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Abstract: A class of minimax problems is considered. We ap-
proach it with the techniques of quasiconvex optimization, which
includes most important nonsmooth and relaxed convex problems
and has been intensively developed. Observing that there have been
many contributions to various themes of minimax problems, but
surprisingly very few on optimality conditions, the most traditional
and developed topic in optimization, we establish both necessary
and sufficient conditions for solutions and unique solutions. A main
feature of this work is that the involved functions are relaxed quasi-
convex in the sense that the sublevel sets need to be convex only at
the considered point. We use star subdifferentials, which are slightly
bigger than other subdifferentials applied in many existing results for
minimization problems, but may be empty or too small in various
situations. Hence, when applied to the special case of minimization
problems, our results may be more suitable. Many examples are pro-
vided to illustrate the applications of the results and also to discuss
the imposed assumptions.
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1. Introduction

Optimality conditions occupy central position in optimization theory. They are
closely related to other fundamental topics in optimization, such as duality,
stability and numerical methods. Among the earliest results of modern math-
ematics, we can see those on optimality conditions using classical derivatives,
i.e., Gateaux and Fréchet derivatives. In the middle of the last century, nons-
mooth optimization began to be developed, since most of the practical problems
are nonsmooth, i.e., the involved functions and mappings do not have classical
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derivatives. Nonsmooth optimization has been very intensively investigated for
at least three decades. Its problems are often also nonconvex. In a different
direction of research, nonsmooth problems are assumed to satisfy relaxed con-
vexity assumptions. Here, generalized derivatives are defined based on relaxed
convexity properties. This paper is devoted to optimality conditions for relaxed-
quasiconvex problems. Notice that quasiconvex problems constitute the most
important class of generalized convex problems, since such problems are often
met in practice and we still can apply the powerful tools of convex analysis
in suitable ways to study them. There have been a number of works devoted
to optimality conditions for quasiconvex minimization problems, see, e.g., Aus-
sel and Hadjisavvas (2005), Aussel and Ye (2006), Daniilidis, Hadjisavvas and
Mart́ınez–Legaz (2001), Linh and Penot (2006), Penot (2003a, 2003b), and ref-
erences therein. A function f from a normed space X to R̄ := R ∪ {+∞} is
called quasiconvex if its sublevel set Lf(x) := {u ∈ X : f(u) ≤ f(x)} at x
is convex for all x ∈ X or, equivalently, if for each r ∈ R the strict sublevel
set L<

f (r) := {u ∈ X : f(u) < r} is convex. Hence, f is quasiconvex if and

only if the strict sublevel set L<
f (x) := {u ∈ X : f(u) < f(x)} is convex for

all x ∈ X . Another equivalent statement, which is often met in the literature,
is that f is quasiconvex if for all x, y ∈ domf := {x ∈ X : f(x) < +∞},
all t ∈ [0, 1], f((1 − t)x + ty) ≤ max{f(x), f(y)}. A minimization problem is
quasiconvex if the objective is quasiconvex and the constraint set is convex. In
Khanh, Quyen and Yao (2011), many optimality conditions for quasiconvex min-
imization problems are extended to relaxed quasiconvex cases. In this paper, we
deal with such relaxed quasiconvex functions, too. Namely, we need to assume
that sublevel sets Lf or L<

f are convex only at the point x̄ under consideration,
which is much weaker than the assumed quasiconvexity in Aussel and Hadjisav-
vas (2005), Aussel and Ye (2006), Daniilidis, Hadjisavvas and Mart́ınez-Legaz
(2001), Linh and Penot (2006), Penot (2003a, 2003b). (Function f2 in all our
Examples 1-7 is not quasiconvex.)

