating to probability obtained from the experiment in the form of frequency
frh = nh/n is equally important with the prior Eph(0). In real problems, the
experimental knowledge can be of high quality (clean) or of low quality (noisy).
This quality must be evaluated by experts.

Now, let us consider probability estimation for the case when the problem
expert has completely no knowledge about the value of the estimated probability
ph and about the probability interval ph ∈ [phmin, phmax]. Then, the full, global
interval of potential values of probability ph should be assumed. It is rational
to assume as the initial value of the probability estimate Eph(0) = 0.5, because
this value minimizes the criterion Crabs of the maximal, possible absolute-error
to 0.5:

Crabs = min [max |ph − Eph(0)|] . (23)

Assumption of Eph(0) = 0.5 results in the mathematical form of the esti-
mator given by (24):

Eph(n) =
nh + 0.5a

n+ a
. (24)

Now, the optimal value of the coefficient a is to be determined. Therefore,
the optimal value of the estimate Eph(1), given by (18) for n = nh = 1, can be
used:

Epopth (n) =
2

3
=

nh + 0.5a

n+ a
=

1 + 0.5a

1 + a
. (25)

The solution of equation (25) gives the optimal value aopt = 2 and the
estimator Eph(n) takes its final form:

Eph(n) =
nh + 1

n+ 2
. (26)

It is the Laplace estimator given by (3). Thus, Laplace estimator is the
optimal (in the sense of the MSE-criterion) and global (ph ∈ [0, 1]) estimator
for the situation when the problem expert is not able to even approximately
evaluate the probability ph.

An interesting information resulting from the Laplace estimator is the one
concerning the trade-off coefficient value a = 2. It means that in the considered
binomial problem the value w1 of the experimental knowledge, expressed by the
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frequency frh, becomes the knowledge expressed by the prior Eph(0) = 0.5 at
only two sample items. Such prior value seems low. It also should be noticed
that this value was obtained as a result of application of the square-error (MSE)-
criterion (14). It can be shown that application of the absolute error criterion
in derivation of the optimal value of the estimate Eph(n) results in a different
value of a =

√
2 ≈ 1.41, not being an integer (Piegat and Landowski, 2012). It

also shows that the probability estimate depends on the criterion chosen. The
decision which error-criterion (incompatibility criterion) is to be chosen depends
on the problem expert.

Now, let us consider the Cestnik m-estimator in its shortened form:

Eph(n) =
nh + aEph(0)

n+ a
. (27)

The main aim of introduction of the m-estimator by Cestnik was to enable
the use of a priori expert knowledge in probability estimation. As it will be
shown, the coefficient Eph(0) can be interpreted and used as a priori expert
knowledge about probability. However, this is not always true and must be
used with certain limitations (in a limited probability interval). Moreover, a
new interpretation of this coefficient, that seems to be more general, will be
presented. Cestnik proposed the following way of determining the coefficient:
in the first step the prior value Eph(0) should be given by the problem expert,
and next the value of the trade-off coefficient a should be selected. According
to this proposal, the prior value Eph(0) is independent and it should not be
correlated with the value of a. It will be shown that such advice will sometimes
lead to a considerable decrease of the estimation accuracy. This is caused by the
fact that not all Eph(0)-values are allowed (from the optimality point of view)
and that two-sided correlation of both coefficients is necessary. Correlating
Eph(0) with the value of the coefficient a is realized on the basis of the optimal
estimate-value for the ”single case problem” n = nh = 1. The optimal value
in the global case is Epopth (1h) = 2/3, formula (18). From (18) and (27), the
formula (28) is obtained:

Epopth (1h) =
nh + aEph(0)

n+ a
=

1 + Eph(0)a

1 + a
=

2

3
. (28)

Solving equation (28) gives

a =
1− Epopth (1h)

Epopth (1h)− Eph(0)
=

1

2− 3Eph(0)
. (29)

The value of the initial estimate Eph(0) should be assumed in such a way
that the correlated coefficient a will be positive. Negative a-values result in
negative probability estimates. Therefore, conditions (30) have to be satisfied:

Epopth (1h)− Eph(0) > 0

Eph(0) < Epopth (1h)
Eph(0) <

2
3 .

