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Abstract: We propose a novel approach to adaptive refinement
in FEM based on local sensitivities for node insertion. To this end,
we consider refinement as a continuous graph operation, for instance
by splitting nodes along edges. Thereby, we introduce the concept
of the topological mesh derivative for a given objective function. For
its calculation, we rely on the first-order asymptotic expansion of the
Galerkin solution of a symmetric linear second-order elliptic PDE.
In this work, we apply this concept to the total potential energy,
which is related to the approximation error in the energy norm. In
fact, our approach yields local sensitivities for minimization of the
energy error by refinement. Moreover, we prove that our indicator
is equivalent to the classical explicit a posteriori error estimator in
a certain sense. Numerical results suggest that our method leads to
efficient and competitive adaptive refinement.
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1. Introduction

In the last decades, error estimation and adaptivity in the finite element method
(FEM) have evolved to an indispensable tool for the numerical solution of partial
differential equations (PDEs) in science and engineering. Starting with a rather
coarse discretization, the goal of adaptivity is to reduce the approximation er-
ror of the discrete solution to the unknown true solution with minimal cost by
local refinement. To this end, adaptive algorithms typically rely on local error
estimators or indicators that can be computed from given data and a previous
discrete solution. There is a number of efficient a posteriori error estimation
techniques available, which are, for instance, based on explicit estimation of the
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Figure 1. Continuous graph operations on finite element meshes: (a) Insertion
of one node along an edge, leading to the subdivision of the adjacent triangles.
(b) Insertion of nodes along the edges of a star-shaped subgraph; the appearance
of non-simplicial elements can be resolved by the introduction of hanging nodes
or bisection of the quadrilaterals. (c) Insertion of nodes in a structured mesh of
rectangular elements

residual, solution of local subproblems, hierarchical bases, recovery of the gra-
dient, and several more. For a comprehensive overview of established methods,
we refer to Verfürth (1996) or Ainsworth and Oden (2000). Instead of reducing
the global error, one might also be interested in the approximation error with
respect to a certain output functional, such as point values or boundary fluxes,
which leads to the notion of goal-oriented error estimation and refinement, see
for instance Bangerth and Rannacher (2003). The literature on applications of
these concepts in engineering is vast, see e.g. Stein (2003) for problems in solid
mechanics.

In this work, we propose a novel approach to adaptive refinement by cal-
culating sensitivities for a given objective function with respect to topological
changes of the underlying finite element mesh. To this end, we think of the inser-
tion of new nodes (and hence edges and elements) as a continuous operation on
the edge graph of the triangulation, for instance by splitting nodes along edges.
Some possible scenarios for node insertion are depicted in Fig. 1 for triangular
and quadrilateral meshes in two space dimensions, where the continuous change
is parametrized in the variable ǫ > 0. This approach allows for the definition of
a topological mesh derivative DJ for a given objective functional J : if uh and
uǫh are finite element solutions on the current mesh Th and the refined mesh T ǫ

h ,
respectively, we define

DJ(uh) := lim
ǫ→0

J(uǫh)− J(uh)

ǫ
.

These sensitivities can, in turn, be used to introduce local indicators for adaptive
refinement.

As a basic application of our approach as well as a proof of concept, we
consider in this work the total potential energy Je of a linear symmetric second-
order elliptic PDE. Recalling the well-known relation between Je and the error
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|||uh − u||| in the energy norm,

|||uǫh − u|||2 − |||uh − u|||2 = 2 (Je(u
ǫ
h)− Je(uh)) ,

the topological mesh derivative DJe(uh) yields edge-wise sensitivities for min-
imization of the energy error. Hence, in contrast to standard adaptive finite
element methods, which typically rely on a posteriori error estimators, our ap-
proach to adaptivity follows the concept of sensitivity-based mesh optimization
by local refinement.

Although our indicators result from a completely different concept, we will
prove equivalence to the explicit residual-based error estimator, rendering our
method efficient for adaptive refinement. Likewise, this result confirms the
effectivity of classical error estimators as local refinement indicators from an
optimization point of view. However, we stress that our indicator is – by con-
struction – not an error estimator, as it is based on the first-order approximation
to the decrease of the error upon refinement rather than the current local error
itself. Consequently, an accurate relation of the sum of local sensitivities to
the current global error is not to be expected, and our method seems not to
be suited for error estimation and error control. On the other hand, in com-
parison to the explicit residual-based error estimator in an adaptive algorithm,
the relation between indicator value and error reduction upon refinement seems
to be more accurately captured. This property is of particular importance in
cases where possibly large local errors are (almost) orthogonal to the proposed
refinements.

In that, our results for minimization of the energy error are rather related
to the so-called correction indicators introduced by Zienkiewicz et al. (1983),
see also Zienkiewicz and Craig (1986). There, the original motivation had been
to predict the decrease of the (quadratic) error upon adding a new degree of
freedom in a hierarchical bases setting. Eventually, these ideas led to the de-
velopment of hierarchical bases estimators (Bank and Smith, 1993; Bank, 1996;
Deuflhard et al., 1989). Other than that – except for the rediscovery by Aguilar
and Goodman (2006) in the context of anisotropic refinement – the original
concept of correction indicators has not been pursued further to the knowledge
of the authors. Anyway, since our approach also builds on the insertion of a
new basis function, the sensitivities for the total potential energy derived in
this paper appear to be similar to the correction indicators from Zienkiewicz
et al. (1983) and Aguilar and Goodman (2006) in both structure and perfor-
mance. However, our concept and its presentation will be more general, as
it is not confined to the special application to energy error minimization, but
can, in particular, also be employed for various objective functions J . These
applications will be studied more extensively in a forthcoming publication.

On the one hand, our idea is motivated by the work of Delfour et al. (1985),
where the total potential energy has been employed as the objective function in
the context of r-adaptive mesh optimization. There, the corresponding sensitiv-
ities for re-localization of nodes have been derived by means of the speed method
known from shape optimization (Sokolowski and Zolésio, 1992). Hence, in view
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of the recent development towards topological sensitivity analysis (Sokolowski
and Zochowski, 1999), our concept extends the approach of Delfour et al. (1985)
to topological mesh changes. However, instead of adopting the abstract connec-
tion of shape and topological derivatives as in Novotny et al. (2003), we will
calculate the asymptotic expansions for topological mesh changes directly with-
out relying on the results of Delfour et al. (1985).

Furthermore, our work is inspired by the ideas of Leugering and Sokolowski
(2008, 2011), where the authors derive sensitivities for topological changes on
graphs that are governed by partial differential equations, such as networks of
beams or strings. Although our problem might look somewhat similar at the
first sight, from a conceptual point of view, insofar as we consider topological
changes of the edge graph of the finite element discretization, our problem differs
in some fundamental respects: in our case, functions are defined on elements,
that will collapse to edges or nodes in the limit. Secondly, since we are concerned
with the asymptotic analysis of a discretized PDE, our problem is in essence
finite-dimensional. Nevertheless, some ideas, as well as the overall intuition, are
related to Leugering and Sokolowski (2008, 2011).

In this contribution, we will restrict ourselves to the model problem of a lin-
ear symmetric second-order elliptic PDE and piecewise linear FEM. Comments
on possible extensions will be given throughout this work. Earlier, we have con-
sidered our approach in the context of a one-dimensional model problem, see
Friederich et al. (2012). In the present work, those results are extended to two
and three dimensions and are therefore included as a special case.