Besides minimization problems, minimax problems also draw much atten-
tion of researchers all over the world. These problems occur in game theory,
economic equilibrium study, and also in many themes of minimization problems
like duality, dual or primal-dual algorithms, Lagrange multipliers, etc. How-
ever, unlike for minimization problems, there have been surprisingly few papers
dealing with optimality conditions for minimax problems (in fact, we see only
Bhatia and Mehra, 2001, Chen and Lai, 2004, and some references therein). This
motivates the aim of this paper, which is establishing optimality conditions for
minimax problems. But, at this step we restrict ourselves to a particular class of
minimax problems satisfying relaxed quasiconvexity assumptions. Our results
are different from those of Bhatia and Mehra (2001) and Chen and Lai (2004),
since the assumptions, conclusions, and techniques are different. They are also
different from the results of Khanh, Quyen and Yao (2011) when applied to the
special case of minimization problems. But, due to our relaxed quasiconvexity
assumptions and our use of star subdifferentials, the results of this paper are
more advantageous than those of Aussel and Hadjisavvas (2005), Aussel and Ye



Optimality conditions for a class of relaxed quasiconvex minimax problems 251

(2006), and Linh and Penot (2006) in some cases.
The layout of the paper is as follows. Section 2 is devoted to preliminaries

needed in the sequel. There we recall the notions of generalized subdifferentials
appropriate for our study in this paper and define our minimax problem. In
Section 3, we establish the necessary and sufficient conditions for our minimax
problem, followed by many illustrative examples. The case of unique solutions
is presented as well.

2. Preliminaries

Throughout the paper, let X be a normed space, R be the set of the real
numbers and R+ := [0,∞). For A ⊆ X , intA, clA and coneA denote the
interior, closure and conical hull (called also the cone generated by A), i.e.,
coneA := {λx : x ∈ A, λ ∈ R+}, respectively. The distance from x ∈ X to A is
dist(x,A) := inf{‖x− y‖ : y ∈ A}. X∗ is the topological dual of X and 〈., .〉 is
the duality pairing. The normal cone at x to A, denoted by N(A, x), is defined
by

N(A, x) := {x∗ ∈ X∗ : ∀u ∈ A, 〈x∗, u− x〉 ≤ 0}.

If x 6∈ clA, we adopt that N(A, x) = ∅. The contingent cone of A at x ∈ X ,
denoted by T (A, x), is the following cone

T (A, x) := {v ∈ X : ∃(rn) → 0+, ∃(vn) → v, ∀n, x+ rnvn ∈ A}.

To see the relationships between N(A, x) and T (A, x), recall that the polar
cones of cones B ⊆ X and D ⊆ X∗ are

B− := {x∗ ∈ X∗ : ∀x ∈ B, 〈x∗, x〉 ≤ 0},

D− := {x ∈ X : ∀x∗ ∈ D, 〈x∗, x〉 ≤ 0}.

Clearly, N(A, x) = [clcone(A− x)]−. Setting, in the definition of T (A, x), xn =
x+ rnvn, we see that

T (A, x) = {v : ∃(rn) → 0, ∃(xn) ⊆ A → x, lim
xn − x

rn
= v} ⊆ clcone(A− x).

Hence, T (A, x)− ⊇ N(A, x). Furthermore, if v ∈ T (A, x), i.e., v is of the form
lim xn−x

rn
, and x∗ ∈ N(A, x), then 〈x∗, v〉 ≤ 0. Therefore, T (A, x) ⊆ N(A, x)−.

Moreover, if A is convex, then the above containments become equalities.
Let f : X → R̄ be finite at x̄. f is said to be upper semicontinuous (shortly

u.s.c.) at x̄ if limsupx→x̄f(x) ≤ f(x̄), and lower semicontinuous (shortly l.s.c.)
at x̄ if liminfx→x̄f(x) ≥ f(x̄). We recall now the definitions of subdifferentials,
needed in the sequel. The lower subdifferential or Plastria subdifferential from
Plastria (1985) is defined by

∂<f(x̄) :=
{

x∗ ∈ X∗ : ∀x ∈ L<
f (x̄), f(x) − f(x̄) ≥ 〈x∗, x− x̄〉

}

.
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The infradifferential or Gutiérrez subdifferential from Gutiérrez (1984) is

∂≤f(x̄) := {x∗ ∈ X∗ : ∀x ∈ Lf(x̄), f(x)− f(x̄) ≥ 〈x∗, x− x̄〉} .

The Greenberg-Pierskalla subdifferential from Greenberg and Pierskalla (1973),
which is akin to the normal cone, is defined by

∂∗f(x̄) :=
{

x∗ ∈ X∗ : ∀x ∈ L<
f (x̄), 〈x

∗, x− x̄〉 < 0
}

.