(30)
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It results from (30) that the prior Eph(0) should not take greater values
than the optimal, one-sample item estimate Eph(1h). Is the above conclusion
correct? To check this statement let us investigate what happens if we apply
the prior-value exactly equal to the limit value of 2/3. Then, according to (27),
the optimal value of the trade-off coefficient a approaches infinity:

aopt = lim
Eph(0)→2/3−

1

2− 3Eph(0)
= ∞. (31)

What does this value mean in practice? To answer this question let us
analyze formula (32) for the m-estimate in the not-shortened form:

Eph(n) = w1Eph(0) + w2frh
= a

n+aEph(0) +
n

n+afrh .
(32)

It can be easily checked that if the trade-off coefficient a approaches infinity
then the relative weight w1 of the prior knowledge increases to 1 and the relative
value w2 of the experimental knowledge decreases to zero, which means that the
prior Eph(0) would be of the highest value, because w2 is multiplied in (32) by
frh:

lim
a→∞

w1 = lim
a→∞

a
n+a = 1

lim
a→∞

w2 = lim
a→∞

n
n+a = 0.

(33)

The coefficient value w2 = 0 would also mean that the experimental results
expressed by the frequency frh = nh/n could not introduce any correction to
the prior Eph(0), no matter how imprecise would be the prior and how high
would be the number of data pieces n. Such situation is not acceptable, since the
expert knowledge contained in the prior-estimate Eph(0) is only of approximate
character, it is virtually never precise and has to be corrected and improved by
experiments. Thus, very high values of the trade-off coefficient a should not be
used. Fig. 6 shows the dependence between the optimal values of this coefficient
and the assumed prior value Eph(0).

As it is shown in Fig. 6, from the point of view of estimation optimality the
allowed interval of the prior Eph(0) is the interval 0 ≤ Eph(0) < 2/3 and the
allowed interval of the coefficient a is 1/2 ≤ a < ∞. Even though also for values
Eph(0) > 2/3 the ”optimal” values of the trade-off coefficient a ”theoretically”
can be calculated from formula (29), these values will be negative and therefore
they have no substantial sense. Their application results in negative values of
calculated probabilities, in probabilities greater than one and in infinitely large
probabilities, as it can easily be checked by simple calculations. However, at this
point the following question can be stated: ”What happens if we use a forbidden
value of the prior Eph(0) together with a positive, allowed value of the coefficient
a?” If we apply such an option, then the coefficient pair {Eph(0), a} will not
be optimal according to the MSE-criterion (14) and the estimation error will
be unnecessarily higher than in case when we use the optimal, correlated pair
{Epopth (0), aopt}.
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Figure 6. Dependence between the optimal value of the trade-off coefficient a
and the assumed prior-value Eph(0) of the estimated probability ph

In the sequel, an example will be shown, demonstrating how much the esti-
mation error can increase when inappropriate values of Eph(0), which are not
correlated with the coefficient a, are assumed. In this example let us assume
that the true probability ph = 0.75 is known and that it was correctly evaluated
by the problem expert as being about 0.75. Now, let us assume, according to
the proposal from Cestnik, the same ”prior” value Eph(0) = 0.75. Let us notice
that Eph(0) = 0.75 is greater than the allowed value 2/3 of Epopth (1h). For
a = 2, according to (27), the m-estimate will take the form of:

Eph(n) =
nh + aEph(0)

n+ a
=

nh + 1.5

n+ 2
. (34)

For n = nh = 1, the estimate value Eph(1h) = 5/6 is obtained. This value
is not the optimal value Epopth (1h) = 2/3. Now, it will be shown how large is
the MSE-error (14) of the estimate for single sample items generated with exact
probability 0.75. The results are given by (35):

∆sqr
aver(1) = [ph − Eph(1h)]

2
ph + [ph − (1− Eph(1h))]

2
(1 − ph)

=
(

3
4 − 5

6

)2 3
4 +

[

3
4 −

(

1− 5
6

)]2 (
1− 3

4

)

= 52
576 .