This paper is organized as follows: In Section 2, we introduce the model
problem and the refinement operation that we consider along with all relevant
notation. In Section 3, we derive the asymptotic expansions of finite element
solutions with respect to node insertion and obtain the notion of the topologi-
cal mesh derivative for general objective functions. In Section 4, we apply our
results to the total potential energy and define refinement indicators for mini-
mization of the energy error; further, we prove its relation to the residual-based
error estimator. Section 5 is devoted to the examination of the performance
and reliability of our indicator on the basis of some numerical experiments. We
conclude this paper with some comments on goal-oriented refinement in Section
6.

2. Preliminaries

2.1. Model problem

We consider a symmetric linear second-order elliptic PDE on a polygonal Lip-
schitz domain Ω ∈ R

d, d = 2, 3, with homogeneous Dirichlet boundary data and
an arbitrary right hand side f ∈ L2(Ω), given in weak form as

(P )

{

Find u ∈ V := H1
0 (Ω) s.th.

aΩ(u, v) = (f, v)Ω ∀ v ∈ V,
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where

aΩ(u, v) :=

∫

Ω

K(x)∇u · ∇v + c(x)u v dx,

(f, v)Ω :=

∫

Ω

f v dx.

For the coefficients we require that K ∈ L∞(Ω)d×d be symmetric and uniformly
positive definite, and c ∈ L∞(Ω) non-negative, such that problem (P ) admits a
unique solution. In addition, we assume that K and c are at least continuous
on every element of a given simplicial conformal triangulation Th. For the
main result of Section 4, we will confine ourselves further to piecewise constant
coefficients K. Considering the ansatz space

Vh :=
{

vh ∈ V ∩ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th
}

of element-wise linear polynomials, the Galerkin approximation of (P ) in Vh
reads then

(Ph)

{

Find uh ∈ Vh s.th.

aΩ(uh, vh) = (f, vh)Ω ∀ vh ∈ Vh.

Remark 1 The restriction to symmetric equations and homogeneous Dirichlet
boundary data is for the ease of presentation. Our results on the asymptotic
expansions for element insertion in Section 3 can be easily generalized to non-
symmetric equations with non-homogeneous Dirichlet or Neumann boundary
data. However, the extension to higher-order elements is a different scenario,
as it requires a greater amount of notational and technical effort.

Furthermore, we denote the sets of nodes and edges of the triangulation Th
by Nh and Eh, respectively, and define the subsets of interior nodes NΩ

h = {x ∈
Nh : x /∈ ∂Ω} and interior edges EΩ

h = {E ∈ Eh : E ∩ Ω 6= ∅}. We let ϕi be the
linear Langrangian basis function, associated with any node xi ∈ Nh, where we
assume for ease of notation that the nodes are numbered so that NΩ

h = {xi}
N
i=1

and consequently

Vh = lin({ϕi}
N
i=1), N = dimVh.

Moreover, the L2-norm and the energy norm will be denoted by

‖ . ‖Ω := ( . , . )
1/2
Ω ,

||| . |||Ω := aΩ( . , . )
1/2,

respectively. Note that ||| . |||Ω is equivalent to the usual norm ‖ . ‖V := (‖ . ‖2Ω+
‖∇ . ‖2Ω)

1/2 on V = H1
0 (Ω). Furthermore, we will make use of the notation

〈 . , . 〉W :W ′ ×W → R for the dual pairing on any space W .
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Figure 2. Insertion of node x
ǫ
iǫ

along edge E = (xi0 ,xi+). The adjacent ele-

ments Tj ⊂ ωE are split into pairs {T ǫ
j , T

1−ǫ
j }, j = 1, 2

2.2. Insertion of a node along an edge

In this work, we consider the simplest mesh change possible as depicted in Fig.
1 a). Here, only one additional node is inserted and depends on ǫ > 0. Let us
introduce the relevant notation for this process in the following: We consider two
arbitrary neighboring nodes xi0 ,xi+ ∈ Nh, which are connected by an interior
edge

E := (xi0 ,xi+) = conv{xi0 ,xi+} ∈ EΩ
h .

More precisely, we assume that at least xi0 ∈ NΩ
h or xi+ ∈ NΩ

h . We denote the
immediate neighborhood of elements sharing edge E by

ωE :=
⋃

E⊂∂T
T∈Th

T.

Now, we split node xi0 along the edge E = (xi0 ,xi+) as depicted in Fig. 2:
For given ǫ > 0 we insert the additional node

x
ǫ
iǫ := xi0 + ǫ(xi+ − xi0) ∈ E,

and divide each adjacent element Tj ⊂ ωE into pairs Tj = T ǫ
j ∪ T 1−ǫ

j by new
edges (or faces, respectively) for j = 1, . . . ,ME , where ME is the number of
neighboring elements in ωE. Note that we have ME = 2 if d = 2 and ME ≥ 3
if d = 3. We abbreviate for later use

ωǫ
E :=

⋃

1≤j≤ME

T ǫ
j , ω1−ǫ

E :=
⋃

1≤j≤ME

T 1−ǫ
j .
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The insertion of the new node along with subdivision of neighboring elements
leads to the refined triangulation

T ǫ
h := (Th \ {Tj}

ME

j=1) ∪ {T ǫ
j , T

1−ǫ
j }ME

j=1.

Defining the ansatz space of piecewise linear elements on T ǫ
h accordingly,

V ǫ
h := {vǫh ∈ V : vǫh|T ∈ P1(T ) ∀T ∈ T ǫ

h } ,

we consider the corresponding Galerkin problem

(P ǫ
h)

{

Find uǫh ∈ V ǫ
h s.th.

aΩ(u
ǫ
h, v

ǫ
h) = (f, vǫh)Ω ∀ vǫh ∈ V ǫ

h .

Remark 2 Note that the family of refined triangulations {T ǫ
h }ǫ>0 fails to be

shape regular as ǫ → 0. This being a disaster from the numerical point of
view for infinitesimally small ǫ > 0, let us remind the reader that we are only
interested in the analytical derivation of asymptotic expansions, whereas any
mesh modification based on the resulting criteria will be finite, e.g. corresponding
to ǫ = 1

2 . Let us also remark that the usual a priori error estimates continue to
hold in this situation, as the maximum angle within the triangulations {T ǫ

h }ǫ>0

stays bounded independently of ǫ > 0 (see Babuška and Aziz, 1976).

Further, we observe that Vh ⊂ V ǫ
h ⊂ V , and more precisely

V ǫ
h = Vh ⊕ lin{ϕǫ

iǫ} = lin({ϕi}
N
i=1 ∪ {ϕǫ

iǫ}).

Here, {ϕi}Ni=1 ⊂ Vh are the Lagrangian nodal basis functions of Vh, correspond-
ing to the (interior) nodes {xi}

N
i=1, and ϕ

ǫ
iǫ ∈ V ǫ

h is the piecewise linear shape
function corresponding to the inserted node x

ǫ
iǫ
, defined by ϕǫ

iǫ
(xǫ

iǫ
) = 1 and

ϕǫ
iǫ(xj) = 0 for all xj ∈ Nh. The situation is depicted in Fig. 3 for d = 1. In

this context, we also observe that ϕǫ
iǫ

converges to a discontinuous function,

ϕǫ
iǫ → ϕi0χωE

{

in Lp(Ω), 1 ≤ p <∞,

weakly-∗ in BV (Ω),
(1)

as ǫ→ 0, where χωE
denotes the characteristic function of ωE . For the definition

and properties of weak-∗ convergence in BV (Ω), we refer to Ambrosio et al.
(2000).

