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Abstract: An optimal control problem with a state constraint of
inequality type and with dynamics described by a semilinear hyper-
bolic equation in divergence form with the non-homogeneous bound-
ary condition of the third kind is considered. The state constraint
contains a functional parameter that belongs to the class of con-
tinuous functions and occurs as an additive term. We study the
properties of solutions of linear hyperbolic equations in divergence
form with measures in the original data and compute the first varia-
tions of functionals on the basis of a so-called two-parameter needle
variation of controls. We consider the necessary conditions for min-
imizing sequences in an optimal control problem with a pointwise
in time state constraint of inequality type and with dynamics de-
scribed by a semilinear hyperbolic equation in divergence form with
the non-homogeneous boundary condition of the third kind. For the
parametric optimization problem, we also consider regularity and
normality conditions stipulated by the differential properties of its
value function.
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1. Introduction

The present paper deals with an extention to the theory of Pontryagin maxi-
mum principle to parametric (i.e., parameter-dependent) problems of sequential
optimization for semilinear divergent hyperbolic equations with boundary con-
trols and with state constraints. The words ”sequential optimization” mean
here that we use the concept of a sequence of admissible elements as a main
concept of an optimization theory, instead of a classical concept of an optimal
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element. In other words, we use a sequential language of minimizing sequences
instead of a classical language of optimal elements.

The continuing interest in optimal control problems for distributed systems
with pointwise state constraints (PSC), which has lasted for more than four
decades: see, e.g., Novozhenov and Plotnikov (1982), Mackenroth (1982, 1986),
Bergounioux (1992), Casas (1993, 1997), Li and Yong (1995), Bonnans and
Casas (1995), Raymond and Zidani (1998), Casas, Raymond, and Zidani (2000),
Mordukhovich and Raymond (2004, 2005). But the majority of publications on
optimal control problems with PSC are devoted to finding necessary optimality
conditions, in particular, the Pontryagin’s maximum principle. Other classical
optimization problems related to the specified class of systems have received lit-
tle attention in the literature. Among these are issues related to sequential opti-
mization problems (suboptimality conditions), regularity, normality, differential
properties of the value function, stability of values of problems (sensitivity),
etc. Similar issues for parametric optimization problems with PSC were earlier
considered by Sumin (2000a, 2001) in the case of elliptic equations, by Gavrilov
and Sumin (2004, 2005) in the case of nonlinear hyperbolic Goursat-Darboux
systems, and by Gavrilov and Sumin (2011a, b, c) in the case of divergent
hyperbolic equations.

Foremost, it should be said, that, as in Gavrilov and Sumin (2011a, b, c) and
Mordukhovich and Raymond (2004, 2005), in the present paper we consider an
optimal control problem with pointwise in time state constraints. This is be-
cause the regularity properties of solutions of hyperbolic divergent equations are
much weaker than in the case of elliptic and parabolic equations, for details, see
Sumin (2009). In contrast to Gavrilov and Sumin (2011a, b), here we consider
an optimal control problem where a controlled hyperbolic equation is semilinear,
and where the corresponding initial-boundary value problems contain a bound-
ary control. In distinction to Gavrilov and Sumin (2011c), in the present paper
we find solutions to the initial-boundary value problems in the class of functions
z which are such that: 1) for any fixed t a function z belongs to a Sobolev space,
with respect to spatial variables; 2) for almost every t a function zt is summable
with square, with respect to spatial variables; 3) a function [0, T ] ∋ t 7→ z(·, t)
is continuous with respect to t, in the sense of the weak topology of the Sobolev
space; 4) the inclusion zt ∈ L∞([0, T ], L2(Ω)) holds. In this paper, we denote
this functional class as E1

2(QT ). For linear hyperbolic equation, such solutions
were first considered in Chapter 3, section 8.4 of Lions and Magenes (1968). In
contrast to solutions belonging to the Sobolev space W 1

2 (QT ), a consideration
of solutions belonging to E1

2(QT ) allowed for imposing much weaker conditions
than in Gavrilov and Sumin (2011c). More precisely, in Gavrilov and Sumin
(2011c) we addressed an optimization problem with linear order of growth of
all source data with respect to a state variable z. In the present paper, we use
an essentially narrower class of solutions (namely, the class E1

2(QT )). The use
of this class allows for considering the source data growing super linearly, with
exponents that are near the bounding exponents. The bounding exponents are
obtained from embedding theorems for Sobolev spaces.
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Let us note that we do not know any works of other authors, where these
questions of theory are considered for controlled nonlinear (semilinear) divergent
hyperbolic equations. Difficulties in the study of optimization problems for
controlled divergent hyperbolic equations are inherent to the problem class and
caused by the lack of regularity properties of hyperbolic equations solutions in
comparison to solutions of parabolic and elliptic equations. These regularity
properties are necessary for the earlier methods of research of such problems.

Let us emphasize that we use the sequential language in studying the opti-
mization problem of the present paper. This use is an essential feature of the
paper and is associated with the following important circumstances: 1) obtain-
ing of classical optimality conditions is connected with very hard assumptions on
the source data of problems1, and in case of existence of an optimal control under
general assumptions, classical optimality conditions are the limit case of ”op-
timality” conditions in the sequential form, see Sumin (2000a, 2001), Gavrilov
and Sumin (2004, 2005, 2011a, b, c); 2) minimizing sequences (more precisely,
minimizing approximate solutions in the sense of Warga, 1972) that we use in
the paper, have regularizing properties (see, e.g., Sumin and Trushina, 2008),
in contrast to classical optimal elements for constrained optimization problems
(these elements are instable with respect to perturbations of input data, see
Sumin, 2011, 2012).

Here, as in Gavrilov and Sumin (2011a, b, c), first of all, we study issues
related to the theory of linear hyperbolic divergent equations with a Radon mea-
sure in the right–hand side part. Such equations appear (in the form of adjoint
equations of a maximum principle) in the proof of the Pontryagin maximum
principle (or the generalizations of it) for optimal control problems with point-
wise state constraints. We study the following questions: existence, uniqueness
and stability of solutions to such equations with boundary condition of the
third kind; special integral representations of solutions to such equations; and
the stability of solutions of linear hyperbolic divergent equations with respect
to initial conditions on a hyperplane t = τ (but not top or bottom of the cylin-
der QT ≡ Ω × (0, T )), and with respect to its position t = τ . As mentioned
above, we consider an essentially narrower class of solutions than in Gavrilov
and Sumin (2011c). Namely, we do not consider solutions from just a Sobolev
space, but we consider solutions from class E1

2(QT ). Hence, we investigate in
the sense of the class the stability of solutions with respect to the position of
a section of cylinder QT . Let us note that we do not know any analogous re-
sults concerning third boundary–value problems for linear hyperbolic divergent
equations involving the Radon measures in the right–hand side part.

The problem of calculating first variations of functionals has received much
attention in literature. In the present paper, like in Gavrilov and Sumin (2011a),
to solve this problem efficiently under natural conditions on the input data of
the optimization problem with PSC, we use the so-called two-parameter (many-
point) needle variation of controls, Sumin (1983, 1991, 2009, 2000b). Such

1First of all this refers to optimization problems for partial differential equations.
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a modification for optimization problems related to hyperbolic systems with
generalized solutions in Sobolev spaces is justified for the following reasons.

Firstly, it is motivated by the ”instability” of the classical Lebesgue points
(see, e.g., Stane, 1970) of functions in the topology of the Sobolev classes they
belong to.

This ”instability” means the following. Let Sn
ε (x̄) ≡ {x ∈ Rn : |x− x̄| < ε},

and let η(x), x ∈ D ⊂ Rn, be a function that is summable over a domain D. If
x̄ ∈ D is a Lebesgue point of η, then, as is well known,

lim
ε→0

1

measSn
ε (x̄)

∫

Sn
ε (x̄)

η(x)dx = η(x̄).

And if ‖ηε − η‖∞,D → 0, ε → 0, where ηε, ε > 0, is a family of functions that
are summable over D, then the limit relation

lim
ε→0

1

measSn
ε (x̄)

∫

Sn
ε (x̄)

ηε(x)dx = η(x̄) (1)

holds. But the relation (1) may not hold if the convergence ηε → η as ε → 0
is not uniform, and, for example, is a convergence in some Sobolev space and if
ηε, η belong the space. Namely, let η(x) ≡ 0 and x̄ ∈ Rn be an arbitrary point.
Obviously, this x̄ is a Lebesgue point of η. Let us put

ηε(x; x̄) ≡
{

exp
[

|x−x̄|2

|x−x̄|2−ε2

]

, |x− x̄|2 < ε2,

0, |x− x̄|2 > ε2.

It is not difficult to prove that

lim
ε→0

‖ηε(·; x̄)‖p,Ω = 0, if p ∈ [1,∞), n > 1; lim
ε→0

‖ηε(·; x̄)‖(1)p,Ω = 0, if p < n;

lim
ε→0

1

measSn
ε (x̄)

∫

Sn
ε (x̄)

ηε(x; x̄)dx = n

1∫

0

rn−1e
r2

r2−1 dr 6= 0.

The last limit equality means that for the point x̄ and for the selected family
ηε(·; x̄) we have ηε(·; x̄) → η, ε → 0, in the norm of W 1

p , but the limit relation
(1) is not true.

Secondly, the classical needle variation approach may fail for divergent hy-
perbolic equations due to the fact that the regularity properties of solutions are
much weaker than in the case of elliptic and parabolic equations. For details,
see Sumin (2009).

The analysis of sequential optimization problems with PSC is based on a
method of Sumin (1986) (as in Gavrilov and Sumin, 2011a, b, c) and can be
divided into three main stages.
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1. Approximating the original problem with PSC by problems each of which
is ”equivalent” to a problem with finitely many function constraints. The orig-
inal problem with PSC is treated as a problem with infinitely many inequality-
type functional constraints. This approximation permits one to use the ad-
vantages of nonsmooth finite-dimensional analysis over its infinite-dimensional
counterpart. In particular, one essential advantage from the viewpoint of ob-
taining results on sensitivity in the present paper is that if the subdifferential
(in the sense of Clarke, 1983, or Mordukhovich, 2006a) of a lower semicontin-
uous function of n variables is bounded at some point, then the function has
the Lipschitz property in a neighborhood of that point (see Proposition 2.9.7 of
Clarke, 1983, Mordukhovich, 2006a, Corollary 8.5 of Mordukhovich and Shao,
1996)2.

2. Obtaining an ”approximate” maximum principle in each approximating
optimization problem on the basis of a two-parameter needle variation, Sumin
(2009), in an ”ordinary” way, i.e. in analogy to the method applied in optimal
control problems with finitely many inequality-type functional constraints. This
approximate maximum principle is stated in terms of the adjoint functions cor-
responding to each constraint and satisfying the usual adjoint linear hyperbolic
equations in divergence form.

3. Passing to the limit in the family of approximating maximum principles
as the number of constraints tends to infinity and deriving the resulting maxi-
mum principle in the original problem with PSC. Here, the families of adjoint
equations corresponding to each inequality-type constraint in the approximat-
ing problem are glued together to form a single resulting adjoint equation cor-
responding to the original state constraint and containing the corresponding
Radon measure in the right-hand side.

2. Problem statement

We begin with some notation. Suppose U ⊂ Rm is a compact set, V ⊂
R is a segment, T > 0 is a constant, Ω ⊂ Rn (n > 1) is a bounded do-
main having a sectionally smooth boundary S, ST ≡ S × (0, T ), QT ≡ Ω ×
(0, T ), D ≡ {π ≡ (u, v, w) : π ∈ D1 × D2 × D3}, D1 ≡ {u ∈ Lm

∞(QT ) :
u(x, t) ∈ U for a.e. (x, t) ∈ QT }, D2 ≡ {v ∈ L∞(Ω) : v(x) ∈ V for a.e. x ∈ Ω},
D3 ≡ {w ∈ W 0,1

2,1 (ST ) : w ∈ W}, where W is a convex closed bounded subset

of W 0,1
2,1 (ST ).

Here and in what follows the following notation is used: ‖ϕ‖p,Ω is a norm
in the space Lp(Ω) of functions ϕ : Ω → R summable to p–th power (essen-

tially bounded for p = ∞); ‖ · ‖(1)2,Ω is a norm in the space W 1
2 (Ω); | · |(0)X

is the standard norm in the space C(X) of continuous functions ϕ : X → R
on a compact set X ; M(X) is the set of all Radon measures on a compact

2This is not necessarily true in the infinite-dimensional case. But for the reasonably wide
class of spaces (so-called Asplund spaces) this is true (see Theorem 3.52 in Mordukhovich,
2006a, Lemma 8.5 in Mordukhovich and Shao, 1996).
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set X , ‖µ‖ is the total variation of a measure µ ∈ M(X); L2,1(QT ) is a
Banach space of all Lebesgue measurable functions ϕ : QT → R such that

the norm ‖ϕ‖2,1,QT
≡

T∫

0

(
∫

Ω

|ϕ(x, t)|2dx)1/2dt is finite; L2,1(ST ) is a Banach

space of all Lebesgue measurable functions ϕ : ST → R such that the norm

‖ϕ‖2,1,ST
≡

T∫

0

(
∫

S

|ϕ(s, t)|2ds)1/2dt is finite. By W 0,1
2,1 (ST ) we denote the set of

all functions ϕ ∈ L2,1(ST ) such that ϕt ∈ L2,1(ST ). The norm in the space

W 0,1
2,1 (ST ) is defined by ‖ϕ‖(0,1)2,1,ST

≡ ‖ϕ‖2,1,ST
+ ‖ϕt‖2,1,ST

. By Cr([0, T ], Y ),
where Y is a infinite–dimensional Banach space, we denote the space of r
times strongly continuously differentiable functions ϕ : [0, T ] → Y for r > 0,
and the space of strongly continuous functions ϕ : [0, T ] → Y for r = 0. A

norm in the space Cr([0, T ], Y ) is defined by |z|(r)Y ≡
r∑

i=0

max
t∈[0, T ]

‖zt(i)(t)‖Y . Let

us put C([0, T ], Y ) ≡ C0([0, T ], Y ). By Cs([0, T ], Y ), where Y is a infinite–
dimensional Banach space, we denote the space of weak continuous functions
ϕ : [0, T ] → Y , i.e. lim

t→τ
〈ϕ(t), y∗〉 = 〈ϕ(τ), y∗〉 for all τ ∈ [0, T ], y∗ ∈ Y ∗. The

norm in the space Cs([0, T ], Y ) is defined by ‖ϕ‖Cs([0,T ],Y ) ≡ sup
t∈[0, T ]

‖ϕ(t)‖Y .