So, we say that it is a kind of normal-cone subdifferential. The star subdiffer-
entials defined in Borde and Crouzeix (1990) and Penot and Zalinescu (2000)
are the following normal-cone subdifferentials

∂νf(x̄) := N(Lf (x̄), x̄),

∂⊛f(x̄) := N(L<
f (x̄), x̄).

The adjusted sublevel set of f at x̄ in Aussel and Ye (2006) is

La
f (x̄) = Lf (x̄) ∩ clB(L<

f (x̄), ρx̄)

if x̄ is not a global minimizer of f and La
f(x̄) = Lf(x̄) otherwise, whereB(A, ρ) :=

{x ∈ X : dist(x,A) < ρ} and ρx := dist(x, L<
f (x)). The adjusted subdifferential

in Aussel and Hadjisavvas (2005) is

∂af(x̄) := N(La
f(x̄), x̄).

It is obvious that
∂<f(x̄) ⊆ ∂∗f(x̄) ⊆ ∂⊛f(x̄),

∂≤f(x̄) ⊆ ∂νf(x̄) ⊆ ∂af(x̄) ⊆ ∂⊛f(x̄).

For details about the calculus of these subdifferentials, the reader is referred to
Aussel and Hadjisavvas (2005) and Penot (2003b). Although they are defined
for arbitrary functions (finite at x̄), they possess good properties only under
additional conditions. In the literature, the sublevel sets are usually assumed
to be convex, i.e., the functions are quasiconvex. In this paper, like in Khanh,
Quyen and Yao (2011), we relax remarkably this assumption to the convexity
only at x̄.

By the above chains of inclusions of the subdifferentials, it is clear that
R+∂

<f(x̄) ⊆ ∂⊛f(x̄) and R+∂
≤f(x̄) ⊆ ∂νf(x̄). Therefore, the following defini-

tions are natural. A function f is said to be a Plastria function at x̄ if its strict
sublevel set L<

f (x̄) is convex and

R+∂
<f(x̄) = ∂⊛f(x̄),

and to be a Gutiérrez function at x̄ if Lf (x̄) is convex and

R+∂
≤f(x̄) = ∂νf(x̄).



Optimality conditions for a class of relaxed quasiconvex minimax problems 253

In this paper, we consider optimality conditions for the following minimax
problem

(P) minx∈Xmax1≤i≤kfi(x),

gj(x) ≤ 0, j = 1, ...m,

where X is a normed space, fi : X → R̄, gj : X → R̄ for i ∈ I := {1, ..., k} and
j ∈ J := {1, ...m}.

Remark 1 (i) In nonsmooth optimization-related problems, many kinds of gen-
eralized derivatives and subdifferentials have been proposed and used for studying
optimality conditions and other themes. Each of them is effective for some prob-
lems, but none is universal for all situations. Like almost all existing contribu-
tions to types of quasiconvex problems, we invoke the above-mentioned subdiffer-
entials, since they are designed just for such problems. They enable applications
of powerful tools of convex analysis to the involved convex lower level sets. Note
also that types of quasiconvex problems are the most important class of noncon-
vex problems.

(ii) Following a suggestion of a referee, it is worth noticing that, in general,
problem settings can be converted to each other in many cases. In particular,
consider the following general minimax problem

minx∈Xmaxy∈Y f(x, y),

gj(x) ≤ 0, j = 1, 2, ...,

where Y is an arbitrary index set. We can reformulate it to the following set-
constrained optimization problem

min(x,t)∈D(t+ 〈0, x〉),

where D := {(x, t) ∈ X ×R : f(x, y)− t ≤ 0 for y ∈ Y, gi(x) ≤ 0 for i = 1, 2, ...}.
However, such a formulation may be convenient for some consideration pur-

poses and not for others. In this paper, we choose the option of working directly
on (P). In fact, the results we obtained here are different from those of Khanh,
Quyen and Yao (2011) when applied to optimization problems, and in particu-
lar, Theorem 1 improves over Theorem 10 in Linh and Penot (2006), devoted to
quasiconvex optimization problems (as explained in Remark 2 (iv) and Examples
1-4).