For later use, let us also introduce the reference elements T̂j = T̂ ǫ
j ∪ T̂ 1−ǫ

j

and affine mappings F̂ Tj
: T̂j → Tj for j = 1, . . . ,ME , as depicted in Fig. 4 for

the case of d = 2. Moreover, we define the modified coefficient function Ki0,i+

through the identity

Ki0,i+ ◦F̂ j(x̂1, x̂2) = lim
ξ̂→0

K◦F̂ j(ξ̂, x̂2) ∀(x̂1, x̂2) ∈ T̂j, j = 1, . . . ,ME . (2)

In other words, boldsymbolKio,i+ extends the values ofK from the edges (faces)
containing xi−0 onto ωE on level lines that are parallel to E. In particular, note
that Ki0,i+ ≡ K if K is element-wise constant.
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ϕi0 ϕi+ϕǫ
iǫ

xi0 xi+xiǫ

T ǫ T 1−ǫ

Figure 3. Basis functions ({ϕi}Ni=1 ∪ {ϕǫ
iǫ
}) ⊂ V ǫ

h in d = 1. The canonical basis

of Vh = lin{ϕi}Ni=1 is supplemented by the new shape function ϕǫ
iǫ

such that

V ǫ
h = lin({ϕi}Ni=1 ∪ {ϕǫ

iǫ
}). See also Krysl et al. (2003)
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Figure 4. Reference elements T̂j = T̂ ǫ
j ∪T̂

1−ǫ
j and affine mappings F̂ Tj

: T̂j → Tj,
j = 1, 2

2.3. Definition of the topological mesh derivative

We are now in the position to define the sensitivity of a given functional J :
V → R with respect to insertion of a new node along an edge as follows:

Definition 1 The topological mesh derivative of J with respect to insertion of
a new node at xi0 along edge E = (xi0 ,xi+) is – if it exists – defined as

Di0,i+J(uh) := lim
ǫ→0

J(uǫh)− J(uh)

ǫ
. (3)

Let us point out that the existence of the topological mesh derivative can
indeed not be granted for arbitrary J : V → R. This issue will be clarified in the
course of this paper. Nevertheless, although additional assumptions and special
treatment might be needed in some cases, our concept seems to be suitable for
many applications of practical interest, see the discussion in Remark 4 below.

3. Asymptotic analysis for finite element solutions

Our results rely on the first-order asymptotic expansion of uǫh for ǫ > 0, which
shall be derived in the following. Standard notation and results from functional
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analysis (see, for instance, Reddy, 1998; Alt, 2002) will be used without further
reference.

3.1. Continuity for ǫ→ 0

First, we are going to prove that solutions uǫh of (P ǫ
h) converge indeed to the

solution uh of (Ph) as ǫ → 0. To this end, let us first prove the following
preliminary result:

Lemma 1 It holds that V ǫ
h → Vh in V in the sense of Kuratowski-Mosco, in

particular:
a) Let {vǫh}ǫ>0 ⊂ V , vǫh ∈ V ǫ

h , s.th. v
ǫ
h ⇀ v in V as ǫ→ 0. Then v ∈ Vh.

b) For any vh ∈ Vh, there exists {vǫh}ǫ>0 ⊂ V , vǫh ∈ V ǫ
h , s.th. v

ǫ
h → vh in V .

Proof To prove the first statement, define for δ > 0 the space of functions
of V which are piecewise linear on Ω \ ωδ

E ,

W δ
h :=

{

v ∈ V : v|T ∈ P1(T ) ∀T ∈ T δ
h \ {T δ

j }
ME

j=1

}

.

It is easy to see that V ǫ
h ⊆ W δ

h for all ǫ ≤ δ and that W δ
h is a closed linear

subspace of V , such that vǫh ⇀ v ∈W δ
h weakly in V for any δ > 0. Thus,

v ∈
⋂

δ>0

W δ
h = {w ∈ V : w|T ∈ P1(T ) ∀T ∈ Th} = Vh.

Note, in particular, that v ∈ C(Ω) is automatically satisfied, see Ciarlet (2002,
Thm. 4.2.1). The second assertion is obvious since Vh ⊂ V ǫ

h . �

Using this basic observation, continuity of solutions uǫh in V for ǫ → 0 is an
immediate consequence of the a priori stability estimate:

Lemma 2 Let uǫh and uh be the solutions of (P ǫ
h) and (Ph), respectively. Then

we have uǫh → uh in V as ǫ→ 0.

Proof Due to the coercivity of aΩ(., .) and the continuity of (f, .)Ω we may
estimate

ca ‖u
ǫ
h‖

2
V ≤ aΩ(u

ǫ
h, u

ǫ
h) = (f, uǫh)Ω ≤ ‖f‖V ′‖uǫh‖V

with the coercivity constant ca > 0, and hence arrive at the classical stability
estimate

‖uǫh‖V ≤ C,

which holds independently of ǫ > 0. Therefore, we deduce the existence of a
subsequence {uǫh}ǫ>0 ⊂ V , also denoted by ǫ, such that uǫh ⇀ w weakly in V as
ǫ→ 0. In the limit, we have

aΩ(w, vh) = (f, vh)Ω ∀ vh ∈ Vh (4)
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and may therefore conclude that the whole sequence converges to w as ǫ → 0.
Furthermore, because w ∈ Vh, due to Lemma 1, we finally identify w = uh as
the unique solution of (4). To prove strong convergence in V , we may equip V
with the equivalent energy norm ||| . |||Ω and observe that

|||uǫh|||
2
Ω = aΩ(u

ǫ
h, u

ǫ
h) = (f, uǫh)Ω

ǫ→0
−−−→ (f, uh)Ω = aΩ(uh, uh) = |||uh|||

2
Ω.

This, together with weak convergence in V , completes the proof. �

3.2. First-order asymptotic expansion

Next, we seek the first-order asymptotic expansion of uǫh with respect to ǫ > 0.

Remark 3 Unfortunately, we may not expect convergence in the weak or strong
topology of V . To see this, assume that there exists 0 6= w ∈ V such that

uǫh = uh + θ(ǫ)w + o(θ(ǫ)) weakly in V

for some smooth, strictly monotone function θ(ǫ) : R+
0 → R

+
0 with θ(0) = 0.

Since Vh ⊂ V ǫ
h for all ǫ > 0, we have, by Galerkin orthogonality,

aΩ(u
ǫ
h − uh, vh) = 0 ∀ vh ∈ Vh

and therefore

aΩ(
uǫh − uh
θ(ǫ)

, vh) = 0 ∀ vh ∈ Vh.

For ǫ→ 0, we arrive at

aΩ(w, vh) = 0 ∀ vh ∈ Vh. (5)

Since, moreover, (uǫh − uh)/θ(ǫ) ∈ V ǫ
h , we have that w ∈ Vh by Lemma 1 and

hence we conclude that w = 0 is the unique solution of the homogeneous equation
(5) in contradiction to the assumption. Let us emphasize that this observation
holds true for any node insertion scenario, for which V ǫ

h ⊂ Vh and the result of
Lemma 1 can be proven. Apparently, this holds true for all cases a)–c) in Fig.
1.

Nevertheless, we have the following result:

Theorem 1 Let uh and uǫh be solutions of problems (Ph) and (P ǫ
h), respectively.

