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Abstract: In this paper, the method for simple additive mod-
eling of the first principle model inaccuracies for the offset-free pro-
cess control is presented. Starting from transformation of the gen-
eral nonlinear state model into the input-affine dynamical equation
describing directly the controlled variable, it is shown how to com-
pensate for the potential modeling inaccuracies by lumping them
into a single additive parameter. Its on-line estimation procedure
based only on the measurement data collected from the process is
very simple and effective and the estimate converges without any
additional excitation of the process. The discussion on how to apply
the suggested model as a basis for the chosen model-based control
techniques is presented, and for the processes of the higher relative
order, the practical simplification of this approach is shown. The ex-
perimental results show the practical applicability of the considered
approach for the synthesis of the open loop Internal Model Controller
(IMC) and of the Balance-Based Adaptive Controller (B-BAC).

Keywords: first principle process modeling, modeling inaccu-
racies compensation, model-based control, adaptive control

1. Introduction

The idea of applying the process model for the synthesis of the advanced model-
based controller is very simple and promising – if an accurate model of a process
is known, it can be somehow incorporated in the control law to ensure better
control performance, because the nonlinearities described by a model can be
directly compensated in the resulting control law. The unified tools for such
techniques are still intensively investigated and expected from the side of in-
dustry (e.g. Seborg, 1999; Klatt and Marquardt, 2009; Rhinehart et al., 2011),
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even though there is already a large number of control techniques that are based
on the simple input-output models, e.g. Model Algorithmic Control (MAC)
and Predictive Funtional Control (PFC) from Richalet et al. (1978), Richalet,
(1993), Dynamic Matrix Control (DMC) from Cutler and Ramaker (1980), and
Internal Model Control (IMC) from Garcia and Morari (1982). In these cases,
the strong process nonlinearities can be considered by nonstationary modeling,
which leads to the adaptive control law.

Another possibility is to apply the first principle nonlinear models as a ba-
sis for the controller synthesis. They include the basic information about the
phenomena taking place in a process and their parameters usually have strictly
physical meaning, so sometimes their values can be known a priori. At the same
time, such models are usually more accurate and allow for easy inclusion of the
process nonlinearities and of the influence of the disturbing inputs (e.g. Mead-
ows and Rawlings, 1997; Murray-Smith and Johansen, 1997). The significant
difficulty in applying the first principle models as a basis for the controller syn-
thesis is their relatively large complexity. However, there are some techniques
for simplifying the complex physical nonlinear models to the desired simplified
form - see, e.g., Kokotovic et al. (1986), Bastin and Dochain (1990). Addition-
ally, in recent years, the tools for model reduction have been developed (Donida
et al., 2010, Falk, 2010) to support the preparation of the simplified model for
control synthesis on the basis of the complex nonlinear dynamical one.

For both groups of models, the problem of modeling inaccuracies stands as
the major difficulty in their application for practical synthesis of the model-based
controllers. Thus, there is a need to implement one of techniques to decrease
the influence of the modeling inaccuracies on the overall control performance.
One possibility is the direct inclusion of the integral action in the model-based
controller (e.g. Lee and Sullivan, 1988; Metzger, 2001), which is very efficient
for the offset-free control, but introduces inconvenient dynamics into the con-
trol system. The other possibility is to lump all modeling inaccuracies with the
unmeasured disturbance, which was suggested for Nonlinear Inferential Control
(NIC) (Parrish and Brosilow, 1988; Brosilow and Joseph, 2002) or is well known
in the applications of Model Predictive Control (MPC) as the additive distur-
bance estimate (e.g. Maciejowski, 2002; Tatjewski, 2007). It is also possible to
use the mismatch between the process and the model to bias the set point as
it is suggested in Internal Model Control (IMC) by Garcia and Morari (1982).
The satisfying modeling accuracy for a strongly nonlinear processes can be also
ensured by the nonstationary modeling. In this case, it is necessary to apply the
on-line multiparameter identification for unknown parameters and the observer
design methodology for some non measurable process variables to update their
values on-line (e.g. Bastin and Dochain, 1990, Henson and Seborg, 1997). These
techniques usually require the additional external excitation signals (Dasgupta
et al., 1991; Nelles, 2001; Kravaris et al., 2012), and this approach results in the
adaptive form of the model-based control law, which in the majority of cases
can improve the control performance (Ästrom and Wittenmark, 1989).