3. Optimality conditions for the minimax problem (P)

Consider problem (P) stated in the previous section. Denote
g := max

j∈J
gj, C := g−1(−∞, 0], J(x̄) := {j ∈ J : gj(x̄) = g(x̄)},

I(x̄) := {i ∈ I : fi(x̄) = maxi∈Ifi(x̄)}, h := max
j∈J(x̄)

gj,

and ρfi(x̄) := dist(x̄, L<
fi
(x̄)).
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Theorem 1 (necessary optimality condition). Let x̄ be a solution of (P) with
the corresponding objective value q̄ such that x̄ is not a local solution of the
unconstrained problem corresponding to (P). Let the following conditions hold.
(i) L<

fi
(x̄) and Lgj (x̄) are convex for all i ∈ I and j ∈ J ; ρfi(x̄) = 0 for all

i ∈ I(x̄).
(ii) fi and gj are u.s.c. at x̄ for all i /∈ I(x̄) and j /∈ J(x̄).
(iii) (constraint qualification) There exists t ∈ J(x̄) such that

Lgt(x̄) ∩
(

∩j 6=t,j∈J(x̄)intLgj (x̄)
)

6= ∅.

(iv) (regularity of the objective functions)

∩i∈I intL
<
fi
(q̄) 6= ∅.

Then, (besides zero) the following intersection contains also a nonzero point in
X∗

∑

i∈I(x̄)

∂⊛fi(x̄) ∩



−
∑

j∈J(x̄)

∂νgj(x̄)



. (1)

Therefore, there exist λi, µj ∈ R+ for i ∈ I and j ∈ J such that
∑

i∈I(x̄)

λ2
i > 0,

∑

j∈J(x̄)

µ2
j > 0, (2)

0 ∈
k
∑

i=1

λi∂
⊛fi(x̄) +

m
∑

j=1

µj∂
νgj(x̄), (3)

λi (fi(x̄)− q̄) = 0, i = 1, ..., k, (4)

µjgj(x̄) = 0, j = 1, 2, ..,m. (5)

If, additionally, fi is l.s.c. at x̄, then we can replace ∂⊛fi by the smaller
subdifferential ∂afi in (1) and (3).

Proof. It is clear that the fact that x̄ is a solution of (P) with the objective value
q̄ means that, for all x ∈ C, there is i0 = i0(x) such that fi0(x) ≥ maxi∈Ifi(x̄) =
q̄. This is equivalent to the emptiness of the set {x ∈ C : fi(x) < q̄ for all i ∈ I},
i.e., C ∩

⋂

i∈I L
<
fi
(q̄) = ∅. By (i), these two disjoint sets are convex. Hence, due

to (iv), the separation theorem yields x∗ ∈ X∗ \ {0} and α ∈ R such that

〈x∗, x− x̄〉 ≥ α ≥ 〈x∗, w − x̄〉 (6)

for all x ∈ C and w ∈ ∩i∈IL
<
fi
(q̄). Setting x = x̄ in the leftmost expression,

one sees that 0 ≥ α. Observe that the fact of x̄ not being a local unconstrained
solution means that for any neighborhoodB(x̄, 1

n
) of x̄, there exists xn ∈ B(x̄, 1

n
)

with fi(xn) < q̄ for all i ∈ I. Hence, xn ∈ ∩i∈IL
<
fi
(q̄) and (xn) → x̄. By

replacing w by xn in (6), one gets α ≥ 0. Thus, α = 0, and (6) becomes

〈x∗, x− x̄〉 ≥ 0 ≥ 〈x∗, w − x̄〉 . (7)
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The left inequality means that x∗ ∈ −N(C, x̄). We now prove thatN(C, x̄) ⊆
N(Lh(x̄), x̄) by checking that T (C, x̄) ⊇ T (Lh(x̄), x̄). Due to the convexity,
one has T (Lh(x̄), x̄) = clcone(Lh(x̄) − x̄), i.e., each point of T (Lh(x̄), x̄) is
of the form limtl(xl − x̄) as l → ∞, for tl > 0 and xl ∈ Lh(x̄). On the
other hand, for any x ∈ Lh(x̄) and t > 0, the point t(x − x̄) has the following
property. If j ∈ J(x̄) and xt := x̄ + t(x − x̄), then gj(xt) ≤ 0 for t ∈ [0, 1]
by the convexity. If j /∈ J(x̄), gj(x̄) < 0. By the upper semicontinuity of gj,
gj(x) < 0 for all x in a neighborhood of x̄. So, gj(xt) ≤ 0 for all small t. Thus,
xt ∈ C for small t, and t(x − x̄) ∈ cone(C − x̄) for all positive t. Therefore,
limtl(xl − x̄) ∈ clcone(C − x̄) = T (C, x̄). Hence, T (Lh(x̄), x̄) ⊆ T (C, x̄) and
then N(C, x̄) ⊆ N(Lh(x̄), x̄). Consequently,

x∗ ∈ −N(Lh(x̄), x̄) = −N(∩j∈J(x̄)Lgj (x̄), x̄)