Then we have the following asymptotic expansion for ǫ→ 0:

uǫh = uh + ǫ (yh + ys) + o(ǫ)











in Lp(Ω) for 1 ≤ p <∞,

in H1(Ω \ ωE),

weakly-∗ in BV (Ω),

(6)
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where

yh ∈ Vh : aΩ(yh, vh) = σi0,i+ 〈zi0,i+ , vh〉V ∀ vh ∈ Vh, (7)

ys = σi0,i+ ϕi0χωE
∈ BV (Ω), (8)

and

zi0,i+ = −aωE
( . , ϕi+)− aωE

( . , ϕi0) ∈ V ′, (9)

σi0,i+ =
(f, ϕi0)ωE

− aωE
(ϕi+ , uh)− aωE

(ϕi0 , uh)

aωE
(ϕi+ , ϕi+)

∈ R, (10)

with aωE
(uh, vh) :=

∫

Ω

Ki0,i+∇uh · ∇vh dx and Ki0,i+ defined in (2).

Theorem 1 states that the first-order asymptotic expansion of uǫh is composed
of a singular part ys ∈ BV (Ω), arising from the degeneration of the basis
function in the limit (1), and a regular part yh ∈ Vh, which is given as a dual
solution. However, since yh + ys /∈ V , we may not dream of convergence in
any topology of V , which has already been anticipated by Remark 3 above.
Furthermore, it is also easy to see that the element-wise convergence to the
discontinuous limit, e.g. in the broken space H1(Th) :=

⊕

T∈Th
H1(T ), can not

hold.
Proof of Theorem 1. Due to the discrete nature of the problem, the

proof boils down to the asymptotic analysis of the underlying finite-dimensional
system: using the representations

uh =

N
∑

j=1

ujϕj , uǫh =

N
∑

j=1

uǫjϕj + uǫiǫϕ
ǫ
iǫ ,

we make the problem (Ph) equivalent to the N -dimensional linear system

Au = f , (11)

with the unknown coefficient vector u = [uj ]
N
j=1 and the usual stiffness matrix

and right hand side

A = [aΩ(ϕj , ϕi)]
N
i,j=1, f = [(f, ϕi)Ω]

N
i=1.

Analogously, problem (P ǫ
h) is equivalent to the (N+1)-dimensional linear system

[

A bǫ

bǫ,⊤ cǫ

] [

uǫ

uǫiǫ

]

=

[

f

gǫ

]

, (12)

where A ∈ R
N×N and f ∈ R

N are defined above and

bǫ = [aΩ(ϕ
ǫ
iǫ , ϕi)]

N
i=1, cǫ = aΩ(ϕ

ǫ
iǫ , ϕ

ǫ
iǫ), gǫ = (f, ϕǫ

iǫ)Ω.
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Noting that cǫ = O(1ǫ ), we multiply the last line of (12) by ǫ > 0 to obtain
an equivalent system and abbreviate c̃ǫ := ǫ cǫ. We are now looking for the
first-order asymptotic expansion

[

uǫ

uǫiǫ

]

=

[

u0

u0iǫ

]

+ ǫ

[

u1

u1iǫ

]

+ o(ǫ).

As an immediate consequence of Lemma 2, together with the fact that ϕǫ
iǫ

→
ϕi0χωE

/∈ Vh by (1), we find that u0 = u and u0iǫ = 0. Further, considering

the Schur complement system of (12), multiplying by 1
ǫ and inserting (11), we

obtain

1

ǫ
(Auǫ −Au) =

1

ǫ
(Auǫ − f) = −

1

ǫ
uǫiǫ b

ǫ

1

ǫ
uǫiǫ =

1

c̃ǫ
(gǫ − bǫ · uǫ)

Thus, in the limit ǫ→ 0 we arrive at

Au1 = −u1iǫb
0, (13)

u1iǫ =
1

c̃0
(

g0 − b0 · u
)

, (14)

where the limits b0 = limǫ→0 b
ǫ, c̃0 = limǫ→0 c̃

ǫ, g0 = limǫ→0 g
ǫ are to be

determined in the following. To this end, we observe that

ϕǫ
iǫ =











1
ǫ ϕi+ on ωǫ

E ,
1

1−ǫ ϕi0 on ω1−ǫ
E ,

0 else,

and thus decompose

bǫi = aΩ(ϕi, ϕ
ǫ
iǫ) = aωE

(ϕi, ϕ
ǫ
iǫ)

=
1

ǫ
aωǫ

E
(ϕi, ϕi+) +

1

1− ǫ
aω1−ǫ

E
(ϕi, ϕi0) (15)

for i = 1, . . . , N . For the first term, we consider transformation onto the refer-
ence elements as introduced above, see Fig. 4; using Fubini’s theorem as well as
Lebesgue’s differentiation theorem and recalling the definition of Ki0,i+ in (2),
one finds for j = 1, . . . ,ME that

1

ǫ
aT ǫ

j
(ϕi, ϕi+) =

1

ǫ

∫

T̂ ǫ
j

(

K̂(x̂)∇ϕ̂i · ∇ϕ̂i+ + ĉ(x̂) ϕ̂i ϕ̂i+

)

|DF̂ j | dx̂

ǫ→0
−−−→

∫

T̂j

K̂(x̂)∇ϕ̂i · ∇ϕ̂i+ |DF̂ j | dx̂

=

∫

Tj

Ki0,i+(x)∇ϕi · ∇ϕi+ dx = aTj
(ϕi, ϕi+),
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where ˆ( . ) = ( . )◦F̂ . Here, we made also use of the facts that ϕ̂i+(0, x̂2) = 0 and
that ∇ϕ̂i is element-wise constant. Employing Lebesgue’s convergence theorem
for the second term in (15), we end up with

b0i = aωE
(ϕi, ϕi+) + aωE

(ϕi, ϕi0 )

for i = 1, . . . , N . Similarly, we have

c̃ǫ = ǫ aΩ(ϕiǫ , ϕiǫ) = ǫ aωE
(ϕiǫ , ϕiǫ)

=
1

ǫ
aωǫ

E
(ϕi+ , ϕi+) +

ǫ

(1− ǫ)2
aω1−ǫ

E
(ϕi0 , ϕi0),

and deduce by the same arguments as above that

c̃0 = aωE
(ϕi+ , ϕi+).

Finally, since ϕǫ
iǫ → ϕi0χωE

in L2(Ω) as ǫ→ 0, we get

g0 = (f, ϕi0 )ωE
.

Now, we set σi0,i+ := u1iǫ and define zi0,i+ ∈ V ′ such that 〈zi0,i+ , ϕi〉 = −b0i ,
which yields (9)–(10). Furthermore, introducing

yh :=

N
∑

j=1

u1jϕj ∈ Vh,

ys := u1iǫ ϕi0χωE
∈ BV (Ω),

we find, in particular, that (13)–(14) are equivalent to (7)–(8). Finally, we
observe that

uǫh − uh
ǫ

=

N
∑

j=1

uǫj − uj

ǫ
ϕj +

uǫiǫ
ǫ
ϕǫ
iǫ ,

and recall the convergence properties of ϕǫ
iǫ asserted in (1) to prove (6). �

3.3. Topological derivative of a functional

In view of the application we have in mind, the following result for differentiable
J : L2(Ω) → R will be sufficient. More general applications will be discussed in
the subsequent remark.