In this paper, the general and simple additive modeling of the inaccuracies
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for the first principle models is presented. This unified input-affine form of such
a model describes directly the dynamics of the controlled variable and it can be
derived on the basis of the general heat or mass conservation law. It includes
only one additive and unknown parameter that lumps all the modeling inaccura-
cies with the not measurable disturbances, which can be easily estimated on-line
based only on the measurable data collected from the process. For the processes
of the higher relative order, the practical simplification of this approach is also
shown. The discussion on how to apply the suggested model as a basis for the
chosen model-based control techniques is also presented and the experimental
results show the practical applicability of the considered approach.

2. Problem statement - controller synthesis based on the

first principle models

In this paper, the control of the output Y of the hypothetical nonlinear SISO
system of the relative order r > 1 is considered. The system can be controlled
by its manipulated variable u and the control goal is to track the variations
of the set-point Ysp and to reject the influence of the disturbances d̃ ∈ RD.
The dynamics is represented by the state vector x̃ ∈ RN . The complete first
principle nonlinear description for this system is given in the following nonlinear
standard form:

{
dx̃

dt
= F

(

x̃, d̃, u
)

Y = h (x̃)
. (1)

For the controller synthesis, the model (1) should be rearranged into the dy-
namical equation describing directly the dynamics of the controlled variable Y ,
e.g. by applying the input-output linearizing technique based on the Lie algebra
(e.g., Isidori, 1989; Bastin and Dochain, 1990; Henson and Seborg, 1997):

drY

dtr
= H̃1

(

Y, x̃, d̃
)

+ H̃2

(

Y, x̃, d̃
)

u. (2)

Generally, the controller synthesis is based on inverting the model (2), which
is possible due to its affinity with respect to the manipulated variable u. One
possibility is to assume the r-th order reference model that describes the desired
stable closed-loop dynamics of the control error e = Ysp − Y :

dre

dtr
+

r−1∑

k=0

λk

dke

dtk
= 0. (3)

Then, assuming the constant set-point Ysp, after rearrangements, the following
equation is obtained:

drY

dtr
= λ0 (Ysp − Y )−

r−1∑

k=1

λk

dkY

dtk
, (4)
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and it can be combined with the model (2) and solved for the manipulated
variable u giving the final form of the linearizing controller (e.g., Isidori, 1989;
Bastin and Dochain, 1990; Henson and Seborg, 1997):

u =

λ0 (Ysp − Y )−
r−1∑

k=1

λk
dkY
dtk

− H̃1

(

Y, x̃, d̃
)

H̃2

(

Y, x̃, d̃
) . (5)

Readers should note that there are some limitations that must be faced when
the model (2) is to be applied as a basis for the synthesis of the model-based
controller (5):

• In practice, this model describes the real system only partially - there may
be some phenomena taking place, which are not recognizable or for which
the description cannot be suggested for different reasons. At the same
time, some model parameters can be known inaccurately.

• All the states x̃ and the disturbances d̃ should be measurable on-line and
so the suitable additional sensors are required in the control system. If
some states are not measurable, they can be computed by any observer
technique, but this requires complex calculations based on the complete
form of the model (1). If this model is inaccurate, the practical applica-
bility of such a technique is questionable.

These limitations are restrictive, but at the same time they are realistic, be-
cause the model (2), even if very detailed, is only an approximation of a much
more complex reality. Consequently, due to potential modeling inaccuracies, the
controller based on this model cannot ensure satisfying offset-free control per-
formance without additional application of any adaptability or integral action.
This difficulty can be solved by applying the nonstationary modeling, in which
all the modeling inaccuracies are compensated by on-line updating of one or
more model parameters. Potentially, in the modern control systems, many ad-
ditional sensors are applied to collect the measurement data for the feedforward
action from some of the system states and disturbances. This measurement data
can be also applied as a source of information for the nonstationary modeling.
However, for a multiparameter identification, some complex methods must be
applied jointly with the intentional process upsets to ensure the desired level
of excitation (Dasgupta et al., 1991; Nelles, 2001; Kravaris et al., 2012). If the
simplicity is the priority and the additional process upsets are impossible, the
solution is to update only a single model parameter to compensate for all mod-
eling inaccuracies. In this case, only the single-parameter identification is used
and the estimation complexity is significantly lower. This approach was already
presented and discussed. Rhinehart and Riggs (1991) suggested to choose one of
the model parameters, with respect to which the model is the most sensitive and
which potentially represents major modeling inaccuracy. Bastin and Dochain
(1990) proposed a relatively simple procedure, in which a single parameter rep-
resenting intensity of the biological reaction is updated on-line. Bequette (1989)
suggested to lump several uncertain model parameters that normally need to
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be estimated separately into a single unknown parameter and presented the
procedure for its on-line updating.