= −
∑

j∈J(x̄)

N(Lgj (x̄), x̄) = −
∑

j∈J(x̄)

∂νgj(x̄)

(the last but one equality is due to (iii) and the Moreau-Rockafellar theorem).
The right inequality of (7) means that x∗ ∈ N(∩i∈IL

<
fi
(q̄), x̄). Since fi is

u.s.c. at x̄ for i 6∈ I(x̄), one has

N(∩i∈IL
<
fi
(q̄), x̄) = N(∩i∈I(x̄)L

<
fi
(q̄), x̄).

As ρfi(x̄) = 0 for all i ∈ I(x̄), N(∩i∈I(x̄)L
<
fi
(q̄), x̄) = N(∩i∈I(x̄)L

<
fi
(x̄), x̄). By

virtue of this and (iv), the Moreau-Rockafellar theorem gives

x∗ ∈ N(∩i∈IL
<
fi
(q̄), x̄) = N(∩i∈I(x̄)L

<
fi
(x̄), x̄)

=
∑

i∈I(x̄)

N(L<
fi
(x̄), x̄) =

∑

i∈I(x̄)

∂⊛fi(x̄).

Hence, we obtain (1). For λi = 0 and µj = 0 for i /∈ I(x̄) and j /∈ J(x̄) and the
other λi, µj being arbitrary such that

x∗ ∈
∑

i∈I(x̄)

λi∂
⊛fi(x̄) and x∗ ∈ −

∑

j∈J(x̄)

µj∂
νgj(x̄),

we have (2)-(5).
For i ∈ I(x̄), as ρfi(x̄) = 0, we have La

fi
(x̄) = Lfi(x̄) ∩ clL<

fi
(x̄). Hence,

La
fi
(x̄) ⊆ clL<

fi
(x̄). Now, assuming that fi are l.s.c. at x̄, we show the reverse

inclusion. Let xn ∈ L<
fi
(x̄) and (xn) → x. By the lower semicontinuity, fi(x̄) ≥

lim inf fi(xn) ≥ fi(x), i.e., x ∈ Lf (x̄). Hence, x ∈ La
f(x̄). Looking at (7), we

see that it is satisfied also for w ∈cl∩i∈IL
<
fi
(q̄). Therefore,

x∗ ∈ N(cl ∩i∈I L
<
fi
(q̄), x̄) = N(cl ∩i∈I(x̄) L

<
fi
(x̄), x̄)

= N(∩i∈I(x̄)clL
<
fi
(x̄), x̄) =

∑

i∈I(x̄)

N(clL<
fi
(x̄), x̄)
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=
∑

i∈I(x̄)

N(La
fi
(x̄), x̄) =

∑

i∈I(x̄)

∂afi(x̄)

(for the third equality, we use (iv)). ✷

Remark 2 (i) Note that in Theorem 1 as well as in our results below, only the
sublevel sets at x̄ are assumed to be convex.

(ii) If fi are Plastria functions at x̄, and gj are Gutiérrez functions at x̄ for
all i ∈ I(x̄) and j ∈ J(x̄), then, in Theorem 1, the intersection in (1) collapses
to

∑

i∈I(x̄)

∂<fi(x̄)∩(−
∑

j∈J(x̄)

∂≤gj(x̄)). If, more specifically, fi and gj are Gateaux

differentiable at x̄ with nonzero derivatives, then, by Proposition 2.2 of Khanh,
Quyen and Yao (2011), the conclusion of Theorem 1 becomes the assertion that
there are λi and µj satisfying (2) such that

0 =
∑

i∈I(x̄)

λif
′
i(x̄) +

∑

j∈J(x̄)

µjg
′
j(x̄),

i.e., the classical Kuhn-Tucker condition.