Theorem 2 Let J : L2(Ω) → R be Fréchet-differentiable in uh with derivative
dJ(uh) ∈ L2(Ω)′. Then,

Di0,i+J(uh) = σi0,i+
(

〈zi0,i+ , ph〉V + 〈dJ(uh), ϕi0χωE
〉L2(Ω)

)

, (16)

where ph ∈ Vh is given as the solution of the adjoint equation

aΩ(vh, ph) = 〈dJ(uh), vh〉L2(Ω) ∀ vh ∈ Vh (17)

and zi0,i+ ∈ V ′ and σi0,i+ ∈ R are defined above in (9)–(10).
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Proof Relying on Definition 1, the results from Theorem 1 and the defini-
tion of the adjoint solution ph ∈ Vh in (17), one obtains by the use of the chain
rule and straightforward calculation

Di0,i+J(uh) = lim
ǫ→0

J(uǫh)− J(uh)

ǫ

= 〈dJ(uh), yh〉L2(Ω) + 〈dJ(uh), ys〉L2(Ω)

= aΩ(yh, ph) + 〈dJ(uh), ys〉L2(Ω)

= σi0,i+
(

〈zi0,i+ , ph〉V + 〈dJ(uh), ϕi0χωE
〉L2(Ω)

)

.

�

Remark 4 In order to measure gradient and trace information in practical ap-
plications, the topological mesh derivative for general objective functions J :
V → R is, of course, desired. Unfortunately, in view of the insufficient conver-
gence (6) due to the singular contribution ys ∈ BV (Ω), a formula in the sense of
Theorem 2 can not be deduced directly in general. Nevertheless, the derivation
of Di0,i+J(uh) for functionals involving gradients seems to be possible in many
cases: for instance, this includes functionals of the form

J(u) =

∫

Ω

b(x) · ∇u dx

if b is continuous (or even piecewise continuous, using a more careful analysis
based on the arguments above). Furthermore, if J ∈ V ′ is of local character, such
as evaluation of boundary values or integrals over small regions, Di0,i+J(uh)
can at least be easily obtained for all edges E outside those areas. For more
demanding situations, additional analysis or a suitable approximation of J is
needed.

Remark 5 In comparison with goal-oriented refinement by the DWR-method
(see Bangerth and Rannacher, 2003), note that the topological mesh derivative
also depends on the solution ph ∈ Vh of an adjoint equation, which is inde-
pendent of the chosen edge E = (xi0 ,xi+). In addition, it will be seen from
the lines of the following section that the factors σi0,i+ essentially provide in-
formation about the local residual. For further comments and perspectives in
goal-oriented refinement see Section 6.

4. Application to adaptive refinement

4.1. Minimization of the energy error

As a basic application of the concept of the topological mesh derivative, we
consider the total potential energy

Je(u) :=
1

2
aΩ(u, u)− (f, u)Ω (18)
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corresponding to problem (P ). As mentioned above, the total potential energy
has been employed as a objective function for mesh optimization (r-adaptivity)
by Delfour et al. (1985) and others, due to its direct relation to the energy
error: in fact, relying on the symmetry of aΩ( . , . ) and Galerkin orthogonality,
one easily derives

|||uǫh − u|||2Ω = aΩ(u
ǫ
h − u, uǫh − u)

= aΩ(u
ǫ
h, u

ǫ
h)− 2aΩ(u, u

ǫ
h) + aΩ(u, u)

= aΩ(u
ǫ
h, u

ǫ
h)− 2(f, uǫh)Ω − (aΩ(u, u)− 2(f, u)Ω)

= 2(Je(u
ǫ
h)− Je(u)),

and analogously |||uh−u|||2Ω = 2(Je(uh)−Je(u)). By combining these equations,
we obtain the crucial identity

|||uǫh − u|||2Ω − |||uh − u|||2Ω = 2 (Je(u
ǫ
h)− Je(uh)) . (19)

Hence, Di0,i+Je(uh) can be regarded as a local sensitivity for minimizing the
(quadratic) energy error by node insertion. Note, however, that identity (19) is
limited to linear and symmetric elliptic equations. Using the results from the
previous section, we immediately obtain the following formula:

Corollary 1 For the total potential energy Je defined in (18) we have

Di0,i+Je(uh) = −
|(f, ϕi0)ωE

− aωE
(uh, ϕi+)− aωE

(uh, ϕi0)|
2

2 aωE
(ϕi+ , ϕi+)

. (20)

Proof Since uh ∈ Vh solves (Ph), we have

Je(uh) =
1

2
aΩ(uh, uh)− (f, uh)Ω = −

1

2
(f, uh)Ω

such that 〈dJe(uh), .〉L2(Ω) = − 1
2 (f, . )Ω, and, in particular, ph = − 1

2 uh ∈ Vh,
as aΩ( . , . ) is symmetric and bilinear. Employing Theorem 2 and using once
more the symmetry of aΩ( . , . ), we deduce

Di0,i+Je(uh) = −
σi0,i+
2

(

〈zi0,i+ , uh〉V + (f, ϕi0)ωE

)

= −
σi0,i+
2

(

(f, ϕi0)ωE
− aωE

(ϕi+ , uh)− aωE
(ϕi0 , uh)

)

= −
|(f, ϕi0)ωE

− aωE
(uh, ϕi+)− aωE

(uh, ϕi0)|
2

2 aωE
(ϕi+ , ϕi+)

.

�

Remark 6 Note that in this case a computational evaluation of ph is not re-
quired due to self-adjointness. Furthermore, we observe that Di0,i+Je(uh) ≤ 0
for any edge E = (xi0 ,xi+). This observation confirms our expectation that
insertion of nodes will decrease the error in the energy norm.
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4.2. Definition of a refinement indicator

In order to apply this result to adaptive refinement, let us define a local re-
finement indicator ιE based on Di0,i+Je(uh). In view of (19), we would like to
refine edges where |Di0,i+Je(uh)| = −Di0,i+Je(uh) is large. Moreover, note that
there are two distinct sensitivities per edge for the insertion of a node, namely
Di0,i+Je(uh) and Di+,i0Je(uh). Hence, we define:

Definition 2 For any interior edge E = (xi0 ,xi+) ∈ EΩ
h , the refinement in-

dicator based on the topological mesh derivative for the total potential energy is
defined as

ιE :=max{|Di0,i+Je(uh)|, |Di+,i0Je(uh)|}

= max
j,k∈{i0,i+}

j 6=k

|(f, ϕj)ωE
− aωE

(uh, ϕk)− aωE
(uh, ϕj)|2

2 aωE
(ϕk, ϕk)

. (21)

Remark 7 As mentioned above, the resulting indicator is connected to the so-
called correction indicators introduced by Zienkiewicz et al. (1983). Following
the lines of the rigorous treatment of Aguilar and Goodman (2006), one finds the
following representation for the error reduction for edge refinement with finite
0 < ǫ < 1:

|||uh − u|||2Ω − |||uǫh − u|||2Ω =
|(f, ϕǫ

iǫ
)Ω − aΩ(uh, ϕ

ǫ
iǫ
)|2

infvh∈Vh
|||vh − ϕǫ

iǫ
|||2Ω

(22)

The correction indicators are then constructed by replacing Vh by W0 := {0}
as in Zienkiewicz et al. (1983) or by W4 := lin{ϕj ∈ Vh : xj ∈ ∂ωE} as
proposed by Aguilar and Goodman (2006) in two space dimensions. Considering
Poisson’s equation as a model problem, Aguilar and Goodman (2006) prove that
both versions are effective in the sense that the true error reduction (22) can be
bounded from above and below in terms of the indicators, where the constants
depend on the shape of the neighboring elements T ∈ ωE. Note that the latter
version involves the solution of a small subproblem, but appears to be much more
reliable in case of ill-shaped neighboring elements occurring in applications to
anisotropic refinement, see Aguilar and Goodman (2006) for details.