Finally, by E1
2(QT ) denote the space of functions z : QT → R such that

z ∈ Cs([0, T ],W
1
2 (Ω)), zt ∈ L∞([0, T ], L2(Ω)). A norm in the space E1

2(QT )

is defined by ‖z‖E1
2(QT ) ≡ sup

t∈[0, T ]

‖z(·, t)‖(1)2,Ω + vraisup
t∈[0, T ]

‖zt(·, t)‖2,Ω.

Consider the following parametric optimization problem:

I0(π) → inf, π ∈ D, I1(π) ∈ M+ q, q ∈ C(X) is a parameter, (Pq)

where M is the set of all continuous nonpositive functions on the compact set
X ⊆ [0, T ], the functional I0 : D → R and the operator I1 : D → C(X) are
defined by

I0(π) ≡
∫

Ω

G(x, z[π](x, T ), v(x))dx, I1(π)(τ) ≡
∫

Ω

Φ(x, τ, z[π](x, τ), v(x))dx,

τ ∈ [0, T ],

z[π] ∈ E1
2(QT ) is a unique generalized solution (see Gavrilov, 2012) to the

initial–boundary value problem

ztt −
∂

∂xi
(aijzxj

+ aiz) + a(x, t, z, u) + bizxi
= 0, (x, t) ∈ QT , (2)

z|t=0 = ϕ(x), zt|t=0 = v(x), x ∈ Ω;
∂z

∂N + σ(s, t)z = w(s, t), (s, t) ∈ ST ;

corresponding to a triple π ≡ (u, v, w) ∈ D. Here ∂z
∂N ≡ (aijzxj

+aiz) cosαi(x, t),
and αi(x, t) is an angle between the outward normals to ST and Oxi–axis.

Assume that
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a) the functions aij , aijt, ai, ait, bi, bit, i, j = 1, n, are Lebesgue measurable
on QT ;

b) the functions σ and σt are Lebesgue measurable on ST ;
c) the function a : QT × R × U → R, together with ∇za, is measurable in

the Lebesgue sense with respect to (x, t, z, u) and continuous with respect
to (z, u) for a.e. (x, t) ∈ QT ;

d) the function G : Ω×R×V → R, together with ∇zG, ∇vG, is measurable
in the Lebesgue sense with respect to (x, z, v) and continuous with respect
to (z, v) for a.e. x ∈ Ω;

e) the function Φ: Ω × [0, T ] × R × R → R, together with gradients ∇zΦ,
∇vΦ, is measurable in the Lebesgue sense with respect to (x, t, z, v) ∈
Ω× [0, T ]×R×V and continuous with respect to (t, z, v) ∈ [0, T ]×R×V
for a.e. x ∈ Ω;

f) the functions a : QT ×R×U → R and ∇za : QT ×R×U → R are Lebesgue
measurable with respect to (x, t, z, u) ∈ QT ×R×U and continuous with
respect to (z, u) ∈ R × U for a.e. (x, t) ∈ QT ; there exists a function
K0 ∈ L1[0, T ] such that

|∇za(x, t, z, u)| ≤ K0(t) ∀ (x, t, z, u) ∈ QT ×R× U ;

moreover, there exists K1 ∈ L2,1(QT ) such that

|a(x, t, 0, u)| ≤ K1(x, t) ∀u ∈ U for a.e. (x, t) ∈ QT ;

g) the following conditions and estimates are fulfilled:

aij = aji, ϕ ∈ W 1
2 (Ω), ν1|ξ|2 ≤ aij(x, t)ξjξi ≤ ν2|ξ|2

∀ (x, t) ∈ QT , ξ ∈ Rn (ν1, ν2 > 0);

‖aij‖∞,QT
+ ‖aijt‖∞,QT

+ ‖ai‖∞,QT
+ ‖ait‖∞,QT

+

+‖bi‖∞,QT
+ ‖bit‖∞,QT

+ ‖σ‖∞,ST
+ ‖σt‖∞,ST

≤ ν3, i, j = 1, n;

h) the following condition is fulfilled:

|G(x, z, v)|+ |∇vG(x, z, v)| ≤ K2[1 + |z|γ1 ],

|∇zG(x, z, v)| ≤ K2[1 + |z|γ2 ] ∀ (x, z, v) ∈ Ω×R× V ;

|Φ(x, τ, z, v)|+ |∇vΦ(x, τ, z, v)| ≤ K2[1 + |z|γ1 ],

|∇zΦ(x, τ, z, v)| ≤ K2[1 + |z|γ2 ] ∀ (x, τ, z, v) ∈ Ω× [0, T ]×R× V ;

|∇zG(x, z1, v1)−∇zG(x, z2, v2)| ≤ K2|z1 − z2|γ2 +K3(|v1 − v2|),
|∇vG(x, z1, v1)−∇vG(x, z2, v2)| ≤ K2|z1 − z2|γ1 +K3(|v1 − v2|)
∀ (x, zi, vi) ∈ Ω×R× V, i = 1, 2;

|∇zΦ(x, τ, z
′, v′)−∇zΦ(x, τ, z

′′, v′′)| ≤ K2|z′ − z′′|γ2 +K3(|v′ − v′′|),

|∇vΦ(x, τ, z
′, v′)−∇vΦ(x, τ, z

′′, v′′)| ≤ K2|z′ − z′′|γ1 +K3(|v′ − v′′|)
∀ (x, τ, z′, v′), (x, τ, z′′, v′′) ∈ Ω× [0, T ]×R × V ;
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where γ1, γ2 ∈ [1,+∞), if n = 2; γ1 ∈
[

1, 2n
n−2

)

, γ2 ∈
[

1, n
n−2

)

, if n > 2;

and K3 : [0,measV ] → [0,+∞) is a nonnegative nondecreasing function,
such that lim

ξ→+0
K3(ξ) = K3(0) = 0;

i) the following estimates are fulfilled:

|Φ(x, t1, z, v)− Φ(x, t2, z, v)|+ |∇zΦ(x, t1, z, v)−∇zΦ(x, t2, z, v)|+
+|∇vΦ(x, t1, z, v)−∇vΦ(x, t2, z, v)| ≤ K4(|t1 − t2|)
∀ (x, ti, z, v) ∈ Ω× [0, T ]×R× V, i = 1, 2;

where a functionK4 : [0, T ] → [0,+∞) is such that lim
τ→+0

K4(τ) = K4(0) =

0;
j) there exists a function K5 ∈ L1[0, T ] such that

|∇za(x, t, z1, u)−∇za(x, t, z2, u)| ≤ K5(t)|z1 − z2|γ2

∀ (x, t, zi, u) ∈ QT ×R × U, i = 1, 2.

By definition, put Dε
q ≡ {π ∈ D : I1(π)(τ)− q(τ) ≤ ε, τ ∈ X}, ε > 0, β(q) ≡

β+0(q) ≡ lim
ε→+0

βε(q), where βε(q) ≡ { inf
π∈Dε

q

I0(π), if Dε
q 6= ∅; +∞, if Dε

q =

∅}, ε > 0. The function β : C(X) → R∪{+∞} is called the value function of the
problem (Pq). It is obvious that β(q) ≤ β0(q) ∀ q ∈ C(X), where β0 : C(X) → R
is a classic value function. Suppose that β(q) < +∞. According to Warga
(1972), a minimizing approximate solution (m.a.s.) in the problem (Pq) is a
sequence of triples πi ∈ D, i = 1, 2, . . . , such that

I0(π
i) ≤ β(q) + δi, πi ∈ Dεi

q , i = 1, 2, . . . , (3)

where δi, εi, i = 1, 2, . . . , δi, εi → 0, i → ∞, are sequences of nonnegative
numbers.

3. Preliminary results

3.1. Main equation

3.1.1. Uniqueness and existence of a solution to a divergent hyper-

bolic equation

We need results concerning the third initial–boundary value problem for a semi-
linear hyperbolic partial differential equation.

Consider the following third initial–boundary value problem:

ztt −
∂

∂xi
(aijzxj

+ aiz) + a(x, t, z) + bizxi
= 0, (x, t) ∈ QT , (4)

z|t=0 = ϕ(x), zt|t=0 = ψ(x), x ∈ Ω;
∂z

∂N + σ(s, t)z = f(s, t), (s, t) ∈ ST ;
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where coefficients aij , ai, bi, ϕ, ψ, σ, w are such that

aij = aji, ϕ ∈W 1
2 (Ω), ψ ∈ L2(Ω), f ∈ W 0,1

2,1 (ST ); (5)

ν1|ξ|2 ≤ aij(x, t)ξjξi ≤ ν2|ξ|2 ∀ (x, t) ∈ QT , ξ ∈ Rn (ν1, ν2 > 0);

‖aij‖∞,QT
+ ‖aijt‖∞,QT

+ ‖ai‖∞,QT
+ ‖ait‖∞,QT

+

+‖bi‖∞,QT
+ ‖bit‖∞,QT

+ ‖σ‖∞,ST
+ ‖σt‖∞,ST

≤ ν3, i, j = 1, n;

and the function a : QT × R → R is measurable in the Lebesgue sense with
respect to (x, t, z), and there exist functions K0 ∈ L1[0, T ] and K1 ∈ L2,1(QT )
such that

|a(x, t, z1)− a(x, t, z2)| ≤ K0(t)|z1 − z2| ∀ (x, t, zi) ∈ QT ×R, i = 1, 2;
(6)

|a(x, t, 0)| ≤ K1(x, t) ∀ (x, t) ∈ QT .

Definition 1 (Gavrilov, 2012) A function z ∈ E1
2(QT ) is said to be a solution

to the initial–boundary value problem (4), if z satisfies the following integral
identity:

∫

QT

[−ztηt + aijzxj
ηxi

+ aizηxi
+ a(x, t, z)η + bizxi

η]dxdt+

∫

ST

σzηdsdt =

(7)

=

∫

ST

fηdsdt+

∫

Ω

ψ(x)η(x, 0)dx ∀ η ∈ Ê1
2(QT ); z(x, 0) = ϕ(x), x ∈ Ω.

Here Ê1
2(QT ) ≡ {η ∈ E1

2(QT ) : η(·, T ) = 0}.

Theorem 1 (Gavrilov, 2012) The problem (4) has a unique solution z ∈ E1
2(QT ),

and there exists a constant B > 0 such that

‖z‖E1
2(QT ) ≤ B[‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω + ‖f‖(1,0)2,1,ST

+ ‖a(·, ·, 0)‖2,1,QT
]. (8)

The constant B depends on the dimension n, numbers T , ν1, ν2, ν3 > 0, a
function K0 ∈ L1[0, T ], and a domain Ω.

Proof. The proof consists of three steps.
Step 1. Let us prove that a solution is unique. Indeed, let z1, z2 ∈ E1

2(QT ),
and let w ≡ z1 − z2. Then w ∈ E1

2(QT ) and w satisfies the identity

∫

QT

[−wtηt + aijwxj
ηxi

+ aiwηxi
+ [a(x, t, z2 + w) − a(x, t, z2)]η+ (9)

+biwxi
η]dxdt +

∫

ST

σwηdsdt = 0 ∀ η ∈ Ê1
2(QT ); w(x, 0) = 0, x ∈ Ω.
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Let us introduce functions ηα : QT → R, βi : QT → R, i = 1, n (here α ∈ [0, T ]
is a parameter), by relations

ηα(x, t) = −χ[0,α](t)

α∫

t

w(x, ξ)dξ, βi(x, t) = −
t∫

0

wxi
(x, ξ)dξ, i = 1, n,

where χE is a characteristic function of the set E.

By substituting η = ηα into (9), integrating by parts, and using conditions
(5)–(6) (for details see Gavrilov, 2012), we obtain that for any ε > 0

∫

Ω

[|ηαt (x, α)|2 + (ν1 − γ1ε)|∇xη
α(x, 0)|2]dx ≤

≤
α∫

0

dt

∫

Ω

[γ2|∇xη
α|2 + γ3(t, ε)[|ηα|2 + |ηαt |2]]dx,

where γ1, γ2 > are some constants, γ3(t, ε) > 0, t ∈ [0, T ], is some function.
Upon setting ε = ν1

2γ1
in the last inequality, we get

∫

Ω

[|ηαt (x, α)|2 +
ν1
2
|∇xη

α(x, 0)|2]dx

≤
α∫

0

dt

∫

Ω

[γ2|∇xη
α|2 + γ4(t)[|ηα|2 + |ηαt |2]]dx∀α ∈ [0, T ],

where γ4(t) ≡ γ3(t,
ν1
2γ1

), t ∈ [0, T ]. It follows from this inequality that

∫

Ω

[

w2(x, α) +
ν1
2

n∑

i=1

β2
i (x, α)

]

dx ≤
α∫

0

dt

∫

Ω

[

γ2

n∑

i=1

(βi(x, α)− βi(x, t))
2+

+γ4(t)

[∣
∣
∣
∣

α∫

t

w(x, ξ)dξ

∣
∣
∣
∣

2

+ w2(x, t)

]]

dx ≤ 2γ2α

∫

Ω

n∑

i=1

β2
i (x, α)dx+
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+2γ2

α∫

0

dt

∫

Ω

n∑

i=1

β2
i dx+

α∫

0

dt

∫

Ω

γ4(t)

[

w2(x, t) + (α− t)

α∫

0

w2(x, ξ)dξ

]

dx ≤

≤ 2γ2α

∫

Ω

n∑

i=1

β2
i (x, α)dx + 2γ2

α∫

0

dt

∫

Ω

n∑

i=1

β2
i dx+

+

α∫

0

dξ

∫

Ω

[

T

α∫

0

γ4(t)dt+ γ4(ξ)

]

w2(x, ξ)dx ≤ 2γ2α

∫

Ω

n∑

i=1

β2
i (x, α)dx+

+

α∫

0

dξ

∫

Ω

[

T

α∫

0

γ4(t)dt+ γ4(ξ) + 2γ2

][

w2(x, ξ) +

n∑

i=1

β2
i (x, ξ)

]

dx.