(35)

Now, let us take into account the knowledge that Eph(0) has to be correlated
with the coefficient a according to formula (29) and also correlated with the
optimal value Eph(1h) = 2/3 (Eph(0) < Eph(1h) = 2/3). In the example, the
value Eph(0) = 0.6 was assumed. Then, on the basis of (29), the optimal and
correlated value of the coefficient a can be calculated:

aopt =
1

2− 3Eph(0)
=

1

2− 3 · 0.6 = 5 . (36)
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In this way, formula (37) is obtained, which differs from formula (34), for
the m-estimate:

Eph(n) =
nh + aEph(0)

n+ a
=

nh + 5 · 0.6
n+ 5

=
nh + 3

n+ 5
. (37)

For n = nh = 1 the value Eph(1h) = Epopth (1h) = 2/3 is obtained. Now, let
us calculate the average MSE-error for estimating probability ph = 3/4 on the
basis of single sample items, formulas (14) and (38):

∆sqr
aver(1) = [ph − Eph(1h)]

2
ph + [ph − (1− Eph(1h))]

2
(1 − ph)

=
(

3
4 − 2

3

)2 3
4 +

[

3
4 −

(

1− 2
3

)]2 (
1− 3

4

)

= 28
576 .

(38)

The comparison of formulas (35) and (38) shows that assuming the ”a priori”
estimate according to Cestnik’s suggestion, which is precisely equal to 3/4, gives
the average error ∆sqr

aver(1) = 52/576. However, assuming the value Eph(0) =
0.6, which is smaller than the true probability value of 0.75, gives a considerably
smaller error ∆sqr

aver(1) = 28/576. These results show that Cestnik’s opinion
suggesting interpretation of Eph(0) as ”a priori”, expected value of estimated ph-
probability, is in the general case not correct. Fig. 7 shows a comparison of the
expected MSE-error ∆sqr

aver(1) generated by single pieces and the error calculated
with formula (14) for interval ph ∈ [0.5, 1], in which the true probability value
0.75 lies. In the first case the prior value Eph(0) = 0.75, according to Cestnik’s
suggestion, was assumed and in the second case the value Eph(0) = 0.6, which
is compatible with the optimal form of the estimator Eph(n) = (nh+3)/(n+5),
formula (37).

Resulting from the analysis of the above example the following question
arises: if Eph(0) does not have in the general case the meaning of the prior
probability then how should it be interpreted?

Let us assume that we have an information source delivering statistical data
of binary character. An example of such a generator can be an oncology institute
which provides data about consecutive patients with suspected lung cancer. On
the basis of the data provided we want to determine the probability of the
conclusion of following rule:
IF (a person smokes over 20 cigarettes a day) AND (smoking period is over 30
years long)

THEN [(the person has the lung cancer with probability ph)
OR (the person has no lung cancer with probability (1− ph)]

The first part of the conclusion ”the person has the lung cancer with prob-
ability ph” is the c-hypothesis h and the second part of the conclusion is the
anti-hypothesis h̄. Let us assume that the true probability value ph equals 0.75.
However, as Eph(0) the value of 0.6 was assumed. Then, in the result of ob-
taining successive information pieces about patients we will be able to calculate
increasingly precisely the estimation Eph(n) of the probability ph of lung can-
cer. If the number of patients with lung cancer is greater than those without it,
then the diagram of the probability estimation process will be approximately as
in Fig. 8.