The second possibility of providing the offset-free control on the basis of
the model (2) is to derive the controller by the application of the IMC (Internal
Model Control) framework. Its conventional linear form was proposed by Garcia
and Morari (1982), but for the model (2), the nonlinear IMC approach from
Economou et al. (1986) is relevant. The IMController is based on the direct
inverse of the model (2) and all modeling inaccuracies are compensated by the
closed loop system, in which the process model (1) must be computed on-line
and the modeling error is applied for on-line adjusting of the set-point Ysp to
ensure the offset-free control. The practical difficulties result from the fact that
this technique requires the application of the additional filter of the relevant
order to provide robust control, whose synthesis, in the nonlinear case, is far
from being trivial (Henson and Seborg, 1991). There is also a need to solve the
model (1) on-line, numerically.

3. Additive inaccuracy modeling for first principle models

In this section, it is shown how the simple additive modeling of the model
inaccuracies can be applied for the model (2) and, consequently, it is discussed,
how this approach can be used for deriving the model-based controllers providing
the offset-free control.

3.1. Additive compensation for modeling inaccuracies

For practical implementation, the model (2) can be simplified by removing the
terms including not measurable states and/or disturbances and by compensating
all modeling inaccuracies by lumping them into a single additive parameter RY

estimated on-line:

drY

dtr
= H1 (Y, x, d) +H2 (Y, x, d) u

︸ ︷︷ ︸

known part of the model

−RY . (6)

The functions H1(.) and H2(.) form the known part of this model because x and
d denote only measurable states and disturbances, respectively. Apart from
all the modeling inaccuracies, resulting from simplifications, the inclusion of
the time-varying parameter RY additionally compensates for the measurement
errors for measurable disturbances resulting from sensor inaccuracies and for
the potential mismatch between the real relative order of the process dynamics
and the relative order of the process model (6).

Application of the additive parameter RY in the model (6) has very sim-
ilar functionality to the idea of the additive disturbance estimate used in the
MPC technique (e.g. Maciejowski, 2002; Tatjewski, 2007). Readers should note
that the suggested modeling simplifications are fully justified from the practical
viewpoint because only the unknown terms are lumped into the parameter RY .
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All the known terms that can be computed on-line on the basis of the measure-
ment data, are included in the known part of the simplified model (6) and thus
there is no possibility of any oversimplification. The user decides on the level of
simplification, basing on the knowledge and on the technological conditions.

3.2. Estimation procedure

For the unified form of the model (6), the additive parameter RY , lumping all
modeling inaccuracies, must be estimated on-line to ensure the robust offset-free
control if the controller is derived on the basis of Eq. (6). Potentially, there are
few possibilities for computing the estimate of RY considering the limitation of
the upset–less model parameterization. Following the suggestions of Isaacs et
al. (1992) or, more generally, the idea of the additive disturbance estimate given
for MPC (e.g. Maciejowski, 2002; Tatjewski, 2007), the value of this unknown
parameter can be computed at each time instant by the direct rearrangement
of Eq. (6) as RY = drY

dtr
− H1 (Y, x, d) − H2 (Y, x, d) u. However, in practice,

such computation is based on the noisy measurement data, so the results would
be very sensitive to this noise. Rhinehart and Riggs (1991) suggest two simple
techniques for on-line updating of the chosen model parameters by applying the
incremental Newton’s method that can be directly used for the suggested form
of the model (6). Another possibility is the application of the extended observer
technique (e.g. Henson and Seborg, 1997) based on the models (2) and (6), in
which the unknown parameter can be considered as the unmeasurable state
variable with very simple state equation dRY

dt
= 0. However, the significant

drawback of this technique is its mathematical complexity. Van Lith et al.
(2001) suggest the possibility of estimating the values of the unknown model
parameters by the application of the PI controller, for which the set-point is the
measured process output, the controlled variable is the model output and the
manipulating variable is the unknown parameter. This technique is very simple
and intuitive, and it can be directly applied for the suggested model (6), but
due to its potential nonlinearities, the difficulties with proper PI tuning can be
encountered.