(iii) Note also that the preceding statement, as well as the forthcoming ones,
are different from the results in Bhatia and Mehra (2001) and Chen and Lai
(2004), since the problem setting, assumptions and techniques are different.

(iv) Using the star subdifferentials ∂⊛ and ∂ν makes our results more suitable
in many cases. Even for the special case with k = 1, i.e., (P) collapses to
a mathematical programming problem, Theorem 1 is more advantageous than
Theorem 10 in Linh and Penot (2006), considering this case, since there f needs
to be a Plastria function and gj Gutiérrez functions. These are very restrictive
conditions on ∂<f and ∂≤gj. In all our Examples 1-4, ∂<f(x̄) is even empty,
for f = f2.

In the following example, Theorem 1 is used to reject a candidate for a
solution of (P).

Example 1 Let f1, f2, g : R → R be defined by g(x) = −x,

f1(x) =







x if x < 0,
0 if 0 ≤ x ≤ 1,
x− 1 if x > 1,

f2(x) =







2 if x < 0,
1 if x = 0 or x > 2,
1
4x

2 − x+ 2 if 0 < x ≤ 2,

and x̄ = 1 be a candidate to be considered. To verify assumption (i), we
have L<

f1
(x̄) = (−∞, 0), L<

f2
(x̄) = (1,∞), Lg(x̄) = [1,∞), q̄ = f2(1) = 5/4,

I(x̄) = {2}, and ρf2(1) = 0. Hence, (i) is fulfilled. So is (ii), since f1 is u.s.c.
at x̄. (iii) and (iv) are obviously satisfied. To check the necessary condition
(1), we have ∂⊛f1(x̄) = {x∗ : ∀x ∈ (1,∞), 〈x∗, x − 1〉 ≤ 0} = (−∞, 0] and
∂νg(x̄) = {x∗ : ∀x ≥ 1, 〈x∗, x−1〉 ≤ 0} = (−∞, 0], and hence (1) is violated and
Theorem 1 rejects x̄ = 1. We verify directly to see that x̄ = 1 is not a solution
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of (P) (the solutions are 0 and 2).

Example 2 (the condition ρfi(x̄) = 0 for all i ∈ I(x̄) in (i) is essential). Let f1
and g be as in Example 1. Let x̄ = 2 and

f2(x) =







1/2 if x ≤ 0,
1
4x

2 − x+ 2 if 0 < x ≤ 2,
1 if x > 2.

To check (i) we have L<
f1
(x̄) = (−∞, 2), L<

f2
(x̄) = (−∞, 0), Lg(x̄) = [2,∞),

q̄ = f1(x̄) = f2(x̄) = 1, I(x̄) = {1, 2}, ρf1(x̄) = 0, and ρf1(x̄) = 2. Thus,
the last equality is not as required in (i). It is clear that (ii)-(iv) are satisfied.
Condition (1) is fulfilled, since ∂⊛f1(x̄) = {x∗ : ∀x ∈ (−∞, 2), 〈x∗, x − 2〉 ≤
0} = [0,∞), ∂⊛f2(x̄) = {x∗ : ∀x ∈ (−∞, 0], 〈x∗, x − 2〉 ≤ 0} = [0,∞), and
∂νg(x̄) = {x∗ : ∀x ∈ [2,∞), 〈x∗, x− 2〉 ≤ 0} = (−∞, 0]. Clearly, x̄ = 2 has been
shown not to be a solution.

Example 3 (the condition ρfi(x̄) = 0 for all i ∈ I(x̄) in (i) is sufficient, but not
necessary). Let f1 and g be as in Example 1. Let x̄ = 2 and

f2(x) =







1/2 if x < 0,
1 if x = 0 or x > 2,
1
4x

2 − x+ 2 if 0 < x ≤ 2.

For (i), we have L<
f1
(x̄) = (−∞, 2), L<

f2
(x̄) = (−∞, 0), Lg(x̄) = [2,∞), q̄ =

f1(x̄) = f2(x̄) = 1, I(x̄) = {1, 2}, ρf1(x̄) = 0, and ρf2(x̄) = 2, and hence the last
equality violates the condition in (i). (ii)-(iv) are trivially satisfied. Condition
(1) is satisfied, since ∂⊛f1(x̄) = {x∗ : ∀x ∈ (−∞, 2), 〈x∗, x − 2〉 ≤ 0} = [0,∞),
∂⊛f2(x̄) = {x∗ : ∀x ∈ (−∞, 0), 〈x∗, x − 2〉 ≤ 0} = [0,∞), and ∂νg(x̄) = {x∗ :
∀x ∈ [2,∞), 〈x∗, x−2〉 ≤ 0} = (−∞, 0]. We see directly that x̄ = 2 is a solution.