148 A. Piegat and M. Landowski

Figure 7. Comparison of the MSE-errors of estimation of the probability ph =
0.75 with the use of Eph(0) = 0.75 (a = 2) according to Cestnik’s suggestions
and with the use of Eph(0) = 0.6 (a = 5) according to the optimal form of the
m-estimator Eph(n) = [nh + aEph(0)]/(n+ a) = (nh + 3)/(n+ 5)

The meaning of the coefficients Eph(0) and a can be explained on the basis
of the initial derivative of the estimation process. The formula of the estimator
Eph(n) is given by (27). The general formula for its derivative is given by (39),
for nh = n:

∂Eph(n)

∂n
=

a(1− Eph(0))

(n+ a)2
. (39)

In particular, for n = 0, formula (39) takes the form:

∂Eph(n)

∂n
(n = 0) =

1− Eph(0)

a
= tanα. (40)

As shown in Fig. 7, the coefficient Eph(0) that is interpreted by Cestnik as
the ”a priori” value of the estimated probability (as the value of this probability
evaluated by the problem expert: in the example it takes the value of 0.75)
in the general case does not have this meaning. The general interpretation of
Eph(0) is as follows: Eph(0) is the initial value of the estimate, from which the
identification process of probability begins when successive information sample
items come. As formula (40) shows, assuming the initial value Eph(0) near 1
makes the value of tanα (Fig. 8) decrease. The derivative tanα determines the
speed of probability estimation (in technical control systems tanα determines
the time-constant of the control process, Lutz and Wendt, 1998). The estima-
tion speed should be high, however, it should not be excessively high, because
this may bring about oscillations in the estimation process. One can see from
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Figure 8. Example of the estimation (identification) process of the probability
ph of the c-hypothesis h in the course of obtaining successive sample items
confirming or negating the c-hypothesis in case of domination of confirming
sample items (small oscillations below ph)

formula (40) that too big values of Eph(0) in connection with too small val-
ues of the coefficient a cause high estimation speed, which results in oscillating
estimation of probability in the course of appearance of the successive sample
items, Fig. 9.

Figure 9. Example of the oscillatory process of the probability estimation in the
course of appearance of successive information sample items as a result of too
large speed of probability estimation (greater oscillations around ph)

It should also be added that one of estimators with an excessively large
estimation speed is just the naive frequency estimator frh = nh/n. Estimation
processes with its use are frequently oscillatory; examples can be found e.g. in
Larose (2010).

Summarizing this section, we provide the advice relating to the practical
application of the global m-estimator (ph ∈ [0, 1]) of the hypothesis probability
in the case when no expert knowledge is at disposal.

Step 1. Assume prior approximate value Eph(0) of the estimated hypothesis
probability ph. This value should be less than 2/3, e.g. 0.5.
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Step 2. Calculate the optimal value of the trade-off coefficient aopt from
formula (41):

aopt =
1

2− 3Eph(0)
. (41)

Step 3. The optimal, global estimator Epopth (n) of probability is then given
by formula (42):

Epopth (n) =
aEph(0) + nh

n+ aopt
. (42)

3. Specialized, local m-estimators of probability in limited
intervals ph ∈ [phmin, phmax] resulting from expert knowl-
edge, for binary case

The global estimator of probability that is optimized for the full probability
interval ph ∈ [0, 1] (Laplace estimator EphL = (nh + 1)/(n + 2) is an ex-
ample of such estimator) should be used only when the problem expert does
not have any knowledge concerning the approximate interval in which the es-
timated probability ph of the c-hypothesis lies. However, usually the expert
has certain knowledge and is able to give an approximate probability interval
ph ∈ [phmin, phmax] (phmin < phmax) of the c-hypothesis appearing in the rule.
The problem expert can, e.g., know that ph ∈ [0, 1/4], or that ph ∈ [3/4, 1], or
that ph ∈ [1/2, 3/4]. Application of global estimators in these cases can result
in considerable decrease of the estimation accuracy determined by, e.g., MSE-
error ∆sqr

aver(1), as expressed by formula (14). Instead, application of a local
estimator, which was optimized for the interval [phmin, phmax] of the estimated
probability, allows for considerable reduction of the average estimation error.
It should also be added that even when the interval [phmin, phmax] is evalu-
ated with a considerable excess, we will still achieve smaller estimation errors
than with the global, not-specialized estimators. Even in drastic case, if the
probability interval [phmin, phmax] is determined fully erroneously and the true
probability value lies outside of it, the specialized estimator will correctly iden-
tify this probability outside of the interval. However, the estimation MSE-error
will not be the smallest one. The value of this error is given by (14) and by
(43):