In fact, it is easy to see that Di0,i+Je(uh) and hence ιE could also be obtained
from the identity (22), using the arguments from the proof of Theorem 1.

4.3. Relationship to residual-based error estimator

For the discussion in the remainder of this section, we confine ourselves to d = 2
and require that the coefficient function K ≡ K be element-wise constant.
In order to examine the quality of the refinement indicator ιE , we consider
the classical residual-based error estimator ηE which reads in this case as (see
Verfürth, 1996; Ainsworth and Oden, 2000, and, in particular, Brenner and



Adaptive finite elements based on sensitivities for topological mesh changes 295

Scott, 2002; Morin et al., 2000, for the edge-wise representation)

η2E :=
∑

T⊂ωE

h2T ‖r‖
2
T + hE‖jE‖

2
E, (23)

where the jump and element residuals are given by

jE := [[K∇uh · nE ]]E , r := f − cuh,

independently of the direction of the normal nE on edge E, and we may take

hT = |T |1/2, hE = |E|

for shape regular triangulations Th. Furthermore, we recall the well-known
global upper and local lower bound of the energy error in terms of the estimators
ηE (see Verfürth, 1996; Ainsworth and Oden, 2000),

|||u− uh|||
2
Ω ≤ C

∑

E∈EΩ
h

η2E , (24)

η2E ≤ C1|||u− uh|||
2
ωE

+ C2

∑

T⊂ωE

h2T ‖r − rT ‖
2
T , (25)

where rT is the mean value of r on T , and the constants are only depending on
the smallest angle in the triangulation and the eigenvalues of K. We are now
in the position to state the following important result on the relation between
ιE and the classical residual-based error indicator:

Theorem 3 Let d = 2 and assume that the coefficient function K ≡ K is
element-wise constant.

a) For any interior edge E ∈ EΩ
h , we have

ιE ≤ C η2E . (26)

b) For any interior node xi0 ∈ NΩ
h , 1 ≤ i0 ≤ N , define the patch

ω̃0 :=
⋃

xi0
∈∂T

T∈Th

T (27)

and the star-graph γ̃0 := {E ∈ EΩ
h : xi0 ∈ ∂E} of edges in ω̃0 sharing node

xi0 . Then,

∑

E⊂γ̃0

η2E ≤ C1

∑

E⊂γ̃0

ιE + C2 h
2
ω̃0
‖r − rω̃0

‖2ω̃0
, (28)

where hω̃0
= |ω̃0|1/2 and rω̃0

is the mean value of r on ω̃0.
Here, the constants C,C1, C2 > 0 only depend on the smallest angle in the
triangulation Th and the minimal and maximal eigenvalues of K.
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We postpone the proof of Theorem 3 to the end of this section. The following
result is an immediate consequence of Theorem 3 and the lower and upper
bounds (24), (25):

Corollary 2 Under the assumptions of Theorem 3, the following estimates
are true:

a)

ιE ≤ C1|||u− uh|||
2
ωE

+ C2

∑

T⊂ωE

h2T ‖r − rT ‖
2
T ∀E ∈ EΩ

h (29)

b)

|||u− uh|||
2
Ω ≤ C3

∑

E∈EΩ
h

ιE + C4

∑

1≤i≤N

h2ω̃i
‖r − rω̃i

‖2ω̃i
. (30)

Here, the constants C1, C2, C3, C4 > 0 only depend on the smallest angle in the
triangulation Th and the minimal and maximal eigenvalues of K, and ω̃i are
the patches associated with the interior nodes xi ∈ NΩ

h as defined in (27).

Remark 8 Several remarks on Theorem 3 and Corollary 2 are in order:
• We may conclude from Theorem 3, that the sensitivity-based refinement
indicator ιE is patch-wise equivalent to the classical residual-based error
estimator η2E up to oscillations h2ω̃0

‖r − rω̃0
‖2ω̃0

, which are expected to be
of higher order (see Morin et al., 2000). In particular, ιE depends on the
same residual contributions with the same asymptotically accurate weights
in terms of edge and element sizes. Hence, we may presume that the pro-
posed indicator might perform similarly in an adaptive algorithm. Recall,
however, that the derivations of these indicators are based on completely
different motivations: in view of (19), the indicator ιE is constructed to be
a local sensitivity for minimization of the (quadratic) error rather than an
estimator for the actual local error itself. On the other hand, this result
confirms that the explicit residual-based (and any equivalent) error esti-
mator leads to efficient adaptive refinement in the sense that it is locally
equivalent to sensitivities for error reduction.

• As a consequence of Theorem 3, the indicator ιE is equivalent to the error
in the sense of Corollary 2. Hence, we conclude from (29) that if ιE is
large, the local error on ωE is also large. On the other hand, (30) asserts
that

∑

E∈Eh
ιE does not vanish unless u = uh, at least in the case of

sufficiently nice data. However, aside from this observation, the result
of Corollary 2 does not imply a reliable quantitative relation in the sense
of error estimation. Since ιE is based on edge-wise sensitivities rather
than estimates on the local error itself, the value

∑

E∈Eh
ιE does not allow

for any meaningful interpretation with regard to the global energy error
|||u − uh|||Ω. In fact, as can be seen from the numerical examples below,
the values of ιE are indeed on a smaller scale than the local errors. With
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this in mind, we emphasize once more that the derived indicator is not
appropriate for error evaluation and error control. Accordingly, a precise
estimation of the error in terms of ιE, including a more careful analysis
for the constants appearing in Corollary 2, is not our primary attempt.

• Note that the indicator ιE does not capture the fine data variations within
elements. In particular, additional error contributions, corresponding to
data oscillations, appear in both bounds (29) and (30). Anyway, it is well-
known that data oscillations play a crucial role in adaptivity in general,
as they have to be considered in addition, in order to ensure convergence
of the adaptive algorithm even for typical error estimators (Morin et al.,
2000, 2008). Therefore, one should, for instance, include oscillation indi-
cators in the marking strategy.

• Our proof utilizes the restriction to element-wise constant K as well as
the linearity of shape functions {ϕj}

N
j=1 on several occasions, e.g. for the

derivation of the crucial identity (31). In fact, the generalization of the
results of Theorem 3 in the case of non-constant K seems to be elaborate,
even if oscillations for the jump residuals are taken into account. Regard-
ing higher-order elements, note that the details of the refinement procedure
will differ and the asymptotic analysis will lead to a different formula for
ιE in the first place.

Proof of Theorem 3 Due to the assumption that K ≡ K is element-wise
constant, we may rewrite

(f, ϕi0 )ωE
− aωE

(uh, ϕi+)− aωE
(uh, ϕi0) = (r, ϕi0 )ωE

− aωE
(uh, ϕi0 +ϕi+).