Hence,

∫

Ω

[w2(x, α) +

(
ν1
2

− 2γ2α

) n∑

i=1

β2
i (x, α)]dx ≤

α∫

0

dt

∫

Ω

γ5(t)[w
2 +

n∑

i=1

β2
i ]dx,

(10)

where γ5(t) ≡ T
T∫

0

γ4(ξ)dξ + γ4(t) + 2γ2.

Let ωm ≡ mθ, m = 0, λ, where θ = ν1
8γ2

, λ = ⌈T
θ ⌉. Let us put Jm ≡

[ωm, ωm+1] ∩ [0, T ], m = 0, λ− 1.
Suppose that α ∈ J0 in the inequality (10). Then ν1

2 − 2αγ2 > ν1
4 , whence

∫

Ω

[w2(x, α) +

n∑

i=1

β2
i (x, α)]dx ≤

α∫

0

dt

∫

Ω

γ6(t)[w
2(x, t) +

n∑

i=1

β2
i (x, t)]dx,

where γ6(t) = γ5(t)/min{1, ν14 }. By applying the Gronwall lemma, we get that

w(x, t) ≡ 0, βi(x, t) ≡ 0, (x, t) ∈ Ω× J0, i = 1, n.

Arguing in a similar fashion, we obtain in the finite number of steps that

w(x, t) ≡ 0, βi(x, t) ≡ 0, (x, t) ∈ Ω× Jm, i = 1, n, m = 0, λ− 1.

Thus, a difference of any two solutions of the initial–boundary value problem
(4) is equal to zero almost everywhere in QT . Hence, the problem (4) can have
no more than one solution.

Step 2. Let us prove the existence of the solution. Let a sequence gk ∈
W 1

2(Ω), k = 1, 2, . . . , be orthonormal in L2(Ω), orthogonal in W 1
2(Ω) and be

such that for any functions ϕ̄ ∈ W 1
2(Ω), ψ̄ ∈ L2(Ω)

lim
m→∞

‖ϕ̄N − ϕ̄‖(1)2,Ω = 0, lim
m→∞

‖ψ̄N − ψ̄‖2,Ω = 0,
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where

ϕ̄N (x) ≡
N∑

m=1

ϕ̄mgm(x), ψ̄N (x) ≡
N∑

m=1

ψ̄mgm(x),

ϕ̄j ≡
∫

Ω

ϕ̄(y)gj(y)dy, ψ̄j ≡
∫

Ω

ψ̄(y)gj(y)dy, j, N = 1, 2, . . .

We will find an approximate solution zN to the problem (4) in the form

zN(x, t) ≡
N∑

m=1

hNm(t)gm(x),

where a collection of functions hNm ∈ W 2
1 [0, T ], m = 1, N , is a solution to the

following Cauchy problem:

ḧNl +

N∑

m=1

[plm(t)ḣNm + qlm(t)hNm] + rNl (t, hN1 (t), . . . , hNN (t)) = 0, (11)

hNl (0) = ϕl, ḣ
N
l (0) = ψl, l = 1, N,

where

plm(t) ≡
∫

Ω

c(x, t)glgmdx, r
N
l (t, h1, . . . , hN) ≡

∫

Ω

a

(

x, t,

N∑

m′=1

hm′gm′

)

gldx+

+

∫

S

[σ(s, t)

N∑

m′=1

hm′gm′ − f(s, t)]glds,

qlm(t) ≡
∫

Ω

[aij(x, t)gmxj
glxi

+ ai(x, t)gmglxi
+ bi(x, t)gmxi

gl]dx,

Obviously, such collection exists and will be unique.

By multiplying l–th equation (11) by ḣNl (t), l = 1, N , adding all the obtained
equations, and integrating the result over t ∈ [0, τ ], we conclude that

1

2

∫

Ω

[|zNt (x, τ)|2 + aij(x, τ)z
N
xj
(x, τ)zNxi

(x, τ)]dx−

1

2

∫

Ω

[|ψN |2 + aij(x, 0)ϕ
N
xj
ϕN
xi
]dx−
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−
τ∫

0

dt

∫

Ω

[1

2
aijtz

N
xj
zNxi

+ (ai − bi)z
N
t z

N
xi

+ aitz
NzNxi

− c|zNt |2 − [a(x, t, zN )−

−a(x, t, 0)]zNt
]

dx+

[∫

Ω

aiz
NzNxi

dx+
1

2

∫

S

σ|zN |2ds−
∫

S

fzNds

]∣
∣
∣
∣

t=τ

t=0

+

+

τ∫

0

dt

∫

Ω

a(x, t, 0)zNt dx− 1

2

α∫

0

dt

∫

S

σt|zN |2ds+
α∫

0

dt

∫

S

ftz
Nds = 0.

Thus,

1

2

∫

Ω

[|zNt (x, τ)|2 + ν1|∇xz
N(x, τ)|]dx ≤ 1

2

∫

Ω

[|ψN |2 + ν2|∇ϕN |2]dx+

+

τ∫

0

dt

∫

Ω

|a(x, t, 0)||zNt |dx−
∫

Ω

aiz
NzNxi

dx

∣
∣
∣
∣

t=τ

t=0

+

τ∫

0

dt

∫

Ω

[1

2
aijtz

N
xj
zNxi

+

+(ai−bi)zNt zNxi
+ aitz

NzNxi
− c|zNt |2 +K0(t)|zN ||zNt |

]

dx+

α∫

0

dt

∫

S

|ft||zN |ds+

+

[∫

S

fzNds− 1

2

∫

S

σ|zN |2ds
]∣
∣
∣
∣

t=τ

t=0

+
1

2

α∫

0

dt

∫

S

|σt||zN |2ds.

By estimating the left–hand side part of this inequality we obtain that, for any
ε > 0

1

2

∫

Ω

[|zNt (x, τ)|2 + (ν1 − ρ1ε)|∇xz
N(x, τ)|]dx ≤ ρ2(ε)

[∫

Ω

[|ψN |2 + |∇ϕN |2+

+|ϕN |2]dx+[‖a(·, ·, 0)‖2,1,QT
+‖f‖(0,1)2,1,ST

] max
t∈[0,τ ]

[∫

Ω

[|zN (x, t)|2+|zNt (x, t)|2+

+|∇xz
N(x, t)|2]dx

] 1
2
]

+

τ∫

0

dt

∫

Ω

ρ3(t, ε)[|zN |2 + |zNt |2 + |∇xz
N |2]dx,

where ρ1 and ρ2(ε) are some positive constants, and ρ3(t, ε), t ∈ [0, T ], is a
nonnegative summable function.

Adding an expression 1
2

∫

Ω

|zN (x, τ)|2dx to both parts of the last inequality

and putting ε ≡ ν1
2ρ3

, yields that for any τ ∈ [0, T ]

yN(τ) ≤ ρ4[y
N (0)+[‖a(·, ·, 0)‖2,1,QT

+ ‖f‖(0,1)2,1,ST
] max
t∈[0,τ ]

√

yN(t)]+

τ∫

0

ρ5y
Ndt,

(12)
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where ρ4 ≡ 4ρ2(
ν1
2ρ1

)/min{2, ν1}, ρ5(t) ≡ 4ρ3(t,
ν1
2ρ3

)/min{2, ν1},

yN(t) ≡
∫

Ω

[|zN(x, t)|2 + |zNt (x, t)|2 + |∇xz
N(x, t)|2]dx.

By applying the Gronwall lemma to (12), we obtain

max
t∈[0,T ]

√

yN(t) ≤ ρ6[
√

yN (0) + ‖a(·, ·, 0)‖2,1,QT
+ ‖f‖(0,1)2,1,ST

], (13)

where ρ6 ≡ ρ4 exp

[
T∫

0

ρ5(t)dt

]

.

It follows from (13) that

‖zN‖E1
2(QT ) ≤ 2ρ6[‖ϕN‖(1)2,Ω + ‖ψN‖2,Ω + ‖a(·, ·, 0)‖2,1,QT

+ ‖f‖(0,1)2,1,ST
].

(14)

It is easy to see, that

lim
N→∞

‖ϕN − ϕ‖(1)2,Ω = 0, lim
N→∞

‖ψN − ψ‖2,Ω = 0. (15)

Hence,

lim
N→∞

[‖ϕN‖(1)2,Ω + ‖ψN‖2,Ω] = ‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω. (16)

It follows from (16) that there exists a constant ρ7 > 0 such that

‖zN‖E1
2(QT ) ≤ ρ7 ∀N = 1, 2, . . . . (17)

It is not difficult to see that there exist a subsequence zNk , k = 1, 2, . . . , of
a sequence zN , N = 1, 2, . . . , and a function z ∈ E1

2(QT ) such that

lim
k→∞

max
t∈[0,T ]

‖zNk(·, t)− z(·, t)‖2,Ω = 0, (18)

zNk → z, k → ∞, weakly in W 1
2 (QT ),

zNk → z, ∗–weakly in L∞([0, T ],W 1
2 (Ω)), k → ∞; (19)

lim
k→∞

max
t∈[0,T ]

‖zNk(·, t)− z(·, t)‖2,S = 0. (20)

Similarly to the argumentation provided for linear equations in Chapter 3,
section 8.3 of Lions and Magenes (1968), we obtain that z is a solution to the
problem (4).

Step 3. Let us obtain an a priori estimate. Indeed, in view of (16), for any
ε > 0 there exists a number m0(ε) > 1 such that for all m > m0(ε)

‖ϕNm‖(1)2,Ω + ‖ψNm‖2,Ω ≤ ‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω + ε. (21)
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Further, it follows from (14) that

‖zNm‖E1
2(QT ) ≤ 2ρ6[‖ϕNm‖(1)2,Ω + ‖ψNm‖2,Ω + ‖a(·, ·, 0)‖2,1,QT

+ ‖f‖(0,1)2,1,ST
].

Limiting in this inequality with the numbers m > m0(ε), in view of (21) we will
have

‖zNm‖E1
2(QT ) ≤ 2ρ6[‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω + ‖a(·, ·, 0)‖2,1,QT

+ ‖f‖(0,1)2,1,ST
+ ε]

∀m > m0(ε).

It follows from relations (18), (19) that

‖z‖E1
2(QT ) ≤ 2ρ6[‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω + ‖a(·, ·, 0)‖2,1,QT

+ ‖f‖(0,1)2,1,ST
+ ε].

Passing then with ε to zero, we get estimate (8) with B=2ρ6. The theorem is
proved. �

3.1.2. Properties of solutions to the main equation

First of all, we need results concerning the main initial–boundary value problem
(2). In order to formulate these results, let us introduce some notation. For any
triples πi ≡ (ui, vi, wi) ∈ D, i = 1, 2, by definition, put R(u1, u2) ≡ {(x, t) ∈
QT : u1(x, t) 6= u2(x, t)}, Rt(u

1, u2) ≡ {x ∈ Ω : (x, t) ∈ R(u1, u2)}, d(π1, π2) ≡
‖v1 − v2‖∞,Ω + measR(u1, u2) + ‖w1 − w2‖(0,1)2,1,ST

. Equip the set D with the
metric d(·, ·). Then D is a complete metric space (see, e.g., Ekeland, 1974).

The following result follows from the assumptions on input data of prob-
lem (Pq) and the results of Gavrilov (2012).

Lemma 1 For any triple π ≡ (u, v, w) ∈ D there exists a unique solution z[π] ∈
E1
2(QT ) to the initial–boundary value problem (2), and there exists a constant c0 >

0 such that

‖z[π]‖E1
2(QT ) ≤ c0 ∀π ∈ D. (22)

This constant is independent of the triple π ∈ D. Moreover, for any two triples
πi ≡ (ui, vi, wi) ∈ D, i = 1, 2, the following inequality is fulfilled

‖z[π1]− z[π2]‖E1
2(QT ) ≤ c1

[

‖v1 − v2‖∞,Ω + ‖w1 − w2‖(0,1)2,1,ST
+ (23)

+

T∫

0

K0(t)
√

measRt(u1, u2)dt+

T∫

0

‖K1(·, t)‖2,Rt(u1,u2)dt
]

,

where c1 > 0 is a constant independent of the triples π1, π2 ∈ D.

The following result follows from Lemma 1 and from the embedding theorem
for the space W 1

2 (Ω).
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Lemma 2 Suppose the sequences of triples πi,k ≡ (ui,k, vi,k, wi,k) ∈ D, k = 1, 2,
i = 1, 2, . . . , are such that

lim
i→∞

d(πi,1, πi,2) = 0;

then

lim
i→∞

‖z[πi,1]− z[πi,2]‖E1
2(QT ) = 0,

lim
i→∞

max
t∈[0,T ]

‖z[πi,1](·, t)− z[πi,2](·, t)‖2,S = 0.

Finally, from Lemmas 1–2 the following result is concluded.

Lemma 3 The functional I0 : D → R and the operator I1 : D → C(X) are
uniformly continuous and uniformly bounded on the complete metric space D.
Moreover, the set {I1(π) : π ∈ D} is a precompact set in the space C(X).