The estimation procedure presented in this paper benefits from the general
form of the simplified model (6), which always ensures the affinity with respect
to the unknown parameter RY . After discretization of Eq. (6), the estimate
R̂Y of the unknown parameter RY is described by the following equation:

−T r
RR̂Y,i = ∇r

TR
[Y ]− T r

R (H1,i +H2,i ui) + εi
︸ ︷︷ ︸

wi

= −T r
RRY,i + εi, (7)

where i denotes the i-th sampling, TR is the discretization instant, H1,i =
H1 (Yi, xi, di), H2,i = H2 (Yi, xi, di) and ∇r

TR
[Y ] represents the r-th order finite

backward difference operator. Due to the presence of the measurement noise,
represented by the additive error ε, Eq. (7) is not recommended for the direct
calculation of the estimate R̂Y , and thus the estimation procedure based on
the WRLS (Weighted Recursive Least-Squares) method is applied to minimize
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the influence of this noise on the estimation accuracy (Czeczot, 1998). Eq. (7)
defines the measurable auxiliary variable w and it represents the linear equa-
tion affine to the unknown parameter R̂Y with the constant regressor (−T r

R).
Consequently, it allows for the application of the simplified scalar discrete-time
form of the well known WRLS equations, where α ∈ (0,1) denotes the forgetting
factor:

Pi =
Pi−1

α+ T 2r
R Pi−1

, (8)

R̂Y,i = R̂Y,i−1 − T r
RPi

(

wi + T r
RR̂Y,i−1

)

, (9)

with the initial values: P0 >0 and a freely but reasonably chosen R̂Y,0. The
properties of the estimation procedure (8), (9) are shown and discussed below.

Theorem 1 The value of Pi described by the recursive formula (8) converges
to the stable equilibrium point P∞ = (1− α) /T 2r

R if only the initial value P0 6=
0.

Proof. Eq. (8) does not depend on the form of the model (6) in any way. The
value of Pi is computed iteratively at each time instant, starting from the initial
value P0. Application of the mathematical induction shows that Eq. (8) can be
written as:

Pi =
P0

αi + T 2r
R P0

i−1∑

k=0

αk

. (10)

For α <1, which is requested for WRLS method, for i → ∞ the following
formulas hold:

lim
i→∞

αi = 0, (11)

lim
i→∞

i−1∑

k=0

αk =

∞∑

k=0

αk =
1

1− α
. (12)

Consequently, if only P0 6= 0, the value of P∞ can be calculated as follows:

P∞ = lim
i→∞

Pi = lim
i→∞

P0

αi + T 2r
R P0

i−1∑

k=0

αk

=
1− α

T 2r
R

, (13)

which shows that the value of Pi always converges to the value of P∞, described
by Eq. (13). In fact, in the practical applications, the value of Pi converges
very fast to P∞ and remains constant during the whole operating time. ✷
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Theorem 2 Regardless of the initial value of R̂Y,0, the estimate R̂Y,i always

converges to the stable equilibrium point R̂Y,∞ → RY,∞ = H1,∞(.)+H2,∞(.)u∞

without any additional excitation signal, where subscript ∞ denotes the steady
state values.

Proof. For i >>1, Eq. (9) can be rearranged into the following form by
substituting for Pi its limit value P∞, given by Eq. (13):

R̂Y,i = R̂Y,i−1 − T r
RP∞

(

wi + T r
RR̂Y,i−1

)

= (14)

R̂Y,i−1 −
1− α

T r
R

(

wi + T r
RR̂Y,i−1

)

.