For the first term on the right hand side, we observe that

∇(ϕi0 + ϕi+)|T =
|E|

2 |T |
nE,T ,

where nE,T is the normal on E pointing outward from T . Hence, by exploiting
the fact that K∇uh is constant on T ⊂ ωE, we obtain the crucial ingredient

aωE
(uh, ϕi0 + ϕi+) =

∑

T⊂ωE

∫

T

K∇uh · ∇(ϕi+ + ϕi0) dx

=
1

2

∫

E

[[K∇uh · nE ]]E dx =
1

2

∫

E

jE dx.

(31)

Furthermore, observe that

ca ≤
1

aωE
(ϕj , ϕj)

≤ Ca, j = i0, i+,

uniformly for all edges E ∈ EΩ
h , where the constants ca, Ca > 0 only depend

on the smallest angle in the triangulation Th and the minimal and maximal
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eigenvalues of K. In the following, the constants C,C1, C2, . . . may depend on
these bounds and may – as usual – change their values on different occurrences
within one estimate.

To prove the first result, (26), we may simply employ Young’s and Cauchy-
Schwarz inequalities to estimate

ιE = max{|Di0,i+Je(uh)|, |Di+,i0Je(uh)|}

≤ Ca max
j∈{i0,i+}

|(r, ϕj)ωE
− aωE

(uh, ϕi0 + ϕi+)|
2

≤ C1 max
j∈{i0,i+}

∑

T⊂ωE

‖r‖2T ‖ϕj‖
2
ωE

+ C2|aωE
(uh, ϕi0 + ϕi+)|

2

≤ C1

∑

T⊂ωE

h2T ‖r‖
2
T + C2hE‖jE‖

2
E

≤ C η2E .

For the proof of the second statement, (28), let us fix an arbitrary xi0 ∈ NΩ
h ,

1 ≤ i0 ≤ N , and enumerate the nodes {xik}
M0

ik=1 ⊂ ∂ω̃0 for some M0 ∈ N,
and consider the corresponding edges Ek = (xi0 ,xik) ∈ γ̃0 together with their
neighborhoods ωk = ωEk

. For the second result to hold, an additional ingredient
is needed in order to ensure that the two terms within the absolute value do not
cancel. This is achieved by the following estimate:

∑

E∈γ̃0

ιE =

M0
∑

k=1

max{|Di0,ikJe(uh)|, |Dik,i0Je(uh)|}

≥
ca
2

M0
∑

k=1

∑

l=i0,ik

|(r, ϕl)ωk
− aωk

(uh, ϕi0 + ϕik )|
2

≥
ca

4M0
|
M0
∑

k=1

(r, ϕi0 + ϕik)ωk
− 2 aωk

(uh, ϕi0 + ϕik)|
2.

(32)

For convenience, we introduce ψi0 = χω̃0

∑M0

k=1 ϕik = χω̃0
−ϕi0 and observe that

M0
∑

k=1

aωk
(uh, ϕi0) =

M0
∑

k=1

∑

T∈ωk

aT (uh, ϕi0) = 2 aω̃0
(uh, ϕi0),

M0
∑

k=1

aωk
(uh, ϕik) = aω̃0

(uh, ψi0) = −aω̃0
(uh, ϕi0),

and furthermore

M0
∑

k=1

(

aωk
(uh, ϕi0)− (r, ϕi0 )ωk

)

= 2
(

aΩ(uh, ϕi0)− (f, ϕi0 )Ω
)

= 0.
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Thus, (32) results in

|(r, ψi0)ω̃0
|2 ≤ CM0

∑

E∈γ̃0

ιE , (33)

and it remains to bound η2E in terms of the left hand side of (33). Computing
∫

ω̃0

ψi0 dx = 2
3 |ω̃0|, ‖ψi0‖

2
ω̃0

= 1
2 |ω̃0|,

we proceed by estimating
∑

E∈γ̃0

∑

T⊂ωE

h2T ‖r‖
2
T = 2

∑

T∈ω̃0

h2T ‖r‖
2
T ≤ 2 max

T⊂ω̃0

h2T ‖r‖
2
ω̃0

≤ C1 max
T⊂ω̃0

h2T ‖rω̃0
‖2ω̃0

+ C2h
2
ω̃0
‖r − rω̃0

‖2ω̃0

≤ C1 max
T⊂ω̃0

h2T
h2ω̃0

|(rω̃0
, ψi0)ω̃0

|2 + C2h
2
ω̃0
‖r − rω̃0

‖2ω̃0

≤ C1 max
T⊂ω̃0

h2T
h2ω̃0

|(r, ψi0)ω̃0
|2 + C2h

2
ω̃0
‖r − rω̃0

‖2ω̃0
.

(34)

On the other hand, recalling (31) and repeating the preceding arguments,

∑

E∈γ̃0

hE‖jE‖
2
E = 4

M
∑

k=1

|aωk
(uh, ϕi0 + ϕik)|

2

≤ C1

∑

E∈γ̃0

|Di0,ikJe(uh)|+ C2

∑

E∈γ̃0

|(r, ϕi0)ωE
|2

≤ C1

∑

E∈γ̃0

ιE + C2 max
T⊂ω̃0

h2T ‖r‖
2
ω̃0

≤ C1

∑

E∈γ̃0

ιE + C2 max
T⊂ω̃0

h2T
h2ω̃0

|(r, ψi0 )ωE
|2 + C3h

2
ω̃0
‖r − rω̃0

‖2ω̃0
.

(35)

Finally, we combine the previous estimates (33), (34) and (35) and observe that

M0 max
T∈ω̃0

h2T
h2ω̃0

≤
maxT∈ω̃0

h2T
minT∈ω̃0

h2T
≤ C,

where the constant only depends on the shape regularity of Th. This completes
the proof. �

5. Numerical experiments

Let us examine the quality of ιE in two numerical experiments in d = 2.
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5.1. Adaptive algorithm

In the first test, we investigate the numerical performance of our concept of
sensitivity-based mesh refinement in comparison to the classical approach of
error-controlled adaptivity. To this end, we compare ιE to the standard explicit
residual-based error estimator ηE (23) as refinement indicators in an adaptive
algorithm.1

The procedure is as follows: For ηE and ιE , we consider two independent,
initially equal meshes. First, the indicators ηE and ιE are evaluated for all
interior edges of their corresponding triangulations. We then mark edges for
refinement by the maximum strategy (Babuška and Rheinboldt, 1978): for given
0 < Θ ≤ 1, we determine the subsets of edges

Mη = {E : η2E ≥ Θmax
E′

η2E′}, Mι = {E : ιE ≥ Θmax
E′

ιE′}.

In the examples below we choose Θ = 0.1. Edges E ∈ Mη,Mι, respectively,
are then marked for refinement on the corresponding meshes. The refinement is
carried out by newest vertex bisection (NVB) (Mitchell, 1989) and we proceed
with the next iteration on both refined meshes.

The experiments have been implemented and performed in Matlab. For
NVB-refinement, our implementation is based on some modules from Funken
et al. (2011); the routines have been slightly modified in order to account for
the edge-based rather than the element-based marking and refinement. By use
of NVB-refinement, shape regularity of the families of refined triangulations is
preserved throughout the algorithm.

Remark 9 Since ιE is by construction an edge-based indicator, it seems to per-
form better if single edges are marked instead of all edges of adjacent elements.
In this context, note that for elements with more than one marked edge refine-
ment according to the derivation of ιE , that is, by the process described in section
2.2, is neither possible nor wanted.

Remark 10 The computation of ιE only requires evaluations of given data and
basis functions. Therefore, the computational costs for the evaluation of ιE are
comparable to those of ηE.