3.2. Adjoint equations

3.2.1. Equations with Radon measure in the right–hand side part:

a unique existence of solutions

Consider the following initial–boundary value problem:

ηtt −
∂

∂xi
(aijηxj

+ biη) + aiηxi
+ aη = f(x, t) + g(x, t)µ(dt), (x, t) ∈ QT ,

(24)

η(x, T ) = ϕ(x), ηt(x, T ) = ψ(x), x ∈ Ω,

[
∂η

∂N ′
+ ση

]∣
∣
∣
∣
ST

= ω(s, t),

where ∂η
∂N ′

≡ (aijzxj
+ biz) cosαi(x, t), f ∈ L2,1(QT ), g ∈ C([0, T ], L2(Ω)),

ψ ∈ L2(Ω), ϕ ∈ W 1
2 (Ω), ω ∈ W 0,1

2,1 (ST ), µ ∈M [0, T ], and coefficients aij , ai, bi,

a, σ, i, j = 1, n, are such that

aij = aji, ν1|ξ|2 ≤ aij(x, t)ξ
iξj ≤ ν2|ξ|2 (25)

∀ (x, t) ∈ QT , ξ ∈ Rn (ν1, ν2 > 0); (26)

‖aij‖∞,QT
+‖ai‖∞,QT

+‖bi‖∞,QT
+‖a‖∞,1,QT

+‖aijt‖∞,QT
+‖ait‖∞,QT

+

+‖bit‖∞,QT
+ ‖σ‖∞,ST

+ ‖σt‖∞,ST
≤ ν3 i, j = 1, n.

Let us give the following

Definition 2 (Gavrilov, 2012) A function η ∈ E1
2(QT ) is said to be a solution

to the initial–boundary value problem (24), if the following integral identity is



Sequential optimization for semilinear divergent hyperbolic equation 199

fulfilled:

∫

QT

[−ηtzt + aijηxj
zxi

+ biηzxi
+ aiηxi

z + aηz] dxdt+

∫

ST

σηzdsdt+

+

∫

Ω

ψ(x)z(x, T )dx+

∫

QT

fzdxdt+

∫

[0, T ]





∫

Ω

g(x, t)z(x, t)dx



 µ(dt)

∀ z ∈ E1
2(QT ), z(·, 0) = 0; η(x, T ) = ϕ(x), x ∈ Ω.

The following result holds.

Lemma 4 (Gavrilov, 2012) Under the above–mentioned conditions, there exist
a unique solution η ∈ E1

2(QT ) to the initial–boundary value problem (24), and
a constant c̄0 > 0 such that

‖η‖E1
2(QT ) ≤ c̄0[‖ϕ‖(1)2,Ω + ‖ψ‖2,Ω+‖f‖2,1,QT

+ max
t∈[0, T ]

‖g(·, t)‖2,Ω‖µ‖+‖ω‖(0,1)2,1,ST
].

The constant c̄0 > 0 depends only on T , ν1, ν2, ν3 > 0, on the domain Ω and
on the dimension n.

Proof. We shall give here just the scheme of the proof. Firstly, we approximate
(in the ∗–weak sense) the Radon measure µ by a sequence of Radon measures
µk, k = 1, 2, . . . Each of the approximating measures is absolutely continuous
with respect to the Lebesgue measure. Then, for each k = 1, 2, . . . , we write
out the initial–boundary value problem (24), where µ is replaced by µk. Using
the result of Theorem 1 and taking then the limit for k → ∞, we obtain the
required results. For details, see Gavrilov (2012).

3.2.2. Equations with Radon measure in the right–hand side part:

integral representation of the solution

In this section, we obtain a special integral representation of the solution to a
homogeneous third initial–boundary value problem for a linear divergent hyper-
bolic partial differential equation with Radon measure in the right–hand side
part. To formulate the results of this section, let us introduce the following
notation.

Suppose t1 < t2, t1, t2 ∈ [0, T ]. By definition, put Q(t1,t2) ≡ Ω × (t1, t2),
Q[t1,t2] ≡ Ω × [t1, t2], S(t1,t2) ≡ S × (t1, t2). Suppose functions ai j , ai, bi,
i, j = 1, n, a, σ satisfy (25). Suppose g ∈ C([0, T ], L2(Ω)), µ ∈ M [0, T ]. By
definition, put χ(t, τ) ≡ {1, 0 ≤ t ≤ τ ≤ T ; 0, 0 ≤ τ < t ≤ T }. Consider the
following initial–boundary value problem:

ftt −
∂

∂xi
(ai jfxj

+ bif) + aifxi
+ af = g(x, t)µ(dt), (x, t) ∈ QT , (27)
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f(x, T ) = ft(x, T ) = 0, x ∈ Ω,
∂f

∂N ′
+ σ(s, t)f = 0, (s, t) ∈ ST .

By f[a, g, µ] denote the solution of this problem.
Let us put p[a, g](x, t, τ) ≡ f[a, g, δτ ](x, t), where δτ is a Radon δ–measure,

concentrated at the point t = τ .
Let us define a function x[a, g](x, t, τ), (x, t) ∈ QT , τ ∈ [0, T ], for (x, t) ∈

Q[0, τ ] as a solution to the initial–boundary value problem

xtt −
∂

∂xi
(ai jxxj

+ bix) + aixxi
+ ax = 0, (x, t) ∈ Q[0, τ ], (28)

x|t=τ = 0, xt|t=τ = −g(x, τ), x ∈ Ω,
∂x

∂N ′
+ σ(s, t)x = 0, (s, t) ∈ S(0, τ),

and as a solution to the problem

xtt −
∂

∂xi
(ai jxxj

+ bix) + aixxi
+ ax = 0, (x, t) ∈ Q[τ, T ], (29)

x|t=τ = 0, xt|t=τ = −g(x, τ), x ∈ Ω,
∂x

∂N ′
+ σ(s, t)x = 0, (s, t) ∈ S(τ, T ),

for (x, t) ∈ Q[τ, T ]

The function x[a, g] can be interpreted as a solution to the initial–boundary
value problem

xtt −
∂

∂xi
(ai jxxj

+ bix) + aixxi
+ ax = 0, (x, t) ∈ QT , (30)

x|t=τ = 0, xt|t=τ = −g(x, τ), x ∈ Ω,
∂x

∂N ′
+ σ(s, t)x = 0, (s, t) ∈ ST ,

where initial conditions are given on a section of the cylinderQT by a hyperplane
t = τ .

In connection with the selected method of investigation of the considered
optimal control problem, the question arises about an integral representation
of the solution f[a, g, µ] to the initial–boundary value problem (27). Let us
remind here the scheme of this method. Firstly, we approximate the source
problem (Pq) with pointwise state constraints by problems with finite number
of functional constraints. Secondly, by applying the “standard” methods, we
obtain “approximating” maximum principle in each “approximating” problem.
Thirdly, we go to the limit in the family of approximating maximum principles
as the number of functional inequality constraints tends to infinity. To this aim,
we must “glue” the family of adjoint equations (each of the adjoint equations
corresponds to some functional inequality constraint) into one adjoint equation.
The “glued” adjoint equation corresponds to the source state constraint, and
involves a Radon measure in the right–hand side part. To provide this “gluing”,
we prove a result on the representation of a solution to the problem (27) in the
form of an integral of Green p[a, g] function by measure µ with respect to τ .
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To prove this representation result, we need to prove that the solution x[a, g] of
the problem (30) depends continuously on the position of the initial conditions
hyperplane. Additionally, we need the connection of the Green function p[a, g]
of problem (27) with x[a, g].

Theorem 2 The inclusion x[a, g] ∈ C([0, T ],E1
2(QT )) holds, i.e., for any τ ∈

[0, T ] there exists a trace x[a, g](·, ·, τ) ∈ E1
2(QT ). This trace depends continu-

ously on τ ∈ [0, T ] in the norm of E1
2(QT ). In addition,

p[a, g](x, t, τ) ≡ x[a, g](x, t, τ)χ(t, τ), (x, t) ∈ QT , τ ∈ [0, T ]; (31)

f[a, g, µ](x, t) =

∫

[0,T ]

p[a, g](x, t, τ)µ(dτ), for a.e. (x, t) ∈ QT , (32)

and the following a priori estimate holds:

max
τ∈[0, T ]

‖x[a, g](·, ·, τ)‖E1
2(QT ) ≤ c̃ max

t∈[0, T ]
‖g(·, t)‖2,Ω. (33)

Here the constant c̃ > 0 depends only on numbers T , ν1, ν2, ν3 > 0, on the
domain Ω, and on the dimension n.

To prove this theorem, we need two lemmas. First of them is the consequence
of Theorem 6.1 from Chapter 1 of Ladyzhenskaya (1973) and Theorem 2.2 in
page 157 of Osipov, Vasil’ev, and Potapov (1999).

Lemma 5 Suppose Ω ⊂ Rn is a bounded domain with the sectionally smooth
boundary; then there exists an orthonormal (in the space L2(Ω)) sequence hk ∈
W 1

2 (Ω), k = 1, 2, . . . , such that for any ϕ ∈ W 1
2 (Ω), ψ ∈ L2(Ω), the following

equalities are fulfilled:

lim
N→∞

‖ϕN − ϕ‖(1)2,Ω = 0, lim
N→∞

‖ψN − ψ‖2,Ω = 0.

Here ϕN (x) ≡
N∑

k=1

ϕkhk(x), ψ
N (x) ≡

N∑

k=1

ψkhk(x), ϕk ≡
∫

Ω

ϕhk dx, ψk ≡
∫

Ω

ψhk dx, k, N = 1, 2, . . . .

Lemma 6 Suppose hk ∈ W 1
2 (Ω), k = 1, 2, . . . , to be an orthonormal (in the

space L2(Ω)) sequence from the previous lemma; then

lim
N→∞

|gN0 − g0|(0)L2(Ω) = 0, lim
N→∞

|gN1 − g1|(r)W 1
2 (Ω)

= 0,

if g0 ∈ Cr([0, T ], L2(Ω)), g1 ∈ Cr([0, T ], W 1
2 (Ω)) (r > 0 is a fixed integer),

where

gN0 (x, t) ≡
N∑

k=1

g0k(t)hk(x), g1
N (x, t) ≡

N∑

k=1

g1k(t)hk(x),

g0k(t) ≡
∫

Ω

g0(x, t)hk(x)dx, g1k(t) ≡
∫

Ω

g1(x, t)hk(x)dx, k, N > 1, t ∈ [0, T ].
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Moreover, the set C2([0, T ],W 1
2 (Ω)) is dense in the space C([0, T ], L2(Ω)).

Proof. The proof of the lemma’s first assertion is analogous to the proof of
Lemma 4.1 from Chapter IV, §4 of Osipov, Vasil’ev, and Potapov (1999). By
this reason, the proof of the first assertion is omitted. The second assertion
follows immediately from the first assertion and the classic Weierstrass theorem
about uniform approximation of continuous functions by algebraic polynoms.
Thus, Lemma 6 is proved. �

The proof of Theorem 2. The proof is done in three steps.

Step 1. Let us show that the equality (31) holds. First of all, according
to results of Gavrilov (2012), the function x[a, g] is uniquely determined in the
cylinder QT , for any τ ∈ [0, T ]. Besides, in view of Definition 2, the following
identities hold

∫

QT

[−pt[a, g](x, t, τ)zt + aijpxj
[a, g](x, t, τ)zxi

+ bip[a, g](x, t, τ)zxi
+ (34)

+aipxj
[g](x, t, τ)z + ap[g](x, t, τ)z]dxdt+

∫

ST

σp[a, g](x, t, τ)zdsdt =

∫

Ω

g(x, τ)z(x, τ)dx

∀ z ∈ E1
2(QT ), z(·, 0) ≡ 0; p[a, g](x, T, τ) ≡ 0, x ∈ Ω, τ ∈ [0, T ].

In these identities, let us consider three cases.

Case A. Suppose that τ = 0; then the function p[a, g](x, t, 0), (x, t) ∈ QT , is
the solution to the homogeneous initial–boundary value problem

ptt −
∂

∂xi
(ai jpxj

+ bip) + aipxi
+ ap = 0, (x, t) ∈ QT ;

p(x, T ) = pt(x, T ) = 0, x ∈ Ω,
∂p

∂N ′
+ σ(s, t)p = 0, (x, t) ∈ ST .

According to Gavrilov (2012), this problem has only trivial solution. Hence, in
the case of τ = 0, the equality (31) holds.

Case B. Suppose that τ = T ; then the function p[a, g](·, ·, T ) coincides identi-
cally with the function x[a, g](·, ·, T ) whence the equality (31) holds, if τ = T .

Case C. Suppose that τ ∈ (0, T ). In the identities (34), let z be a linear

combination of the form
N∑

k=1

ck(t)hk(x), where N is some natural number, and

functions ck, k = 1, N , are piecewise differentiable on [0, T ], ck|[0, τ ] ≡ 0, k =

1, N . Here hk ∈ W 1
2 (Ω), k = 1, 2, . . . , is the sequence from Lemma 5. Because

the set of restrictions of all such z is everywhere dense in the set of all functions
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belonging to W 1
2 (Q(τ, T )) and such that z|t=τ = 0, we conclude that

∫

Q(τ, T )

[−pt[a, g](x, t, τ)zt + aijpxj
[a, g](x, t, τ)zxi

+ bip[a, g](x, t, τ)zxi
+

+aipxj
[a, g](x, t, τ)z + ap[a, g](x, t, τ)z] dxdt+

∫

S(τ, T )

σp[a, g](s, t, τ)zdsdt = 0,

∀ z ∈ E1
2(Q(τ, T )), z(·, τ) ≡ 0; p[a, g](x, T, τ) ≡ 0, x ∈ Ω.

Therefore, if (x, t) ∈ Q(τ, T ), then the function p[a, g](·, ·, τ) is the solution to
the homogeneous initial–boundary value problem

ptt −
∂

∂xi
(ai jpxj

+ bip) + aipxi
+ ap = 0, (x, t) ∈ Q(τ, T ),

p(x, T ) = pt(x, T ) = 0, x ∈ Ω,
∂p

∂N ′
+ σ(s, t)p = 0, (s, t) ∈ S(τ, T ).

According to Gavrilov (2012), this problem has only trivial solution, whence

p[a, g](x, t, τ) ≡ 0, (x, t) ∈ Q(τ, T ).

Hence, the relations (34) can be rewritten in the form
∫

Q(0, τ)

[−pt[a, g](x, t, τ)zt + aijpxj
[a, g](x, t, τ)zxi

+ bip[a, g](x, t, τ)zxi
+

+aipxj
[g](x, t, τ)z + ap[g](x, t, τ)z]dxdt+

∫

S(0, τ)

σp[a, g](s, t, τ)zdsdt =

=

∫

Ω

g(x, τ)z(x, τ) dx ∀ z ∈ E1
2(QT ), z(·, 0) ≡ 0 τ ∈ [0, T ];

p[a, g](x, τ, τ) ≡ 0, x ∈ Ω, τ ∈ [0, T ].