Then, after simple rearrangements, Eq. (14) can be written as:

R̂Y,i = α R̂Y,i−1 −
1− α

T r
R

wi. (15)

Based on Eq. (7), the measurable value wi = −TRRY,i + εi, so Eq. (15) can be
rearranged as:

R̂Y,i = α R̂Y,i−1 + (1− α)

(

RY,i −
εi
T r
R

)

, (16)

which clearly shows that for the suggested scalar form (8),(9), the WRLS pro-
cedure has the time invariant linear dynamics of the first order with the unitary
gain and the time constant depending on the forgetting factor α. The estimate
R̂Y tracks its true value RY and, at the same time, it ensures the filtering of the
additive measurement error ε. For the stability of Eq. (16) it is only required
that α ∈ (0,1), which is always requested for the WRLS method. ✷

Therefore, the convergence of the estimation procedure (8), (9) was proved.
It ensures accurate estimation without the necessity of applying any additional
excitation input signals. In fact, even at the steady state, the estimate R̂Y al-
ways converges to its true value RY with the rate of convergence depending only
on the value of the forgetting factor α. The significant practical difficulty results
from the necessity of the on-line calculation of the backward finite differences
∇r

TR
[Y ] in Eq. (7), based on the noisy measurement data.

The estimation procedure (8), (9), requires adjusting initial values for P0

and R̂Y,0, but it was shown that these values do not influence the estimation
convergence if only P0 6= 0. Thus, P0 = 1 can be adjusted because Pi converges
to P∞ very fast. The choice of R̂Y,0 is not very crucial and it can be adjusted

arbitrarily at any reasonable value, e.g. as R̂Y,0 = 0. Then, the estimate R̂Y

converges to its true value with the rate that can be adjusted by quantifying
the value of the forgetting factor α (if α → 0, the convergence is very fast).
Thus, the problem of adjusting the value of R̂Y,0 is not significant if the prelim-
inary transient degrading the accuracy of the initial stage of the estimation is
acceptable. However, in the closed loop systems with a controller based on the
simplified model (6), first, the estimation procedure should be run in the open
loop to allow for its convergence, and then the loop can be closed.
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3.3. Application for the offset-free control

The potential application of the model (6) for synthesis of the multistep pre-
dictive controllers is very limited, because this methodology must be based on
a model that predicts the process output only on the basis of the assumed
variations of some current and past process inputs. For the model (6), the
compensation of all modeling inaccuracies is made by the on-line update of the
estimate R̂Y on the basis of the current measurement data, which is somehow
similar to the additive disturbance estimate suggested for the Model Predictive
Control technique. However, the model (6) could be used for the prediction of
the future process behavior only assuming constant value of the estimate R̂Y

over the whole prediction horizon, which is equivalent to the case when only its
known part were applied for this prediction, without any compensation of the
modeling inaccuracies.

process
Ysp Yu

d

controller

estimation

procedure

x

 

ui =
− H1(Ysp,i , x i , di ) + R̂

Y, i

H2(Ysp,i , x i , di )

R̂y, i

Figure 1. Open loop IMC structure based on the model (6)

The model (6) benefits from the on-line compensation of the modeling inac-
curacies and for this case, the open loop IMC-based control system presented in
Fig. 1 is proposed in this paper. The IMController is derived basing on the com-
plete form of the model (6) but, contrary to the conventional IMC framework,
the estimation procedure provides the feedback from the modeling inaccuracy.

The third possibility is to apply the linearizing technique, presented in Sec-
tion 2, to the model (6). After replacing the unknown parameter RY by its
estimate R̂Y , computed on-line by the procedure (8),(9), and discretization, the
following linearizing controller for the nonlinear processes of the dynamics of
the r-th order can be derived:

u =

λ0 (Ysp − Y )−
r−1∑

k=1

λk

∇
k

TR
[Y ]

Tk

R

−H1,i + R̂Y,i

H2,i
. (17)
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Both latter approaches ensure the offset-free control when the controllers are
implemented jointly with the estimation procedure (8). However, there are still
few difficulties to cope with for the practical implementation:

• mathematical complexity of deriving the model (6) based on the model
(1) can be too high for industrial engineers,

• implementation of the controller (17) requires computing the backward
finite differences ∇k

TR
[Y ] on the basis of the noisy measurement data.