∆sqr
aver(1) = [ph − Eph(1h)]

2ph + [ph − [1− Eph(1h)]]
2(1− ph). (43)

In the sequel, on the basis of the MSE-error, the formulas for determining
the values of the parameters Eph(0) and a will be derived. The parameters of
the m-estimator EphM = [nh+aEph(0)]/(n+a) will be optimal for the interval
ph ∈ [phmin, phmax] if they secure minimization of the area A of the functional
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surface of the MSE-error given by (15) and (44):

A =
ph max
∫

ph min

∆sqr
aver(1)dph

= [
(

1− 4
3Epopth (1h)

)

p3h +
(

2Epopth (1h)− 3
2

)

p2h
+[(Epopth (1h))

2 − 2Epopth (1h) + 1]ph]
ph max

ph min
.

(44)

By minimizing the error area A in relation to Eph(1h), the optimal value of
Eph(1h), given by (45), can be derived:

Epopth (1h) =
2

3

(

p2hmin + phminphmax + p2hmax

)

− (phmin + phmax)+ 1(45)

where phmin < phmax.
The formula (45) was derived from formula:

Epopth (1h) = 1 +
2
3

(

p3hmax − p3hmin

)

phmax − phmin
− p2hmax − p2hmin

phmax − phmin
.

In formula (45) Epopth (1h) means the optimal estimate of probability con-
cluded from only one, single sample item confirming the c-hypothesis h of the
rule conclusion. On the basis of Epopth (1h), the parameters Eph(0) and a (for
n = nh = 1) can be chosen from (46):

Epopth (1h) =
1 + aEph(0)

1 + a
. (46)

When choosing Eph(0) and a one should take into account conditions (35)
and (36), given previously, and recalled here in (47):

Eph(0) < Epopth (1h)

a =
1−Epopt

h
(1h)

Epopt

h
(1h)−Eph(0)

.
(47)

In the sequel, the examples of optimal, specialized m-estimators for various
intervals [phmin, phmax] of probability will be determined. First, let us analyze
the case of ph being contained in the interval [0, 1/4]. According to (44), the
optimal value Epopth (1h) of the single-sample item estimate that minimizes the
error area A should be determined with (48):

A =

1/4
∫

0

∆sqr
aver(1)dph. (48)

Thus, the ready formula (45) will be used. In the analyzed example it takes
the form of (49):

Epopth (1h) =
2

3

(

0 + 0 · 1
4
+

(

1

4

)2
)

−
(

0 +
1

4

)

+ 1 =
19

24
≈ 0.79167.(49)
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It should be noted that the calculated value Epopth (1h) = 19/24 = 0.79167,

determined for the interval [0, 1/4], differs from the optimal value Epopth (1h) =
2/3, obtained for the global interval [0, 1]. The value 2/3 refers to the Laplace
estimator EphL(n) = (nh + 1)/(n + 2). The optimal value Epopth (1h) = 19/24
is the basis for choosing values of the coefficients Eph(0) and a using formulas
(47):

Eph(0) < Epopth (1h) = 19/24

a =
1−Epopt

h
(1h)

Epopt

h
(1h)−Eph(0)

.