Theorem 2 (sufficient optimality condition). Let x̄ be a feasible point of (P).
Let, for i ∈ I(x̄) and j ∈ J(x̄), L<

fi
(x̄) and Lgj (x̄) be convex and fi u.s.c. in

L<
fi
(x̄). Then, the conclusion of Theorem 1 becomes a sufficient condition for

optimality.

Proof. Let E = h−1(−∞, 0]. Then C ⊆ E. We know that x̄ is a solution of
(P) if and only if C ∩

⋂

i∈I L
<
fi
(q̄) = ∅. We will prove the stronger conclusion

that

E ∩
⋂

i∈I

L<
fi
(x̄) = ∅ (8)

(note that, for i ∈ I(x̄), L<
fi
(q̄) = L<

fi
(x̄)). Observe that (1) implies the existence

of x∗ ∈ X∗ \ {0} such that

x∗ ∈
∑

i∈I(x̄)

N(L<
fi
(x̄), x̄) ⊆ N(∩i∈I(x̄)L

<
fi
(x̄), x̄),
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and

x∗ ∈ −
∑

j∈J(x̄)

N(Lgj (x̄), x̄) ⊆ −N(∩j∈J(x̄)Lgj (x̄), x̄) = −N(E, x̄)

(the inclusions follow from the convexity; regularity conditions are not needed).
Hence, for all x ∈ E and w ∈ ∩i∈I(x̄)L

<
fi
(x̄),

〈x∗, x− x̄〉 ≥ 0 ≥ 〈x∗, w − x̄〉 .

Now suppose the contrary to (8), i.e. that there exists v ∈ E ∩
⋂

i∈I L
<
fi
(x̄).

Then, 〈x∗, v − x̄〉 = 0. Note that ∩i∈IL
<
fi
(x̄) is open. Indeed, let x ∈ L<

fi
(x̄)

and i ∈ I(x̄). Then, fi(x) < fi(x̄). As fi is u.s.c. at x, there is a neighborhood
of x, where fi is also strictly less than fi(x̄), i.e., L

<
fi
(x̄) is open and so is the

mentioned intersection. For any d ∈ X and small positive t, v+td ∈ ∩i∈IL
<
fi
(x̄).

Consequently,

t < x∗, d >=< x∗, v − x̄+ td > − < x∗, v − x̄ >≤ 0.

Thus, x∗ = 0, a contradiction. So, (8) holds and hence x̄ is a solution of (P).✷

The following example illustrates the above sufficient condition.
Example 4 Let all the data be as in Example 3, except that now x̄ = 0. To
check the assumptions, we see that q̄ = f2(x̄) = 1, I(x̄) = {2}, L<

f2
(x̄) =

(−∞, 0), Lg(x̄) = [0,∞), and f2 is u.s.c. in L<
f2
(x̄). Furthermore, (1) holds

since ∂⊛f2(x̄) = {x∗ : ∀x ∈ (−∞, 0), 〈x∗, x〉 ≤ 0} = [0,∞), and ∂νg(x̄) = {x∗ :
∀x ∈ [0,∞), 〈x∗, x〉 ≤ 0} = (−∞, 0]. Theorem 2 asserts that x̄ = 0 is a solution,
and this can also be seen directly.

Now we pass to considering unique solutions.

Theorem 3 (necessary optimality condition, unique solution). Let the assump-
tions of Theorem 1 be fulfilled. If, additionally, x̄ is a unique solution and
C \ {x̄} 6= ∅, then ∂⊛fi, i ∈ I(x̄), used in Theorem 1, can be replaced by the
smaller subdifferential ∂νfi.