In view of the last equalities, if (x, t) ∈ Q(0, τ), then the function p[a, g](·, ·, τ) is
the solution to the initial–boundary value problem

ptt −
∂

∂xi
(ai jpxj

+ bip) + aipxi
+ ap = 0, (x, t) ∈ Q(0, τ),

p(x, τ) = 0, pt(x, τ) = −g(x, τ), x ∈ Ω,

[
∂p

∂N ′
+ σ(s, t)p

]∣
∣
∣
∣
S(0, τ)

= 0.

Thus, in the case of τ ∈ (0, T ), the equality (31) holds. Hence, (31) is completely
proved.

Step 2. Using the Galerkin method, let us show the inclusion

x[a, g] ∈ C([0, T ],E1
2(QT )).
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Suppose that g ∈ C2([0, T ],W 1
2 (Ω)). Let hk ∈ W 1

2 (Ω), k = 1, 2, . . . , be the

sequence from Lemma 5, and let gN≡
N∑

m=1
gm(τ)hm(x), gm(τ)≡

∫

Ω
g(x, τ)hm(x)dx,

m = 1, N , N = 1, 2, . . . , τ ∈ [0, T ]. Then, by virtue of Lemma 5,

lim
N→∞

|gN − g|(2)
W 1

2 (Ω)
= 0. (35)

We will find an approximation xN [a, g] to the function x[a, g] in the form

xN [a, g](x, t, τ) ≡
N∑

k=1

eNk (t, τ)hk(x),

where a collection of functions eNk ∈ C1(∆), ∆ ≡ [0, T ]2, k = 1, N , is a unique
continuous solution to the integral equation

eN(t, τ) +

∫ τ

t

(y − t)AN (y)eN (y, τ) dτ = ḡN (τ)(τ − t), (t, τ) ∈ ∆. (36)

Here the matrix–valued function AN (t) = [αkm(t)]k,m=1, N , t ∈ [0, T ], and

vector–valued functions eN (t, τ) ≡ [eN1 (t, τ), . . . , eNN (t, τ)]∗, ḡN (τ) ≡ [g1(τ), . . . ,
gN (τ)]∗ ∈ RN are such that

αkm(t) ≡
∫

Ω

[aij(x, t)hkxj
hmxi

+ bi(x, t)hkhmxi
+ ai(x, t)hkxi

hm + a(x, t)hkhm]dx+

+

∫

S

σ(s, t)hk(s)hm(s)ds, k, m = 1, 2, . . . , t ∈ [0, T ].

By differentiating (36) with respect to t twice, we obtain that (36) is equivalent
to the Cauchy problem

eNtt (t, τ) +AN (t)eN (t, τ) = 0, eN (t, τ)|t=τ = 0, eNt (t, τ)|t=τ = −ḡN(τ).

Then, by differentiating (36) with respect to τ once, and, then, with respect to t
twice, we have

(eNτ )tt +AN (t)eNτ = 0, eNτ |t=τ = ḡN(τ), (eNτ )t|t=τ = −ḡN ′(τ).

Applying reasoning similar to that in the proof of an energetic inequality
from Chapter IV, §3 of Ladyzhenskaya (1973), and in the proof of an a priori
estimate from Gavrilov (2012), we conclude that

‖xN [a, g](·, ·, τ1)− xN [a, g]](·, ·, τ2)‖E1
2(QT ) ≤ T

√
C|τ1 − τ2|1/2|gN |(1)

W 1
2 (Ω)

,

(37)

‖xN [a, g](·, ·, τ)‖E1
2(QT ) ≤

√
CT |gN |(0)L2(Ω) ∀ τ, τ1, τ2 ∈ [0, T ].
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Let τ1, τ2 ∈ [0, T ] be fixed.
In analogy to the existence proof for solutions to an initial–boundary value

problem in Gavrilov (2012), we obtain that there exist a subsequence Nm, m =
1, 2, . . . , of the sequence N = 1, 2, . . . , and the functions x[a, g](·, ·, τi), i = 1, 2,
such that

xNm [a, g](·, ·, τi) → x[a, g](·, ·, τi) weak in W 1
2 (QT ), (38)

max
t∈[0, T ]

‖xNm [a, g](·, t, τi)− x[a, g](·, t, τi)‖2,Ω → 0,

‖xNm [a, g](·, ·, τi)− x[a, g](·, ·, τi)‖2,ST
→ 0, i = 1, 2, m→ ∞.

Moreover, each of functions x[a, g](·, ·, τi), i = 1, 2, is a solution to initial–
boundary value problem (28) for (x, t) ∈ Q[0, τi], and is a solution to initial–
boundary value problem (29) for (x, t) ∈ Q[τi, T ], where τ = τi, i = 1, 2. Using
the limit relations (35) and (38) together with the weak compactness of a closed
ball of Hilbert space, we get

‖x[a, g](·, ·, τ1)− x[a, g](·, ·, τ2)‖E1
2(QT ) ≤ T

√
C|τ1 − τ2|1/2|g|(2)W 1

2 (Ω)
; (39)

‖x[a, g](·, ·, τ)‖E1
2(QT ) ≤

√
CT |g|(0)L2(Ω). (40)

Thus, if g ∈ C2([0, T ],W 1
2 (Ω)), then x[a, g] ∈ C([0, T ],E1

2(QT )), and, addition-
ally, x[a, g] depends linearly on g ∈ C2([0, T ],W 1

2 (Ω)). Using the density of the
space C2([0, T ],W 1

2 (Ω)) in the space C([0, T ], L2(Ω)), and linearly depending
x[a, g] on g ∈ C2([0, T ],W 1

2 (Ω)), we obtain that x[a, g] ∈ C([0, T ],E1
2(QT )) for

all functions g ∈ C([0, T ], L2(Ω)).
Step 3. Let us prove other assertions of the Lemma. From the inequal-

ity (40) and density C2([0, T ],W 1
2 (Ω)) in C([0, T ], L2(Ω)) it follows that the

estimation (33) holds. Since, by the second step of the proof, x[a, g] ∈ C([0, T ],
E1
2(QT )) for all g ∈ C([0, T ], L2(Ω)), the functions

∫

[0,T ]

p[a, g](x, t, τ)µ(dτ),

∫

[0,T ]

pt[a, g](x, t, τ)µ(dτ),

∫

[0,T ]

pxi
[a, g](x, t, τ)µ(dτ), i = 1, n

are square summable over QT for any Radon measure µ ∈ M [0, T ]. Besides,
using a definition of generalized derivatives in the sense of Sobolev, we conclude
that

∂

∂t

∫

[0,T ]

p[a, g](x, t, τ)µ(dτ) =

∫

[0,T ]

pt[a, g](x, t, τ)µ(dτ), (41)

∂

∂xi

∫

[0,T ]

p[a, g](x, t, τ)µ(dτ) =

∫

[0,T ]

pxi
[a, g](x, t, τ)µ(dτ),

i = 1, n, (x, t) ∈ QT .
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Let us show that (32) takes place. Indeed, because p[a, g] ≡ f[a, g, δτ ], then,
writing out the corresponding integral identity, integrating this identity in τ ∈
[0, T ] by a measure µ, and taking into account (41), we get that the function

ζ(x, t) ≡
T∫

0

p[a, g](x, t, τ)µ(dτ), (x, t) ∈ QT , is a solution to the problem (27).

Because the problem (27) has a unique solution, then the equality (32) holds.
Theorem 2 is completely proved. �

Finally, let us prove the following result.

Lemma 7 Let us consider the initial–boundary value problem

ztt −
∂

∂xi
(aijzxj

+ aiz) + bizxi
+ az = f(x, t), (x, t) ∈ QT , (42)

z(x, 0) = 0, zt(x, 0) = ψ(x), x ∈ Ω,
∂z

∂N + σz = ω(s, t), (s, t) ∈ ST ,

where coefficients aij, ai, bi, a, σ satisfy the conditions (25), and f ∈ L2,1(QT ),

ψ ∈ L2(Ω), ω ∈W 0,1
2,1 (ST ).

Suppose that function z ∈ E1
2(QT ) is a solution to the problem (42), τ ∈

[0, T ]. Suppose also that a function g : Ω × [0, T ] → R has the trace g(·, τ) ∈
L2(Ω) for any τ ∈ [0, T ], and this trace depends continuously on τ ∈ [0, T ] in
the norm of the space L2(Ω). Then

∫

Ω

g(x, τ)z(x, τ)dx =

∫

QT

fp[a, g](x, t, τ)dxdt+ (43)

+

∫

Ω

ψp[a, g](x, 0, τ)dx+

∫

ST

p[a, g](s, t, τ)ωdsdt.

Proof. Because z ∈ E1
2(QT ) is a unique solution to the problem (42), then the

restriction z|Qτ
is a unique solution to the problem

ztt −
∂

∂xi
(aijzxj

+ aiz) + bizxi
+ az = f(x, t), (x, t) ∈ Qτ , (44)

z(x, 0) = 0, zt(x, 0) = ψ(x), x ∈ Ω,
∂z

∂N + σz = ω(s, t), (s, t) ∈ Sτ .

In view of (44) we can write out the following identity, which holds for all

η ∈ Ê1
2(QT ):
∫

Qτ

[−ztηt + aijzxj
ηxi

+ aizηxi
+ bizxi

η + azη]dxdt+

∫

Sτ

σzηdsdt = (45)

=

∫

Sτ

ωηdsdt+

∫

Qτ

fηdxdt+

∫

Ω

ψ(x)η(x, 0)dx; z(x, 0) = 0, x ∈ Ω.
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However, in view of the lemma’s conditions, all conditions of the unique ex-
istence theorem from Gavrilov (2012) of a solution x ∈ E1

2(QT ) to the adjoint
problem (28) are fulfilled, whence the following identity holds for all z ∈ E1

2(QT ),
z(·, 0) = 0:

∫

Qτ

[−ztxt + aijzxj
xxi

+ aizxxi
+ bizxi

x+ azx]dxdt+

∫

Sτ

σzxdsdt = (46)

=

∫

Ω

g(x, τ)z(x, τ)dx; x(x, τ) = 0, x ∈ Ω.

Substituting x[a, g] for η in (45), and substituting the solution to the problem
(44) for z in (46), and taking into account the fact that the left–hand side parts
of (45) and (46) coincide, we conclude that

∫

Ω

g(x, τ)z(x, τ)dx =

∫

Qτ

f(x, t)x[a, g](x, t, τ)dxdt+

+

∫

Ω

ψ(x)x[a, g](x, 0, τ)dx +

∫

Sτ

x[a, g](s, t, τ)ω(s, t)dsdt.

The last equality can be rewritten in the form

∫

Ω

g(x, τ)z(x, τ)dx =

∫

QT

f(x, t)x[a, g](x, t, τ)χ(t, τ)dxdt+ (47)

+

∫

Ω

ψ(x)x[a, g](x, 0, τ)χ(0, τ)dx +

∫

ST

x[a, g](s, t, τ)χ(t, τ)ω(s, t)dsdt.

According to equality (31) from Lemma 2, we have that x[a, g](x, t, τ)χ(t, τ) =
p[a, g](x, t, τ). Therefore, (47) can be rewritten in the form (43). The lemma is
completely proved. �

3.2.3. Adjoint equations of the maximum principle

In this section, we formulate facts concerning the stability of solutions of the
maximum principle’s adjoint equations under perturbations of controls. These
facts will be used to prove the main results. First of all, after having inves-
tigated the special questions of the theory of linear hyperbolic equations with
Radon measures in right–hand side parts, let us define the Pontryagin maximum
principle’s adjoint functions of p0[π

1, π2] and p1[π
1, π2], πi ≡ (ui, vi, wi) ∈ D,

i = 1, 2, by

p0[π
1, π2](x, t) ≡ p[a[π1, π2], g0[π

1, π2]](x, t, T ),

p1[π
1, π2](x, t, τ) ≡ p[a[π1, π2], g1[π

1, π2]](x, t, τ), (x, t) ∈ QT , τ ∈ [0, T ],
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where

a[π1, π2](x, t) ≡
∫ 1

0

∇za(x, t, z2(x, t) + γ∆z(x, t), u1(x, t))dγ,

g0[π
1, π2](x) ≡ −

∫ 1

0

∇zG(x, z2(x, T ) + γ∆z(x, T ))dγ,

g1[π
1, π2](x, τ) ≡ −

∫ 1

0

∇zΦ(x, z2(x, τ) + γ∆z(x, τ), v2(x) + γ∆v(x))dγ.

Here zi ≡ z[πi], i = 1, 2, ∆z ≡ z1− z2, ∆v ≡ v1 − v2. For brevity, set g0[π, π] ≡
g0[π], g1[π, π] ≡ g1[π], p0[π, π] ≡ p0[π], p1[π, π] ≡ p1[π], a[π, π] ≡ a[π]. Let us
remember that p[a, g](x, t, τ) ≡ f[a, g, δτ ](x, t), (x, t) ∈ QT , τ ∈ [0, T ], where
f[a, g, δτ ] is a solution to the problem (27) for µ = δτ .

From the assumptions on input data of problem (Pq), and from Theorem 2,
it follows that the following lemma holds.

Lemma 8 If sequences πi,k ∈ D, k = 1, 4, i = 1, 2, . . . , are such that

lim
i→∞

d(πi,1, πi,3) = 0, lim
i→∞

d(πi,2, πi,4) = 0,

then

lim
i→∞

‖p0[πi,1, πi,2]− p0[π
i,3, πi,4]‖E1

2(QT )= 0,

lim
i→∞

sup
τ∈[0,T ]

‖p1[πi,1, πi,2](·, ·, τ)− p1[π
i,3, πi,4](·, ·, τ)‖E1

2(QT ) = 0.

3.3. A calculation of first variations

In the sequel, in the definition and calculation of first variations of functionals,
the notion of an iterative limit will play the main role. Besides, the corre-
sponding generalizations of the classic notion of Lebesgue point will also play
an important role.