In the result of choosing the initial value Eph(0) = 1/8 = 0.125 as the middle
value in the interval [0, 1/4], the following value of the parameter a is obtained:
aopt = 5/16 = 0.3125. Thus, the optimal m-estimator EphM (n) for the interval
[0, 1/4] is given by:

EphM (n) =
nh + aEph(0)

n+ a
=

nh + 5
16 · 1

8

n+ 5
16

=
nh + 0.03906

n+ 0.3125
. (50)

One should note here that the value of the parameter a = 5/16 is not
an integer. In the case of the Laplace estimator, which is a special case of
the global m-estimator with Eph(0) = 1/2 and a = 2, the estimator form is
EphL(n) = (nh+1)/(n+2). Fig. 10 shows the diagrams of MSE-errors ∆sqr

aver(1),
given by formula (14), calculated for three various estimators of probability:
for the frequency estimator frh, for Laplace estimator and for the optimal m-
estimator given by formula (50).

Fig. 10 shows the superiority of the m-estimator specialized for the inter-
val ph ∈ [0, 1/4] over the non-specialized, global frequency estimator and over
the Laplace estimator with the integer value a = 2. A similar superiority of
specialized m-estimators is achieved for other intervals [phmin, phmax]. If (for
example) the expert knows that the true probability ph ∈ [1/4, 3/4] then the
naive frequency estimator frh with Eph(1h) = 1 has the error area A = 0.1146,
the Laplace estimator with Eph(1h) = 2/3 has A = 0.0174, and the specialized
m-estimator with Eph(0) = 1/2, a = 11 and Eph(1h) = 13/24 = 0.5417 has the
error area A equal to only 0.0095, that is: more than two times less than the
Laplace estimator. The MSE-error diagrams are presented in Fig. 11.

In the case considered above, when the hypothesis probability ph belongs to
the interval [1/4, 3/4], the initial value of the estimate, Eph(0) = 0.5, could be
chosen as the value which lies in the middle of the uncertainty interval of ph
and thus it is intuitively very acceptable, Fig. 12.

Now let us consider the case when, according to the expert knowledge, the
hypothesis probability is contained in the interval ph ∈ [2/3, 1]. Then, ac-
cording to formula (45), the optimal, one-sample item estimate has the value
Eph(1h) = 20/27. In the case of the interval [2/3, 1] = [4/6, 1] it seems in-
tuitively rational to assume the initial estimate Eph(0) in the middle of the
interval i.e. Eph(0) = 5/6. However, this value does not satisfy the optimality
condition (47) Eph(0) < Eph(1h) because Eph(0) = 5/6 = 45/54 is larger than
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Figure 10. Comparison of MSE-errors ∆sqr
aver(1) = f(ph) for interval ph ∈ [0, 1/4]

for the naive frequency estimator frh = nh/n, Laplace estimator EphL = (nh+
1)/(n+2), and m-estimator EphM = (nh+5/128)/(n+5/16) that was optimized
according to the advice given in the paper

Eph(1h) = 40/54. Assumption of the initial estimate Eph(1h) = 5/6 = 45/54
would increase the expected square error of the estimation. Fig. 13 presents
the parameter value distribution of the m-estimator with the initial estimate
Eph(0) = 5/6 chosen in the middle of the interval ph ∈ [2/3, 1].

Since for the initial estimate (Eph(0) = 40/54) > (Epopth (1h) = 40/54) there
exists no positive, optimal value of the trade-off coefficient a, therefore certain
positive, though not optimal, value of this coefficient has to be assumed. It can
be the value a = 2 applied in the Laplace estimator Eph(n) = (nh +1)/(n+2).
Then, according to (50), the formula (51) for the m-estimator is obtained:

Eph =
nh + 1.667

n+ 2
. (51)

Instead, if optimality advices (47) are followed, then the initial value Eph(0)
should be chosen, lower than the one-sample item estimate (Eph(0) < (Eph(1h) =
40/54). Let us choose a slightly smaller value of Eph(0) = 38/54. For this value
there exists, (47), the optimal and positive value of the trade-off coefficient
a = 8. Thus, the optimal specialized m-estimator is given by

Epopth =
nh + 5.63

n+ 8
. (52)