Proof. That x̄ is a unique solution of (P) means that C ∩
⋂

i∈I Lfi(q̄) = {x̄}.
Hence, x̄ cannot be in the interior of ∩i∈ILfi(q̄), which is nonempty by (iv).
Therefore, the separation theorem yields x∗ ∈ X∗ \ {0} such that, for x ∈ C
and w ∈ ∩i∈I(x̄)Lfi(q̄),

〈x∗, x− x̄〉 ≥ 0 ≥ 〈x∗, w − x̄〉 . (9)

The rest of the proof is similar to that for Theorem 1. But here, we are working
with Lfi instead of L<

fi
as in Theorem 1, and hence we obtain that ∂νfi replaces

∂⊛fi in the conclusion. ✷

The following example says that we cannot replace ∂⊛fi, i ∈ I(x̄), by ∂νfi
in Theorem 1 (as we do in Theorem 3).
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Example 5 Let all the data be as in Example 3, except that now x̄ = 0. It is not
hard to verify that the assumptions of Theorem 1 are satisfied. Since Lf2(x̄) =
(−∞, 0]∪ [2,∞) and hence ∂νf2(x̄) = {0}, we have ∂νf2(x̄)∩ (−∂νg(x̄)) = {0}.
It is seen in this case that the sublevel set Lf2(x̄) at the considered point is not
convex, but Theorem 1 still works.

Theorem 4 (sufficient optimality condition, unique solution). Let the assump-
tions of Theorem 2 be satisfied. Suppose, furthermore, that f−1

i (fi(x̄)) = {x̄} for
all i ∈ I(x̄). Then, the necessary condition stated in Theorem 3 is a sufficient
one.

Proof. The necessary condition mentioned implies the existence of x∗ ∈ X∗ \
{0} satisfying (9). Suppose that x̄ is not a unique solution, i.e., one finds
v ∈ C ∩

⋂

i∈I Lfi(q̄) different from x̄. Then, v ∈ C ∩
⋂

i∈I(x̄) Lfi(x̄). By (9),

〈x∗, v − x̄〉 = 0. On the other hand, as f−1
i (fi(x̄)) = {x̄}, Lfi(x̄) \ {x̄} =

L<
fi
(x̄) for i ∈ I(x̄). By the upper semicontinuity of fi, L<

fi
(x̄) is open and

so is (∩i∈I(x̄)Lfi(x̄)) \ {x̄}. Consequently, for any d ∈ X and small positive t,
v + td ∈ ∩i∈ILfi(x̄). Therefore,

t < x∗, d >=< x∗, v − x̄+ td > − < x∗, v − x̄ >≤ 0.

Thus, x∗ = 0, a contradiction. ✷

Theorem 4 confirms that a candidate is a solution in the next example.
Example 6 Let f1 and g be as in Example 1. Let x̄ = 0 and

f2(x) =







1/2(x+ 1) if x ≤ 0,
1
4x

2 − x+ 2 if 0 < x ≤ 2,
1 if x > 2.

Clearly, the assumptions of Theorem 2 are fulfilled. We have I(x̄) = {2}, q̄ =
1/2, and f−1

2 (f2(x̄)) = {x̄}. Furthermore, as ∂νf2(x̄) ∩ (−∂νg(x̄)) = [0,∞) 6=
{0}, Theorem 4 asserts that x̄ = 0 is the unique solution, which is also seen
directly.

In Theorem 4, the condition that f−1
i (fi(x̄)) = {x̄} for all i ∈ I(x̄) is essential

as shown by the following
Example 7 Let f1, g be as in Example 1, x̄ = 2, and

f2(x) =

{

x+ 1 if x ≤ 0,
1
4x

2 − x+ 2 if x > 0.

We have I(x̄) = {1, 2}, q̄ = 1, L<
f1
(x̄) = (−∞, 2), L<

f2
(x̄) = (−∞, 0), Lg(x̄) =

[2,∞), and fi is u.s.c in L<
fi
(x̄) for i = 1, 2. Furthermore, Lf1(x̄) = (−∞; 2],

∂νf1(x̄) = R+, Lf2(x̄) = (−∞; 0]∪{2}, ∂νf2(x̄) = R+, ∂
νg(x̄) = R−, and hence

∑

i=1,2

∂νfi(x̄) ∩ (−∂νg(x̄)) = [0,∞), as Theorem 4 requires. But, x̄ = 2 is not a

unique solution (0 is another one). The cause is that f−1
2 (f2(x̄)) = {0; 2} 6= {x̄}.
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