Definition 3 (Sumin, 1983, 1991, 2000b) Let G ⊂ Rn be an open set. A point
x ∈ G is said to be an (l,m)–Lebesgue point of a summable function f : G→ R1,
1 ≤ l ≤ m ≤ n, if f(x) 6= ∞ and

lim
h→0

1

(2h)m−l+1

xl+h∫

xl−h

. . .

xm+h∫

xm−h

|f(x1, . . . , xl−1, y1, . . . , ym−l+1, xm+1, . . . , xn)−

−f(x)|dy1 . . . dym−l+1 = 0.

It is easy to see that an (1, n)–Lebesgue point is a Lebesgue point in usual sense,
Stane (1970).
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Lemma 9 (Sumin, 1983, 1991, 2000b, 2009) For any fixed l,m, 1 ≤ l ≤ m ≤ n,
almost all points of an open set G are (l,m)–Lebesgue points of a summable
function f : G→ R1.

On the basis of these notions and results, we calculate the first variations of
functionals I0(·) and I1(·)(τ) ∀τ ∈ [0, T ]. Let π ≡ (u, v, w) ∈ D be arbitrary.
Let us construct a collection of variation parametersm ≡ ({(xi, ti), γi,r, ui,r, i =
1, i1, r = 1, r0(i)}, ṽ, w̃), where (xi, ti) ∈ QT , γ

i,r ≥ 0, i = 1, i1, r = 1, r0(i),
i1∑

i=1

r0(i)∑

r=1

γi,r ≤ 1, ṽ ∈ D2, w̃ ∈ D3, u
i,r ∈ U∗, i = 1, i1, r = 1, r0(i); U

∗ ⊆ U is a

countable set, U∗ is everywhere dense in U . Let us denote the set of all such
collections m by M.

A triple πε ≡ (uε, vε, wε) ∈ D is called a variation of triple π ≡ (u, v, w) ∈ D,
where ε ≡ (ε1, ε2), ε1, ε2 > 0, 0 ≤ ε1, ε2 ≤ ε0 < 1, if

uε(x, t) ≡







ui,r, (x, t) ∈ Qε
i,r, i = 1, i1, r = 1, r0(i);

u(x, t), (x, t) ∈ QT \
i1⋃

i=1

r0(i)⋃

r=1

Qε
i,r;

vε(x) ≡ v(x) + εn1 ε2(ṽ(x) − v(x)) ≡ v(x) + εn1 ε2δv(x), x ∈ Ω;

wε(s, t) ≡ w(s, t) + εn1 ε2(w̃(s, t)− w(s, t))≡w(s, t) + εn1ε2δw(s, t), (s, t) ∈ ST ;

where Qε
i,r ≡ Qε1,ε2

i,r ≡ Qε1
i,r,1 × Qε2

i,r,2, Q
ε1
i,r,1 ≡

n∏

α=1
(xiα − ε1, x

i
α − ε1(r − 1)],

Qε2
i,r,2 ≡ (ti−ε2

r∑

α=1
γi,α, ti−ε2

r−1∑

α=1
γi,α]. Here, ε0 > 0 is a small enough number

depending on γi,r and (xi, ti), i = 1, i1, r = 1, r0(i), such that sets Qε0
i ≡

Qε0
i,1 × Qε0

i,2 ≡
n∏

α=1
[xiα − ε0r0(i), x

i
α] × [ti − ε0

r0(i)∑

α=1
γi,α, ti]), i = 1, i0(i), do not

pairwise intersect.
Let us formulate the following obvious result.

Lemma 10 There exists a constant L ≡ 1+measV +diamW such that for any
π ≡ (u, v, w) ∈ D

d(π, πε) ≤ Lεn1ε2.

Now, let us prove that the following lemma holds.

Lemma 11 1) For any triple π ≡ (u, v, w) ∈ D there exists a subset Q0[π] ⊆
QT such that measQ0[π] = measQT and for all m ≡ ({(xi, ti), γi,r, ui,r, i =
1, i1, r = 1, r0(i)}, ṽ, w̃) ∈ M, (xi, ti) ∈ Q0[π], i = 1, i1, there exists a variation

δI0(π;m) ≡ lim
ε1→+0

1

εn1
lim

ε2→+0

I0(πε1,ε2)− I0(π)

ε2
.
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In addition, the following representation holds

δI0(π;m) ≡
∫

Ω

[p0[π](x, 0) +∇vG(x, z[π](x, T ), v)]δvdx +

∫

ST

p0[π](s, t)δwdsdt−

−
i1∑

i=1

r0(i)∑

r=1

γi,rp0[π](x
i, ti)∆ua(x

i, ti, z[π](xi, ti);ui,r, u(xi, ti)).

2) For any point τ ∈ [0, T ] and any triple π ≡ (u, v, w) ∈ D there exists a
subset Q1[π, τ ] ⊆ QT such that measQ1[π, τ ] = measQT and for all collections
m ≡ ({(xi, ti), γi,r, ui,r, i = 1, i1, r = 1, r0(i)}, ṽ, w̃) ∈ M, (xi, ti) ∈ Q1[π, τ ],
i = 1, i1, there exists a variation

δI1(π, τ ;m)≡ lim
ε1→+0

1

εn1
lim

ε2→+0

I1(πε1,ε2)(τ) − I1(π)(τ)

ε2
.

This variation can be represented in the form

δI1(π, τ ;m) ≡
∫

Ω

[p1[π](x, 0, τ) +∇vΦ(x, τ, z[π](x, τ), v)]δvdx +

∫

ST

p1[π](s, t, τ)δwdsdt

−
i1∑

i=1

r0(i)∑

r=1

γi,rp1[π](x
i, ti, τ)∆ua(x

i, ti, z[π](xi, ti);ui,r, u(xi, ti)).

Proof. Let us prove only the second assertion of the lemma, because the
calculation of the iterative limit δI0(π;m) is completely analogous.

Let a triple π ≡ (u, v, w) ∈ D be fixed. By linearizing the equation (2), and
setting zε ≡ z[πε], z ≡ z[π], ∆εz ≡ zε − z, ∆εv ≡ vε − v, ∆εw ≡ wε − w, we
obtain that

∆εztt −
∂

∂xi
(aij∆εzxj

+ ai∆εz) + bi∆εzxj
+ a[πε, π]∆εz = −∆ua(x, t, z;uε, u);

∆εz|t=0 = 0, ∆εzt|t=0 = ∆εv, x ∈ Ω;
∂(∆εz)

∂N + σ∆εz = ∆εw, (s, t) ∈ ST .

As we linearize the increment ∆εI1(τ) ≡ I1(πε)(τ) − I1(π)(τ) of the func-
tional I1(·)(τ), we obtain

∆εI1(τ) =

∫

Ω





1∫

0

∇vΦ(x, τ, z(x, τ) + y∆εz(x, τ), v(x) + y∆εv(x))dy



∆εv(x)dx−

−
∫

Ω

g1[πε, π](x, τ)∆εz(x, τ)dx.
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By applying Lemma 7 to the last equality, we obtain

∆εI1(τ) =

=

{
∫

Ω

[

p1[πε, π](x, 0, τ) +

1∫

0

∇vΦ(x, τ, z(x, τ) + y∆εz(x, τ), v + y∆εv)dy

]

∆εvdx

+

∫

ST

p1[πε, π](s, t, τ)∆εwdsdt

}

+

{

−
∫

QT

∆εp1(x, t, τ)∆ua(x, t, z;uε, u)dxdt

}

+

+

{

−
∫

QT

p1[π](x, t, τ)∆ua(x, t, z;uε, u)dxdt

}

≡ {∆εI
(1)
1 (τ)} + {∆εI

(2)
1 (τ)} + {∆εI

(3)
1 (τ)}.

Here ∆εp1 ≡ p1[πε, π]− p1[π].
Using assumptions on an integrand Φ, Lemma 2, Lemma 8, and the definition

of variation πε of controls, we conclude that

lim
ε1→+0

1

εn1
lim

ε2→+0

∆εI
(1)
1 (τ)

ε2
=

∫

Ω

[∇vΦ(x, τ, z(x, τ), v) + p1[π](x, 0, τ)]δvdx+

(48)

+

∫

ST

p1[π](s, t, τ)δwdsdt.

Let

bi,r(x, t) ≡
{

−∆ua(x, t, z(x, t);u
i,r, u(x, t)), (x, t) ∈ Qε0

i,r;

0, (x, t) ∈ R
n+1 \Qε0

i,r;

Bi,r(t) ≡ ‖bi,r(·, t)‖2,Rn .

It is not difficult to see that Bi,r ∈ L1(R). Hence,

bi,r(·, t) ∈ L2(R
n) for a.e. t ∈ [0, T ].

Let us introduce a maximal function

(MBi,r)(t) ≡ sup
δ>0

1

2δ

t+δ∫

t−δ

|Bi,r(κ)|dκ.

By virtue of the classical maximal function theorem (see, e.g., proposition
a) of Theorem 1 on p.15 in Stane, 1970),

(MBi,r)(t) is finite for a.e. t ∈ R
1, i = 1, i1, r = 1, r0(i). (49)
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Let us require that the following assumptions on points (xi, ti) be fulfilled:
1) points (xi, ti), i = 1, i1, are (1, n+ 1), (1, n)–Lebesgue points (t ≡ xn+1)

(see Definition 3) of all functions

−p1[π](·, ·, τ)∆ua(·, ·, z(·, ·);u′, u(·, ·)), u′ ∈ U∗; (50)

2) almost all points of sectionsQti

T ≡ {(x, t) ∈ QT : (x, t) = (x, ti)}, i = 1, i1,
are (n+ 1, n+ 1)–Lebesgue points of all functions (50);

3) the following conditions hold:

(MBi,r)(t
i) is finite, i = 1, i1, r = 1, r0(i).

Due to Lemma 9 and conditions (49), such selection of points (xi, ti) is
possible, and, additionally, the Lebesgue measure of the set Q1[π, τ ] of all such
points coincides with the Lebesgue measure of the cylinder QT .

Let us calculate a similar limit for the summand ∆εI
(2)
1 (τ):

∣
∣
∣
∣
∣

∆
(2)
ε I(τ)

ε2

∣
∣
∣
∣
∣
≤

i1∑

i=1

r0(i)∑

r=1

∫

Q
ε1
i,r,1

[

1

ε2

∫

Q
ε2
i,r,2

|∆εp1(x, t, τ)||bi,r(x, t)|dt
]

dx =

=
1

ε2

i1∑

i=1

r0(i)∑

r=1

∫

Q
ε2
i,r,2

dt

∫

Q
ε1
i,r,1

|∆εp1(x, t, τ)||bi,r(x, t)|dx ≤

≤ 1

ε2

i1∑

i=1

r0(i)∑

r=1

∫

Q
ε2
i,r,2

‖∆εp1(·, t, τ)‖2,Qε0
i,1
‖bi,r(·, t)‖2,Qε0

i,1
dt ≤

≤ sup
ξ∈[0,T ]

‖∆εp1(·, ·, ξ)‖E1
2(QT )

i1∑

i=1

r0(i)∑

r=1

1

ε2

∫

Q
ε2
i,r,2

‖bi,r(·, t)‖2,Qε0
i,1
dt ≤

≤ sup
ξ∈[0,T ]

‖∆εp1(·, ·, ξ)‖E1
2(QT )

i1∑

i=1

r0(i)∑

r=1

2δi,r
1

2ε2δi,r

ti+ε2δ
i,r

∫

ti−ε2δi,r

‖bi,r(·, t)‖2,Qε0
i,1
dt ≤

≤ sup
ξ∈[0,T ]

‖∆εp1(·, ·, ξ)‖E1
2(QT )

i1∑

i=1

r0(i)∑

r=1

2δi,r(MBi,r)(t
i),

where δi,r =
r∑

l=1

γi,l.

Hence, in view of Lemma 8, the definition of a variation πε, and conditions
on points (xi, ti),

lim
ε1→+0

1

εn1
lim

ε2→+0

∆εI
(2)
1 (τ)

ε2
= 0. (51)
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Using the notation introduced before, let us rewrite the expression for ∆εI
(3)
1 (τ):

1

ε2
∆εI

(3)
2 (τ) ≡

i1∑

i=1

r0(i)∑

r=1

∫

Q
ε1
i,r,1





1

ε2

∫

Q
ε2
i,r,2

bi,r(x, t)p1[π](x, t, τ)dt




 dx.

Using a maximal function definition, the classical Lebesgue dominated con-
vergence theorem, and the (l,m)–Lebesgue points definition, we obtain that

lim
ε1→+0

1

εn1
lim

ε2→+0

1

ε2
∆εI

(3)
1 (τ) = −

i1∑

i=1

r0(i)∑

r=1

γi,rp1[π](x
i, ti, τ)∆ua(x

i, ti, z[π](xi, ti);

ui,r, u(xi, ti)).

Combining this equality, (48) and (51), we get second assertion of the lemma.
This completes the proof of the lemma. �

4. Main results

The main results of the present paper deal with the necessary conditions for
elements of minimizing sequences, that is, the Pontryagin maximum principle
for m.a.s. and the properties of normality, regularity, and sensitivity. In the
sequel, we use the following standard notation: H(x, t, z, u, η) ≡ −ηa(x, t, z, u).

The following theorem gives us the necessary conditions for a m.a.s. which
this being referred to as the maximum principle for the m.a.s.