Additionally, for the linearizing controller (17), its tuning for the processes of
higher relative order r >1 is difficult - it requires adjusting r tuning parameters:
λ0 .. λr−1 for the controller itself and the forgetting factor α for the estimation
procedure (8).

4. Practical model simplification

The difficulties in the practical application of the suggested IMController (Fig.
1) and of the linearizing controller (17) result from the high relative r-th order
of the model (6). They can be overcome by simplifying the model (6) according
to Eq. (18) that assumes the reference model of the unitary relative order:

dY

dt
= f (Y, x, d) + g (Y, x, d) u

︸ ︷︷ ︸

knownpartof themodel

−RY . (18)

Now, the additive parameter RY additionally compensates for the difference
between the unitary relative order of the model (18) and the relative order of
the real process.

The form of the model (18) can be considered as the extension of the ap-
proach based on the so-called substrate consumption rate (Czeczot, 1998, 2007)
and, potentially, there are two possibilities of its derivation. If the model (6) is
known, the functions f(.) and g(.) can be directly defined as f(.)=H1(.) and
g(.)= H2(.). However, if deriving the model (6) is impossible or too complex,
the simplified model (18) can be derived as the simple input-output nonlinear
model, based on the very general first principle considerations written for the
controlled system, e.g. Czeczot (1998, 2001, 2006, 2006a). Then, after simple
rearrangements, this equation can be rewritten in the form of Eq. (18) with all
the unknown terms lumped into the single parameter RY .

Compared to other methods of updating the model parameters, discussed
above, this approach has the following significant advantages:

• Applying the unknown parameter RY as the rate representation is more
natural as the complement for the first principle based synthesis of the
known part of the model (6), even if it is included only in order to represent
the potential modeling uncertainties.

• The sensitivity of the model output to the variations of the unknown
parameter RY is always constant, which protects from the potentially ill-
conditioned numerical calculations during on-line estimation.
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• Representing the modeling inaccuracies as the single additive unknown
rate parameter RY always allows for the very clear distinction between
the known and unknown parts of the model (6). Consequently, this model
always can be defined in this general form, which allows for the synthesis of
the general form of the procedure for updating the value of the parameter
RY on-line. This feature is especially important for the practical PLC-
based implementation of any controller based on this model in the form
of the general purpose encapsulated function block (Klopot et al., 2012).

For the model (18), the estimate R̂Y can be calculated by the same estimation
procedure (8), (9), but readers should note the simplification - only the first
order backward difference∇1

TR
[Y ] must be computed, due to the unitary relative

order of the model (18). Consequently, it is possible to derive the offset-free
controllers based on the model (18) in the same way as it was presented in
Section 3.3 for the model (6). For the IMC-based open loop control, the only
difference results from simplifying the complexity of the estimation procedure
(8), (9). The application of the linearizing technique to the model (18), in
the form dedicated to control the systems of the unitary relative order (Bastin
and Dochain, 1990), leads to the Balance-Based Adaptive Controller (B-BAC)
proposed by Czeczot, e.g. Czeczot (2001, 2006), whose dynamical properties are
discussed in details in Stebel et al. (2014). This methodology benefits from the
linearizing technique, but very similar form of the controller can be obtained
by applying the one-step ahead prediction control from Bequette (1989), or the
Process Model-Based Control (PMBC) technique from Rhinehart and Riggs
(1990).

process

+

_
Ysp

Yu

d

estimation

procedure

controller

iYR ,
ˆ

x

 

ui =
λ(Ysp − Yi ) − f (Yi , x i , di ) + R̂Y,i

g(Yi , x i , di )

Figure 2. Control system with the B-BAController



272 J.Czeczot, P.  Laszczyk

The respective closed loop control system with the B-BAController is pre-
sented in Fig. 2. In comparison with the linearizing controller (17), its tuning is
much simpler because there are only two tuning parameters: λ for the controller
and the forgetting factor α for the estimation procedure.

5. Practical experiments

In this section, the practical validation of two considered controllers derived
on the basis of the model (18) is presented. The investigations are shown in
the application to the practical illustrative example: the electric flow heater
presented in Fig. 3. The supplying water flows through its vessel with adjustable
and measurable flow rate F = 0.5 [L/min] and measurable inlet temperature
Tin [oC]. The power supply Ph can be adjusted in the range between 0% and
100% of the nominal power Pnom = 5500 [W]. The heated water flows out with
the same flow rate F and with the measurable outlet temperature Tout [oC].
The volume V = 0.25 [L] is constant and the heater is well insulated while the
pipe at its outlet is not insulated so the heat loss takes place in this part of the
system.