The parameter value distribution of this estimate is shown in Fig. 14.
According to formula (44), the area A of the square error for both compared

estimators (51) and (52), and the average estimation error ∆aver for interval



154 A. Piegat and M. Landowski

Figure 11. Comparison of MSE-error diagrams for interval ph ∈ [1/4, 3/4] of
the specialized m-estimator EphM = (nh + 5.5)/(n + 11) and of the global,
not-specialized estimators: of the frequency estimator frh(n) and of Laplace
estimator EphL(n)

ph ∈ [2/3, 1] was calculated as below:

Eph(n) =
nh + 1.667

n+ 2
, A = 0.0281,∆aver = A/(1/3) = 0.0844 (53)

Epopth (n) =
nh + 5.63

n+ 8
, A = 0.0208,∆aver = A/(1/3) = 0.0624. (54)

As the results show, the estimator (54) with the correctly chosen initial
estimate Eph(0) has in the interval ph ∈ [2/3, 1] a smaller, average estimation
error than the estimator with the incorrect initial estimate. Fig. 15 presents the
charts of the MSE-error ∆sqr

aver(1) calculated according to formula (14) for four
compared estimators.

As shown in Fig. 15, the specialized m-estimator EpopthM (n) has the smallest
estimation error in the interval ph ∈ [2/3, 1]. This result is rather clear because it
is understandable that estimator, which does not have the optimal parameters,
will have lower accuracy than an estimator with optimal parameters. Further
on, results of comparison of three classifiers applied to detection of classification
rules for a benchmark problem will be presented.

The Balance Scale data set comes from UC Irvine Machine Learning Repos-
itory (Siegler, 1994) and was generated to model the results of psychological
experiments carried out by Siegler (1976). Using three types of naive Bayes
classifiers with different probability estimators (frequency, Laplace and special-
ized) the examples from data set were classified to one of three classes: tip of the
balance scale to the right, tip to the left, or the balance scale is balanced. The
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Figure 12. Parameter value distribution of the optimal specialized m-estimator
for interval ph ∈ [1/4, 3/4]

Figure 13. Incorrect choice of the initial estimate Eph(0) in the middle (45/54 =
5/6) of the estimated probability interval ph ∈ [2/3, 1]

data set consists of 625 instances and 5 attributes: class name (left, balance,
right), left weight (1, 2, 3, 4, 5), left distance (1, 2, 3, 4, 5), right weight (1, 2,
3, 4, 5), and right distance (1, 2, 3, 4, 5). For example, element of the data set
”2, 5, 2, 1” (left weight = 2, left distance = 5, right weight = 2, right distance
= 1) should be classified to the class ”left”.

Fig. 16 shows the results of correct classifications by naive Bayes classifiers
using three estimators and different number of elements in the learning data set.
Results are the mean of 100 experiments in each case, expressed as a percentage
of correct classifications of elements from the testing data set. The highest
differences in classification were obtained for five examples in the learning data
set. In this case the best result is given by the naive Bayes using specialized
estimator (59% of correct classifications), the next is naive Bayes using Laplace
estimator (54% of correct classifications) and the worst is naive Bayes with
frequency estimator (47% of correct classifications). The results for 75 elements
in the learning data sets show that the naive Bayes with frequency estimator
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Figure 14. Parameter value distribution of the m-estimator with correctly cho-
sen initial estimate Eph(0) = 38/45 satisfying the condition Eph(0) < Epopth (1h)

gives 3% less of correct classifications than other classifiers, Fig.16.

At the end of this section, the pieces of advice referring to the parameter
choice of the specialized m-estimators will be repeated:

• Determine the probability interval [phmin, phmax].
• On the basis of formula (45) calculate the optimal value of the single-
sample item estimate Epopth (1h).

• Taking into account the condition Eph(0) < Epopth (1h) and formula (46)
choose value of Eph(0). This value should lie possibly near the suspected
value of the estimated probability ph.