Theorem 3 Let πi ≡ (ui, vi, wi) ∈ D, i = 1, 2, . . . , be an m.a.s. to the prob-
lem (Pq); then there exist a sequence of numbers γi > 0, i = 1, 2, . . . , γi → 0,
i → ∞, a sequence of nonnegative numbers λi, i = 1, 2, . . . , and a sequence of
nonnegative Radon measures µi ∈M(X), i = 1, 2, . . . , where µi is concentrated
on the set

Xi ≡ {τ ∈ X : |I1(πi)(τ) − q(τ)| ≤ γi}, (52)

such that the following conditions are fulfilled:
a) the nontriviality condition of the Lagrange multipliers:

πi ∈ Dγi

q , λ
i + ‖µi‖ = 1; (53)

b) the maximum condition with respect to u:

∫

QT

[max
u′∈U

H(x, t, z[π], u′, η[π, λ, µ](x, t))− (54)

−H(x, t, z[π], u(x, t), η[π, λ, µ](x, t))]dxdt ≤ γ,
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c) the transversality condition with respect to v:

max
v′∈D2

{
∫

Ω

[η[π, λ, µ](x, 0) + λ∇vΦ(x, z[π](x, T ), v(x))](v(x) − v′(x))dx+

(55)

+

∫

X

µ(dτ)

∫

Ω

∇vΦ(x, τ, z[π](x, τ), v(x))(v(x) − v′(x))dx

}

≤ γ,

d) the transversality condition with respect to w:

max
w′∈D3

∫

ST

η[π, λ, µ](s, t)(w(s, t) − w′(s, t))dsdt ≤ γ, (56)

for π = πi, λ = λi, µ = µi, γ = γi, i = 1, 2, . . . .
Here η[π, λ, µ] is a solution to the adjoint initial–boundary value problem

ηtt −
∂

∂xi
(aijηxj

+ biη) + aiηxi
+∇za(x, t, z[π], u)η = ∇zΦ(x, t, z[π], v)µ(dt),

(57)

η|t=T = 0, ηt|t=T = −λ∇zG(x, z[π](x, T ), v(x)), x ∈ Ω,

[
∂η

∂N ′
+ ση

]∣
∣
∣
∣
ST

= 0,

where ∂η
∂N ′

≡ (aij(x, t)ηxj
+ bi(x, t)η) cosαi(x, t).

It follows from Theorem 3 that, under the condition I0(π
0) = β(q), control

π0 ∈ D0
q satisfies the ordinary maximum principle for πi ≡ π0, γi ≡ 0, (λi, µi) ≡

(λ, µ), i = 1, 2, . . .
Next, following, say, Sumin (1997, 2000c, d), we introduce some natural

definitions.

Definition 4 A sequence πi ∈ D, i = 1, 2, . . . , is said to be stationary in
problem (Pq) if there exists a sequence of nonnegative numbers γi → 0, i→ ∞,
and a bounded sequence of pairs (λi, µi), where λi > 0, and µi ∈ M [0, T ] is a

nonnegative Radon measure concentrated on the set Xi, such that πi ∈ Dγi

q , i =
1, 2, . . . , inequalities (54)–(56) are satisfied, and all limit points of the sequence
of pairs (λi, µi), i = 1, 2, . . . , (in the ∗-weak sense for the second component),
are nonzero.

Definition 5 A stationary sequence πi ∈ D, i = 1, 2, . . . , in problem (Pq) is
said to be normal if the first components of all limit points of each corresponding
sequence (λi, µi), i = 1, 2, . . . , are nonzero. Problem (Pq) is said to be normal
if all of its stationary sequences are normal. A stationary sequence πi ∈ D,
i = 1, 2, . . . , in problem (Pq) is said to be regular if the first components of all
limit points of some corresponding sequence (λi, µi), i = 1, 2, . . . , are nonzero.
Problem (Pq) is said to be regular if there exist regular stationary sequences in
it.
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Next, let us state that regularity and normality conditions for the problem
(Pq) (e.g., see Sumin, 2000c, d). Consideration of such conditions is possible
owing to the presence of a parameter in the original optimization problem. First,
let us state a theorem on the stability of the optimal value of problem (Pq) in
the case of its normality.

Theorem 4 If problem (Pq) is normal, then its value function β satisfies the
Lipschitz condition in a neighborhood of the point q ∈ C(X).

It turns out that the converse assertion holds in a sense as well.

Theorem 5 Let the value function β of problem (Pq) satisfy the Lipschitz con-
dition in a neighborhood of the point q. Then problem (Pq′ ) has regular m.a.s.
for all q′ in that neighborhood.

In the general case, where the value function β(q) does not necessarily possess
the Lipchitz property, we have the following general result.

Theorem 6 For any point q ∈ domβ ≡ {q′ ∈ C(X) : β(q′) < +∞} and any
continuous positive function ξ ∈ C(X) all m.a.s. are regular in problem (Pq′)
for almost all points q′ on the ray {q + tξ : t > 0}, i.e., the property that any
m.a.s. in problem (Pq+tξ) with these q and ξ is regular is a property of general
position for t > 0.

5. Proof of the main results

In this section, we prove the main results, essentially related to the presence of
a parameter in problem (Pq).

Proof of Theorem 3. Suppose πk ≡ (uk, vk, wk), k = 1, 2, . . . , is a m.a.s.
in problem (Pq). Consider the problem

J(π) → inf, π ∈ D, (58)

where J(π) ≡ max{I0(π) − β(q), I1(π)(τ) − q(τ), τ ∈ X}. Obviously, the
sequence πk, k = 1, 2, . . . , is also a minimizing sequence in problem (58),
and the value of problem (58) is equal to zero. Let X̂k ≡ {τk, j : j =
1, . . . , lk} ⊂ X be a 1/k-net in X , X̂k ⊆ X̂k+1, k = 1, 2, . . . . Consider the
family of auxiliary problems Jk(π) → inf, π ∈ D, where Jk(π) ≡ max{I0(π) −
β(q); I1(π)(τ) − q(τ), τ ∈ X̂k}. By virtue of Lemma 3, a functional Jk(·) is
continuous and bounded on D. Using a precompactness of the family {I1(π) :
π ∈ D} ⊂ C(X) in the space C(X) (see Lemma 3), it is not difficult to
show that lim

k→∞
inf
π∈D

Jk(π) = inf
π∈D

J(π) = lim
k→∞

J(πk) = 0. It follows that

there exists a sequence κ
k ≥ 0, k = 1, 2, . . . , κ

k → 0, k → ∞, such that
Jk(π

k) ≤ inf
π∈D

Jk(π)+κ
k. Hence, according to the Ekeland variational principle

(Ekeland, 1974), there exists a sequence π̄k ≡ (ūk, v̄k, w̄k) ∈ D, k = 1, 2, . . . ,
such that for any k = 1, 2, . . . , π̄k is a solution to the problem

Jk(π) +
√
κkd(π̄k, π) → min, π ∈ D, (59)
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and

d(πk, π̄k) ≤
√
κk, Jk(π̄

k) ≤ Jk(π
k). (60)

Suppose π ∈ D, I ∈ R. By definition, put

Îj(π) =

{

I0(π), j = 0;

I1(π)(τ
k,j), j = 1, lk;

Fj(I) =

{

I − β(q), j = 0;

I − q(τk,j), j = 1, lk.

Then, obviously, Jk(π) ≡ max
s=0,lk

Fj(Îj(π)). Let Γk ≡ {j = 0, lk : Jk(π̄
k) =

Fj(Îj(π̄
k))}. Then

Jk(π̄
k) = Fj(Îj(π̄

k)), j ∈ Γk; Jk(π̄
k) > Fj(Îj(π̄

k)), j 6∈ Γk.

Let k̄ be the number of elements in Γk. We introduce the first variations
vector

δÎ(π̄k;m) ≡ (δÎ0(π̄
k;m), δÎ1(π̄

k;m), . . . , δÎlk(π̄
k;m)) ∈ Rlk+1.

By K(π̄k) we denote the set of all first variations vectors. Using standard meth-
ods of optimal control, it can be shown that K(π̄k) is convex. Let us project
K(π̄k) on the subspace of Rlk+1 spanned vectors ej , j ∈ Γk (ej , j = 0, lk, is
the standard basis of Rlk+1), and let us denote the projection by Kk̄(π̄

k). Con-

sider the set K−
k̄

≡ { ∑
j∈Γk

xjej : xj ≤ −2L
√
κk, j ∈ Γk}, where the constant

L ≡ 1 + measV + 2A is defined in Lemma 10. Let us show that the following
lemma holds.

Lemma 12 K−
k̄
∩Kk̄(π̄

k) = ∅.

Proof Assume the converse. Then, there exists m ∈ M such that δÎj(π̄
k;m) ≤

−2L
√
κk, j ∈ Γk. In view of first variations’ form of functionals in Lemma 11,

we get Fj(Îj(π̄
k
ε ))−Fj(Îj(π̄

k)) = Îj(π̄
k
ε )−Îj(π̄k) = εn1 ε2δÎj(π̄

k;m)+εn1 ε2ω1(ε1)+
ε2ω2(ε1, ε2), where ω1 and ω2 are such that lim

ε2→0
ω2(ε1, ε2) = lim

ε1→0
ω1(ε1) = 0.

Hence,

Fj(Îj(π̄
k
ε ))− Fj(Îj(π̄

k)) = Îj(π̄
k
ε )− Îj(π̄

k) = εn1 ε2δÎj(π̄
k;m) + εn1 ε2ω1(ε1)+

+ε2ω2(ε1, ε2) ≤ −19

10
Lεn1ε2

√
κk + εn1 ε2ω1(ε1) +

[

−19

10
Lεn1

√
κk + ω2(ε1, ε2)

]

ε2 <

< −19

10
Lεn1 ε2

√
κk + ε1ε

n
2ω1(ε1) = −9

5
Lεn1ε2

√
κk +

[

− 1

10
L
√
κk + ω1(ε1)

]

εn1 ε2 <

< −9

5
Lεn1ε2

√
κk
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for all small enough ε. Therefore, Fj(Îj(π̄
k
ε )) ≤ Fj(Îj(π̄

k))− 9
5Lε

n
1 ε2

√
κk,

j ∈ Γk. According to Lemma 10, it follows that

Fj(Îj(π̄
k
ε )) +

√
κkd(π̄k

ε , π̄
k) ≤ Fj(Îj(π̄

k))− 9

5
Lεn1ε2

√
κk + Lεn1 ε2

√
κk+

+
√
κkd(π̄k, π̄k) = Jk(π̄

k) +
√
κkd(π̄k, π̄k)− 4

5
Lεn1 ε2

√
κk.

Thus, Jk(π̄
k
ε ) +

√
κkd(π̄k

ε , π̄
k) < Jk(π̄

k) +
√
κkd(π̄k, π̄k). But this contradicts

the optimality of π̄k in problem (59). The lemma is proved. �

Since K−
k̄
∩ Kk̄(π̄

k) = ∅, these sets are separable; i.e., there exists a vector

λk̄ ∈ Rk̄, λk̄j > 0, j ∈ Γk,
∑

j∈Γk

λk̄j = 1, such that

∑

j∈Γk

λk̄j δÎj(π̄
k;m) >

∑

j∈Γk

λk̄j xj ∀m ∈ M ∀x =
∑

j∈Γk

xjej ∈ K−
k̄
.

Putting xj = −2L
√
κk, j ∈ Γk, in the last inequality, and completing vectors

λk̄ ∈ Rk̄ to vectors λk ∈ Rlk+1 by zeros, we conclude that

λkj > 0, j = 0, . . . , lk; λk0 +

lk∑

j=1

λkj = 1; (61)

λkj (Jk(π̄
k)− (I1(π̄

k)(τk, j)− q(τk, j))) = 0, j = 1, . . . , lk; (62)

λk0δI0(π̄
k;m) +

lk∑

j=1

δI1(π̄
k, τk,j ;m) > −2L

√
κk, ∀m ∈ M. (63)

In view of the first variations expressions (see Lemma 11), it follows from the
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last inequality that

H(x, t, z[π̄k](x, t), u, λk0p0[π̄
k](x, t) +

lk∑

j=1

λkj p1[π̄
k](x, t, τk, j))− (64)

−H(x, t, z[π̄k](x, t), ūk(x, t), λk0p0[π̄
k](x, t) +

lk∑

j=1

λkj p1[π̄
k](x, t, τk, j)) ≤ 2L

√
κk

∀u ∈ U for a.e. (x, t) ∈ QT ;

∫

Ω



λk0p0[π̄
k](x, 0) +

lk∑

j=1

λkj p1[π̄
k](x, 0, τk,j)



 (v̄k(x)− ṽ(x)) dx+ (65)

+

lk∑

j=1

λkj

∫

Ω

∇vΦ(x, τ
k,j , z[π̄k](x, τk,j), v̄k)(v̄k(x) − ṽ(x))dx ≤ 2

√
κk ∀ ṽ ∈ D2;

∫

ST

[λk0p0[π̄
k](s, t) +

lk∑

j=1

λkj p1[π̄
k](s, t, τk,j)](w̄k − w̃) dsdt ≤ 2

√
κk ∀ w̃ ∈ D3.

(66)

By definition, we put µk ≡
lk∑

j=1

λkj δτk,j , where δτ is a Radon δ–measure con-

centrated in the point τ . Then,
lk∑

j=1

λkj p1[π̄
k](x, t, τk,j) =

∫

X

p1[π̄
k](x, t, τ)µk(dτ).

According to Theorem 2,

∫

X

p1[π̄
k](x, t, τ)µk(dτ) ≡ f[a[π̄k], g1[π̄

k], µk](x, t).