Figure 3. Simplified diagram of the electric flow heater

In this system, the controlled output is defined as Y = Tout and the manip-
ulated variable as u = Ph. The disturbances are the inlet temperature and the
flow rate d = [TinF ]T . Apart from imperfect mixing in the heater and from the
existing heat loss in the pipe, a significant transportation dead time appears
due to the location of the sensor for the outlet temperature Tout at the end of
the pipe of the diameter 5 [cm], approximately at the distance of 1.5 [m] from
the heater outlet.

For simplified modeling, it is assumed that the whole system is perfectly
insulated and mixed. Then, the following simplified model in the form of Eq.
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(18) is derived by the basic heat conservation law:

dY

dt
=

f(.)
︷ ︸︸ ︷

F

V
(Tin − Y )+

g(.)
︷ ︸︸ ︷

Pnom

V ρcS 100%
Ph

︸ ︷︷ ︸

known part of the model

−RY , (19)

where ρ = 1 [kg/L] and cS = 4200 [J/kg oC] denote, respectively, the den-
sity and the specific heat of the flowing water. The unknown parameter RY

represents the modeling inaccuracy resulting from the unknown description for
the heat lost, from the possible imperfect mixing and from the presence of the
transportation dead time, not included in the simplified model (19) and varying
according to the variations of the disturbing flow rate F .

The experiments were carried out under the same scenario. Starting from
the operating point defined by the flow rate F = 2 and the set-point Ysp = 30,
the indicated successive step changes of the set point Ysp and of the disturbing
flow rate F were applied to the system.

Fig.4 shows the control performance of the IMC-based control system (IMC 1)
based on the model (19) and presented generally in Fig.1. It is compared with
the conventional closed loop nonlinear IMController (IMC 2) based only on the
inaccurate known part of the model (19). Due to the IMC closed loop structure,
the latter ensures offset-free tracking and disturbance rejection. However, its
performance is more oscillatory compared to (IMC 1), which also ensures offset-
free tracking and disturbance rejection but, at the same time, the transients are
significantly smoother.

Fig. 5 shows the performance of the B-BAController with the tunings λ = 0.1
and α = 0.1, derived on the basis of the suggested model (19) and implemented
in the closed loop structure presented in Fig. 2. For comparison, the control
performance of the conventional linearizing controller based only on the known
part of the model (19) is also presented. As it was expected, the linearizing
controller fails with the tracking due to the significant modeling inaccuracies.
These inaccuracies are successfully compensated by the on-line estimation of the
parameter RY and the B-BAController provides satisfying offset-free tracking
and disturbances rejection with smooth transients.

6. Concluding remarks

In this paper, it is shown how the simple additive modeling of the model in-
accuracies can be applied to derive the model-based controllers that provide
the offset-free regulation without the direct integral action for the systems of
higher relative order. The known part of the simplified model is complemented
with the single additive parameter RY , which lumps all modeling inaccuracies.
This approach requires the on-line feedback from the measurement data of the
process output and of the measurable process states and disturbances. The
unknown parameter RY is estimated on-line by the unified scalar form of the
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Figure 4. Control performance of the open loop IMController (IMC 1) for the
electric flow heater, in comparison with the conventional nonlinear IMC closed
loop controller (IMC 2) based only on the known part of the model (19)
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Figure 5. Control performance of the B-BAController for the electric flow heater,
in comparison with the conventional linearizing controller based only on the
known part of the model (19)
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WRLS estimation procedure, which ensures high modeling accuracy irrespective
of the level of the model simplifications.

The relevance of this approach for the controller synthesis is presented in
the paper for two model-based techniques with the model of the process being
additionally simplified to the unitary relative order: the open loop IMC-based
controller and the B-BAController. In both cases, the experimental results
show that the control systems based on the respective approaches provide very
good control performance, which results from the compensation properties of
the estimation procedure and from the fact that the suggested model introduces
the feedforward action to the final form of the control law without any additional
effort (Stebel et al., 2014).
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