• Taking into account the chosen value Eph(0) and using formula (46) choose
the value of the parameter a that is correlated with Eph(0).

Table 1 presents an example of investigations on parameters of specialized
m-estimator depending on a priori knowledge of interval probability. Results
were obtained from formulas (45) and (46).

Table 1. Parameters of specialized m-estimators depending on a priori knowl-
edge
[phmin, phmax] [0,0.1] [0,0.2] [0.1,0.3] [0.2,0.4] [0.3,0.5] [0.4,0.6]

Epopth (1h) 0.9067 0.8267 0.6867 0.5867 0.5267 0.5067

Epopth (0) 0.05 0.1 0.2 0.3 0.4 0.5
aopt 0.1089 0.2385 0.6438 1.4419 3.7368 74

[phmin, phmax] [0.5,0.7] [0.6,0.8] [0.7,0.9] [0.8,1] [0.9,1]

Epopth (1h) 0.5267 0.5867 0.6867 0.8267 0.9067

Epopth (0) 0.52 0.58 0.68 0.82 0.9
aopt 71 62 47 26 14
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Figure 15. Comparison of MSE-erorrs ∆sqr
aver(1) = f(ph) for interval ph ∈ [2/3, 1]

for the global (ph ∈ [0, 1]) frequency estimator frh = nh/n, the global Laplace
estimator EphL = (nh + 1)/(n + 2), the specialized m-estimator EphM (n) =
(nh + 1.667)/(n+ 2) with incorrect initial estimate Eph(0), and specialized m-
estimator EpopthM (n) = (nh+5.630)/(n+8) with correctly chosen initial estimate

4. Specialized m-estimators for non-binary rule-conclusions
with k hypotheses (k-nary case)

If a rule conclusion contains k hypotheses {h1, h2, . . . , hk} and on the basis
of data pieces k-nary m-estimates EphM1, EphM2, , EphMk of probability are
calculated, their sum is mostly not equal to 1,

k
∑

i=1

EphMi 6= 1.

Therefore, the individually calculated binary estimates EphMi should be
normalized according to formula (55), where EpkhMi denotes the k-nary estimate
of probability,

EpkhMi =
EphMi

k
∑

i=1

EphMi

. (55)

5. Conclusions

The paper shows that the increase of rule quality in machine learning systems,
such as, e.g., decision trees or rough set theory, is possible. At present, the
probability of rule conclusions is determined with the frequency estimator, the
Laplace estimator, and the m-estimator that are of global character. Because
the problem expert frequently knows the approximate interval of probability,
therefore probability estimators can be used that are specially tuned for the
given probability interval. This allows for considerable increase of accuracy of
probability estimation of rule conclusions. Specialized probability estimators
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Figure 16. Percentage of correct classifications of examples from the testing data
set, depending on the number of elements in the learning data set, using naive
Bayes classifiers with frequency estimator, Laplace estimator, and specialized
estimator

are of great importance for problems with small numbers of data pieces (in-
stances). The paper explains how parameters of specialized m-estimators can
be adapted to the probability interval given by the problem expert. The pa-
per also explains why the hitherto existing interpretation of the m-estimator
parameters is rather incorrect and gives the correct interpretation. The idea of
specialized m-estimators of probability was conceived by Andrzej Piegat.

References

CESTNIK, B. (1990) Estimating probabilities: A crucial task in machine learn-
ing. In: L. C. Aiello (Ed.), ECAI’90. Pitman, London, 147-149.

CESTNIK, B. (1991) Estimating probabilities in machine learning. Ph.D. the-
sis, University of Ljubljana, Faculty of Computer and Information Science.

CHAWLA, N. V. and CIESLAK, D. A. (2006) Evaluating calibration of prob-
ability estimation from decision trees. AAAI Workshop on the Evaluation
Methods in Machine Learning, The AAAI Press, Boston, July 2006, 18–23.

CICHOSZ, P. (2000) Systemy ucza̧ce siȩ (Learning systems). Wydawnictwo
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