Hence, relations (61), (62), (64)–(66) can be rewritten in the form

λk0 > 0, λk0 + ‖µk‖ = 1; (67)

‖µk‖Jk(π̄k)−
∫

X

[I1(π̄
k)(τ) − q(τ)]µk(dτ) = 0; (68)

H(x, t, z[π̄k](x, t), u, η[π̄k, λk0 , µ
k](x, t)) −H(x, t, z[π̄k](x, t), ūk(x, t), (69)

η[π̄k, λk0 , µ
k](x, t)) ≤ 2L

√
κk ∀ u ∈ U for a.e. (x, t) ∈ QT ;
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∫

X

µk(dτ)

∫

Ω

∇vΦ(x, τ, z[π̄
k](x, τ), v̄k(x))(v̄k(x) − ṽ(x))dx+ (70)

+

∫

Ω

η[π̄k, λk0 , µ
k](x, 0)(v̄k(x) − ṽ(x))dx ≤ 2L

√
κk ∀ ṽ ∈ D2;

∫

ST

η[π̄k, λk0 , µ
k](s, t)(w̄k − w̃) dsdt ≤ 2L

√
κk ∀ w̃ ∈ D3. (71)

Using assumptions on source data of problem (Pq), Lemma 2, Lemma 8, the
first inequality in (60), from relations (69), (70), and (71) we obtain relations
(54), (55), and (56) respectively. From the second inequality in (60), relation
(68), and the uniform continuity of I1 on D (see Lemma 3), it follows that the
nondegenerate condition holds, and the measure µk is concentrated on the set
Xk. This completes the proof of Theorem 3. �

Let us approximate the original problem with PSC by problems with finitely
many functional constraints. We denote a 1/k-net in X by X̂k ≡ {τk, j : j =
1, . . . , lk} ⊂ X , X̂k ⊆ X̂k+1, k = 1, 2, . . . Consider a sequence of families of
optimization problems depending on the vector parameter qk ≡ (qk1 , . . . , q

k
lk
) ∈

Rlk and approximating the original family (Pq):
(P k

qk )

I0(π) → inf, Ik(π) ∈ Mk + qk, π ∈ D, qk ∈ Rlk being a parameter,

where Mk ≡ {y ∈ Rlk : yi ≤ 0, i = 1, . . . , lk}, Ik(π) ≡ (Ik1 (π), . . . , I
k
lk
(π)),

Iki (π) ≡ I1(π)(τ
k, i), and τk, i ∈ X̂k. Just as in problem (Pq), in problem (P k

qk )

the value function βk : Rlk → R ∪ {+∞} is defined by

βk(q
k) ≡ lim

ε→+0
βk, ε(q

k), βk, ε(q
k) ≡ { inf

π∈Dk, ε

qk

I0(π), Dk, ε
qk

6= ∅; +∞, Dk, ε
qk

= ∅},

where Dk, ε
qk

≡ {π ∈ D : Ikj (π) ≤ qkj + ε, j = 1, . . . , lk}. We have the following
approximation lemma, which is similar to the corresponding lemmas in Gavrilov
and Sumin (2004, 2005), Sumin (2000d), and follows from the precompactness
of the image of the operator I1 in C(X) (see Lemma 1.4 in Gavrilov and Sumin,
2011a).

Lemma 13 Let β(q) < +∞ and q ∈ C(X). Then the sequence of vectors q̄k ∈
Rlk , q̄k ≡ (q̄k1 , . . . , q̄

k
lk
), q̄ki = q(τk, i), i = 1, . . . , lk, k = 1, 2, . . . , satisfies the

limit relation βk(q̄
k) → β(q), k → ∞.

In the sequel, we need the following definition and results fromMordukhovich
(1976, 1988, 2006a, b) (see also Mordukhovich and Shao, 1996). Suppose that
A ⊂ Rs is a nonempty closed set, ε > 0, and x ∈ A. The nonempty set

N̂(x; A) ≡
{

x∗ ∈ Rs : lim sup
u

A
→x

〈x∗, u− x〉
|u− x| ≤ 0

}
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is called the cone of Fréchet normals to the set A at the point x. We define
the Mordukhovich basic/limiting normal cone at a point x̂ ∈ A by the formula
N(x̂; A) ≡ lim sup

x
A
→x̂

N̂(x; A) (see Mordukhovich, 1976, 1988, 2006a, b).

For a lower semicontinuous function f : Rs → R∪{+∞} and for x̄ ∈ domf ,

the Fréchet subdifferential ∂̂f(x̄) of the function f at the point x̄ ∈ dom f is
given by the relation

∂̂f(x̄) ≡
{

x∗ ∈ Rs : lim inf
x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
|x− x̄| > 0

}

,

or, which is equivalent, by the relation

∂̂f(x̄) ≡
{

x∗ ∈ Rs : (x∗,−1) ∈ N̂((x̄, f(x̄)); epif)
}

.

For any x̄ ∈ domf , the sets

∂f(x̄) ≡ {x∗ ∈ Rs : (x∗,−1) ∈ N((x̄, f(x̄)); epif)},
∂∞f(x̄) ≡ {x∗ ∈ Rs : (x∗, 0) ∈ N((x̄, f(x̄)); epif)}

are referred to as the subdifferential and the singular subdifferential, respec-
tively, of the function f at the point x̄ in the sense of Mordukhovich (1976,
1980). If f is a lower semicontinuous function, then

∂f(x̄) = lim sup

x
f
→x̄

∂̂f(x), ∂∞f(x̄) = lim sup

x
f
→x̄; ε̄↓0

ε̄∂̂f(x), (72)

where x
f→ x̄ means that x → x̄, f(x) → f(x̄). We have ∂∞f(x̄) = {0} if the

function f satisfies the Lipschitz condition in a neighborhood of the point x.
The following assertion holds (Mordukhovich 2006a, b, see also Mordukhovich
and Shao, 1996).

Lemma 14 Let A ⊂ Rs be a nonempty closed set. Then the set {x ∈ A :
N̂(x;A) 6= {0}} that is, the set of all boundary points of A at which there exists
a nonzero Fréchet normal, is everywhere dense in the set of all boundary points
of A. In addition, for any lower semicontinuous function f : Rs → R ∪ {±∞}
the set {x ∈ domf : ∂̂f(x) 6= ∅} is everywhere dense in domf .

The definition of a Fréchet subdifferential of a function f at a point x directly
implies the following assertion.

Lemma 15 Let f : Rs → R ∪ {±∞} be a lower semicontinuous function, and
let x ∈ domf . If (x∗,−η) ∈ N̂((x, f(x)); epi f), η > 0, then for each ε > 0 there
exists a neighborhood Sε of x such that ηf(x′)−ηf(x)−〈x∗, x′−x〉+ε|x′−x| >
0 ∀x′ ∈ Sε.

The following lemma on the relationship of Lagrange multipliers and Fréchet
normals holds.



Sequential optimization for semilinear divergent hyperbolic equation 221

Lemma 16 Let βk(q
k) < ∞ and let (ζk,−κ

k) ∈ N((qk, βk(q
k)); epiβk) be an

arbitrary vector. Then there exist a sequence of nonnegative numbers γi → 0,

i→ ∞, a sequence of controls πi ∈ Dk,γi

qk
, i = 1, 2, . . . , and a bounded sequence

of Lagrange multipliers λi ≡ (λi0, λ
i
1, . . . , λ

i
lk
) ∈ Rlk , i = 1, 2, . . . , such that

|λi| 6= 0, λij > 0, j = 0, lk; λij(I
k
j (π

i)− qkj ) > −γi, j = 1, lk, (73)

inequalities (54)–(56) hold for π = πi, α = λi0, µ = µi ≡
lk∑

j=1

λijδτk,j , γ = γi,

and the relation

ζk +

lk∑

j=1

λje
j = 0, (74)

holds, where λ ≡ (κk, λ1, . . . , λlk) 6= 0 is some limit point of the sequence of
vectors λi, i = 1, 2, . . . ; δτ is the Radon δ-measure concentrated at a point
τ ∈ X; and

ej ≡ (0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0) ∈ Rlk .

Proof. The proof is similar to that of Lemma 6.4 in Gavrilov and Sumin
(2011b), and so it is omitted here.

Let us give the following natural definitions.

Definition 6 A sequence of controls πi ∈ D, i = 1, 2, . . . , is said to be sta-

tionary in problem (P k
qk ) if there exists a bounded sequence of vectors λi ≡

(λi0, λ
i
1, . . . , λ

i
lk
) ∈ Rlk+1, i = 1, 2, . . . , and a sequence of nonnegative numbers

γi, γi → 0, such that πi ∈ Dk,γi

qk
, relations (73) are satisfied, inequalities (54)–

(56) hold for π = πi, α = λi0, µ = µi ≡
lk∑

j=1

λijδτk,j , and γ = γi, and all limit

points of the sequence λi, i = 1, 2, . . . , are nonzero.

Definition 7 A stationary sequence πi ∈ D, i = 1, 2, . . . , in problem (P k
qk) is

said to be normal if the first components of all limit points of each corresponding
sequence of vectors λi, i = 1, 2, . . . , are nonzero. Problem (P k

qk) is said to be
normal if all of its stationary sequences are normal.

A stationary sequence πi ∈ D, i = 1, 2, . . . , in problem (P k
qk ) is said to be

regular if the first components of all limit points of some corresponding sequence
of vectors λi, i = 1, 2, . . . , are nonzero. Problem (P k

qk) is said to be regular if
there exist regular stationary sequences in it.

We introduce the sets of multipliers

Lk, ν
qk

≡ {−
lk∑

j=1

λje
j ∈ Rlk : λ = (λ0, λ1, . . . , λlk) ∈ Rlk+1, λ 6= 0, λ0 = ν, in
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problem (P k
qk ), there exists a stationary sequence for which the corresponding, in

accordance with the definition of a stationary sequence, sequence of vectors λi,
i = 1, 2, . . . , has the limit point being the vector λ}, ν = 0, 1;Mk, 0

qk
≡ Lk, 0

qk
∪{0},

and Mk, 1
qk

≡ Lk, 1
qk

.
The following assertion is a straightforward consequence of Lemma 16 and

the definition of generalized subdifferentials Mordukhovich (2006a, b), Mor-
dukhovich and Shao (1996).

Theorem 7 Let βk(q
k) < +∞. Then ∂βk(q

k) ⊆Mk, 1
qk

and ∂∞βk(q
k) ⊆Mk, 0

qk
,

where ∂βk and ∂∞βk are the ordinary and singular generalized subdifferentials,
respectively, in the sense of Mordukhovich (1976, 1980).

From Theorem 3.52 in Mordukhovich (2006a) (see also Corollary 8.5 in Mor-
dukhovich and Shao, 1996) and Theorem 7, we obtain the following important
result, in which the finite dimension of the space Rlk plays an important role.

Lemma 17 If in some neighborhood Oqk of the point qk all problems (P k
yk),

yk ∈ Oqk , are normal, i.e., Mk, 0
yk = {0}, yk ∈ Oqk , and moreover, the sets Mk, 1

yk

are uniformly bounded by a constant K in some norm ‖ · ‖ (for example, the
Euclidean norm | · |), then the value function βk satisfies the Lipschitz condition
in the norm dual to ‖ · ‖ on Oqk with the same constant K.

In addition, the lower semicontinuity of the value function of the approx-
imating problem, its monotonicity with respect to each of lk arguments, the
results in Ward (1935), and Lemma 16 imply the following assertion.

Theorem 8 If the condition ∂̂βk(q
k) 6= ∅ is satisfied in problem (P k

qk), then

problem (P k
qk ) is regular. The set of all such points qk ∈ Rlk has full measure

in domβk.

Proof of Theorem 4. The proof of this theorem is similar to the proof of
Theorem 5.2 in Gavrilov and Sumin (2011b), and so it is omitted here.

Proof of Theorem 5. Let us state the main idea of the proof. We consider
the family of problems (P̄ρ) ≡ (Pq+ρq̃), depending on a real parameter ρ, with
q̃ ≡ 1. Since the function β satisfies the Lipschitz condition in a neighborhood
of the point q, it follows that the function β̄(ρ) ≡ β(q + ρq̃) of one variable
satisfies the Lipschitz condition in a neighborhood of zero. Therefore, by virtue
of the first formula in (72), there exist sequences ρi, ζi, and κ

i, i = 1, 2, . . . , of
real numbers such that

ρi → 0, β̄(ρi) → β̄(0), (ζi,−κ
i) → (ζ,−κ) 6= 0, i→ ∞, κ > 0,

(ζi,−κ
i) ∈ N((ρi, β̄(ρi)); epiβ̄).

By using the same considerations as in the statement of the auxiliary problem
(6.5) in Gavrilov and Sumin (2011b), we find that any m.a.s. πi,k ∈ D, k =
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1, 2, . . . , in the sense of (3) in problem (P̄ρi) is a m.a.s. (together with ρi) in
the problem

κ
iI0(π)− ζiρ′ + ω|ρ′ − ρi| → inf, I1(π) ∈ M + q + ρ′q̃, (75)

ρ′ ∈ (−ω, ω), π ∈ D,

as well, where ω > 0 is large enough to ensure that ρi ∈ (−ω, ω), i = 1, 2, . . . .
Then, by writing out the necessary conditions for m.a.s. in problem (75) and
by passing to the limit as i → ∞, we obtain the m.a.s. πs ∈ D, s = 1, 2, . . . ,
in (Pq) satisfying all relations of Theorem 3; moreover, λs0 → κ > 0, s → ∞,
which implies the regularity of problem (Pq). �

Proof of Theorem 6. Indeed, one can readily see that the function β̃(t) ≡
β(q + tξ) is monotone nonincreasing on the ray t > 0. Consequently, by the
classical result of the theory of functions of a real variable, β̃ is differentiable in
the classical sense almost everywhere for t > 0. Therefore, ∂̂β̃(t) 6= ∅ for almost
all t > 0, which implies that, for almost all t > 0, there exists a nonzero Fréchet
normal (ζ,−κ) ∈ N((t, β̃(t)); epiβ̃), κ > 0. By the definition of a basic normal
cone, there exist sequences ti, ζi, and κ

i, i = 1, 2, . . . , of real numbers such that

ti → t, β̃(ti) → β̃(t), (ζi,−κ
i) → (ζ,−κ) 6= 0, i→ ∞, κ > 0,

(ζi,−κ
i) ∈ N((ti, β̃(ti)); epiβ̄).

Just as in the proof of Theorem 5, hence we find that any m.a.s. πi,k ∈ D, k =
1, 2, . . . , in the sense of inequality (3) in problem (Pq+tiξ) is a m.a.s. (together
with ti) in the problem

κ
iI0(π)− ζit′ + ω|t′ − ti| → inf, I1(π) ∈ M+ q + ρ′q̃, (76)

t′ ∈ (−ω + t, ω + t), π ∈ D,

as well, where ω > 0 is large enough to ensure that ti ∈ (−ω + t, ω + t),
i = 1, 2, . . . . Next, by writing out the necessary conditions for a m.a.s. in
problem (76) and by passing to the limit as i → ∞, we obtain the m.a.s.
πs ∈ D, s = 1, 2, . . . , in problem (Pq+tξ) satisfying all relations of Theorem 3;
moreover, λs0 → κ > 0, s→ ∞, which implies the regularity of problem (Pq+tξ)
for almost all t > 0. �
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