5.2. Accuracy test

In the second experiment, we try to assess the reliability of ιE as a local in-
dicator for error reduction. Typically, the quality of a refinement indicator in
a posteriori error estimation is addressed to by its effectivity index, which is
measured as the ratio of estimator value to the true error (see Verfürth, 1996;
Ainsworth and Oden, 2000). However, as discussed in Remark 8, we do not

1In this context, we refer to the studies and conclusions of Carstensen and Merdon (2010)
on several a posteriori error estimators with regard to their similar performance as mesh
refinement indicators.
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expect an accurate relation between
∑

E∈EΩ
h
ιE and |||u − uh|||2Ω. Rather, we

shall examine the reliability of ιE as a sensitivity by the ratio of the local indi-
cator value (prediction) to the actual local error reduction. In particular, since
the derivation of the sensitivities is based on infinitesimal small ǫ → 0, we are
interested in the accuracy for practical refinement with finite ǫ = 1

2 .

To this end, we evaluate ιE for all interior edges on a uniformly refined mesh.
Then, every edge is refined by bisection as in Fig. 2 with ǫ = 1

2 . The reduction
of the quadratic error

∆E := |||uh − u|||2Ω − |||u
1/2
h − u|||2Ω = 2

(

Je(uh)− Je(u
1/2
h )

)

(36)

is evaluated and compared to the prediction ιE . For the evaluation (36), we
use the right hand side of (19), as it only depends on the discrete solutions. To
avoid perturbations of the ratios by quantities close to zero, we exclude those
samples from the results, for which both ∆E < 10−12 and ιE < 10−12 are true.

For comparison, we will also show the correlation between η2E and ∆E in
order to explain a possibly superior adaptive performance of ιE from this point
of view. However, we emphasize that we do not expect any reliable connection
between η2E and ∆E by construction. Vice versa, the quality of ιE as an error
estimator would of course be inferior to ηE .

5.3. Example 1: the crack problem

We consider Poisson’s equation (K ≡ I, c ≡ 0) on the slit domain Ω = {(x, y) ∈
R

2 : |x|+|y| < 1}\([0, 1]×{0}) with the constant right hand side f ≡ 1; the non-
homogeneous Dirichlet boundary data are determined from the exact solution
which is given in polar coordinates by

u(r, θ) = r1/2 sin(θ/2)− 1
2r

2 sin2(θ)

(see Morin et al., 2003; Carstensen and Merdon, 2010). The extension of our
results to problems with non-homogeneous Dirichlet data is straightforward and
one obtains the indicator ιE literally as defined in Definition 2.

The adaptive algorithm creates a mesh with a fine resolution around the
singularity of type r1/2 at the origin, see Fig. 5 b). The performance of ιE in
adaptive refinement is apparently competitive in comparison to ηE as illustrated
in Fig. 6. In the second test, we find that the prediction ιE and the actual error
decrease ∆E are well correlated as demonstrated in Fig. 7 a). The relation be-
tween indicator value and actual error reduction for the residual-based estimator
is depicted in Fig. 7 b) for comparison. We suppose that the slightly superior
performance of our indicator in the adaptive algorithm can be explained by its
better correlation to the error reduction. However, we stress that both indica-
tors seem to be equally reliable for large local errors, whereas accuracy at small
scales is rather irrelevant from the practical point of view.
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(a) (b)

Figure 5. (a) Initial mesh (N = 3) for Example 1. The crack [0, 1]× {0} from
the center to the right-hand corner is indicated by the bold line. (b) Locally
refined mesh (N = 1144) generated by the adaptive algorithm based on ιE

101 102 103 104 105
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10−2

10−1

100

N

|||u
−

u
h
||| Ω

ιE
ηE

Figure 6. Adaptive algorithm for Example 1. Energy error |||u − uh|||Ω vs.
number of degrees of freedom N on adaptively refinement meshes generated by
ιE (solid line) and ηE (dashed line)
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η
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Figure 7. Accuracy test for Example 1 on a uniform mesh (N = 465). Every
mark corresponds to bisection of an edge E ∈ EΩ

h . (a) Refinement indicator ιE
vs. reduction of the quadratic error ∆E . (b) Residual-based error estimator η2E
vs. reduction of the quadratic error ∆E for comparison
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5.4. Example 2: the varying right hand side

In this example, let the exact solution to Poisson’s problem (K ≡ I, c ≡ 0) on
Ω = (0, 1)2 with homogeneous Dirichlet data be given by

u(x, y) = x(x − 1) y(y − 1) exp(−100 (x− 1
2 )

2 − 100 (y− 117
1000 )

2),

where the right hand side f is determined accordingly (see Luce and Wohlmuth,
2004; Carstensen and Merdon, 2010).

We confirm that our indicator is competitive in view of the results for the
adaptive algorithm depicted in Fig. 9. Again, we suppose that the slightly
better performance of our indicator is due to the fact that the correlation of
error reduction and indicator value is better than for the residual-based error
estimator, see Fig. 10. In comparison to the previous example, the ratios
∆E/ιE are perturbed by some outliers due to large oscillations on the rather
coarse uniform mesh.

6. Conclusion and outlook

From the results above we may conclude that the sensitivity-based indicator
ιE appears to be competitive in adaptive refinement for minimization of the
energy error. Consequently, in view of Theorem 2 and its generalizations in the
sense of Remark 4, the concept of the topological mesh derivative seems to be
suited for goal-oriented refinement. Note, however, that a relation between the
topological mesh derivative and the error in terms of the discrete and unknown
solutions – as given by (19) in the special case of the total potential energy – is
in general not available.

Therefore, one may only calculate sensitivities for the evolution of the quan-
tity J(uh) instead of the error |J(uh)−J(u)| that shall be minimized. Since J(u)
is mesh-independent, one might consider |Di0,i+J(uh)| as an (unsigned) sensi-
tivity for the error. Hence, in the absence of additional arguments or futher
knowledge on J , one has to rely on the assumption that refinement will in fact
decrease the error |J(uh)−J(u)|. These issues will be addressed in a forthcoming
publication.
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(a) (b)

Figure 8. (a) Initial mesh (N = 9) for Example 2. (b) Locally refined mesh
(N = 1263) generated by the adaptive algorithm based on ιE
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Figure 9. Adaptive algorithm for Example 2. Energy error |||u − uh|||Ω vs.
number of degrees of freedom N on adaptively refinement meshes generated by
ιE (solid line) and ηE (dashed line).
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Figure 10. Accuracy test for Example 2 on a uniform mesh (N = 961). Every
mark corresponds to bisection of an edge E ∈ EΩ

h . (a) Refinement indicator ιE
vs. reduction of the quadratic error ∆E . (b) Residual-based error estimator η2E
vs. reduction of the quadratic error ∆E for comparison



Adaptive finite elements based on sensitivities for topological mesh changes 305

References

Aguilar, J. C. and Goodman, J. B. (2006) Anisotropic mesh refinement for
finite element methods based on error reduction. Journal of Computational
and Applied Mathematics, 193(2), 497–515.

Ainsworth, M. and Oden, J. T. (2000) A Posteriori Error Estimation in
Finite Element Analysis. Wiley, New York.

Alt, H. W. (2002) Lineare Funktionalanalysis. Springer, Berlin, 4th edition.
Ambrosio, L., Fusco, N., and Pallara, D. (2000) Functions of Bounded
Variation and Free Discontinuity Problems. Oxford University Press, New
York.
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