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Abstract: We implement Total Variation Diminishing Lax Fried-
richs (TVDLF, or Rusanov) method to obtain numerical solutions
of the two-dimensional advection equation. Despite the simplicity
of this equation, solving it numerically is a formidable task. Based
on the use of the original C++ MPI-GPU/CUDA code we present
results of numerical tests we performed. These tests show that our
code represents well the square wave profiles, leading to up to 60-
times faster calculations with the use of MPI than with its serial
counter-part.
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1. Introduction

Despite the significant development of mathematical and numerical tools, solv-
ing of some scientific problems still constitutes a formidable task. As a result,
in many cases the exact analytical solution is difficult or even impossible to ob-
tain (see, e.g., Toro, 2008, and references therein). In such cases, until a proper
analytical method is discovered, finding an approximate solution has to suffice.
However, as involving tedious and time-consuming calculations, the approxima-
tion can also not be easy to obtain (see Murawski and Lee, 2012, or Murawski
et al., 2012, 2013). This is an area in which graphical cards can be adopted for
improving the performance of the calculations (see Schieve et al., 2010).

Graphical processing units (GPUs, see Nickolls et al., 2010) have recently
been widely used for scientific computing due to their large number of paral-
lel processors, which can be exploited using the Compute Unified Device Ar-
chitecture (CUDA) programming language (see Nickolls and Dally, 2008) that
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facilitates multi-threaded programming by introducing the concept of a kernel.
GPUs offer very high performance at low costs for data-parallel computational
tasks, when computations are carried out in single precision (see Leist et al.,
2009). Thus, it is a good idea to develop algorithms for hybrid (heterogeneous)
computer architectures where large parallelizable tasks are scheduled for execu-
tion on GPUs, while small non-parallelizable tasks should be run on CPUs.

The application of GPU/CUDA for solving hyperbolic equations is sparse.
See, however, Schieve et al. (2010) and Wasiljew and Murawski (2013) who
adopted GPU/CUDA for solving multi-dimensional set of hyperbolic (Euler
and magnetohydrodynamic) equations. Yet, the numerical methods they im-
plemented are so sophisticated that their codes are difficult to generalize for
an arbitrary set of hyperbolic equations. Therefore, our strategy is to devise a
MPI-GPU/CUDA numerical code for the simplest conceivable two-dimensional
(2D) hyperbolic equation, which is the advection equation. We use Total Vari-
ation Diminishing Lax Friedrichs (TVDLF, or Rusanov) method, which can be
easily adopted to any set of hyperbolic equations. As a final product of our ef-
fort we write the code in C, which can serve as a template for the development
of codes for more complex equations.

This paper is organized as follows. Section 2 presents the 2D advection equa-
tion. Finite-difference numerical schemes with particular emphasis on TVDLF
method are illustrated in Section 3. The original studies on implementation of
the TVDLF into the MPI-GPU/CUDA numerical code for the two-dimensional
advection equation and the results of numerical experiments are reported in
Section 4. This paper closes with discussions and conclusions in Section 5.

2. The advection equation

Among various types of partial differential equations, the family of hyperbolic
equations gained much interest, as these equations describe ubiquitous wave
phenomena. A one-dimensional (1D) hyperbolic equation can be written in the
general form (see LeVeque, 2002)

q,t + f(q),x = 0 , (1)

where q = q(x, t) is a real function of coordinate x and time t, f(q) is a flux and
the following notation is adopted:

q,t ≡
∂q

∂t
, f(q),x ≡

∂f

∂x
. (2)

As a particular application of the flux, f(q), in Eq. (1) we can choose

f(q) = λxq , (3)

where λx = const is the advection speed along the x-direction. This choice
results in the 1D advection equation, which can be written as

q,t + λxq,x = 0 . (4)
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The 1D advection equation is the simplest conceivable hyperbolic equation (see
Toro, 2008).

The 2D generalization of the 1D advection equation (1) is (see LeVeque,
2002)

q,t + λxq,x + λyq,y = 0 , (5)

where λy = const is the advection speed along the y-direction. The initial state
for this equation is specified as

q(x, y, t = 0) = q0(x, y) , (6)

where q0(x, y) denotes the initial condition. We can verify by inspection that
the initial-value (Cauchy’s) problem is solved as

q(x, y, t) = q0(x− λxt, y − λyt) . (7)

As a result, we infer that the initial condition q0(x, y) is translated along the
x-axis (y-axis) by λxt (λyt). As the initial-value problem is trivially solved, this
equation is ideal for testing numerical methods, this being exactly done in the
resent paper.

3. TVDLF method for the advection equation

The goal in this part of the paper is to present the TVDLF method of solving
the 1D advection equation (4). Extension of this method to higher dimensions
is straightforward. We introduce the numerical grid of the size ∆x and the
time-step ∆t as

xi = i∆x , i = 0, 1, . . . , imax , ∆x = xi+1 − xi , (8)

tn = n∆t , n = 0, 1, . . . , nmax , ∆t = tn+1 − tn . (9)

Here, xi denotes the spatial coordinate that is evaluated at the i-th cell center
and tn is a moment of time, specified by integer n. The symbol ∆x denotes the
size of a numerical cell. For simplicity reasons we assume that the numerical
grid is uniform, which corresponds to a constant grid size, ∆x = const. Having
defined xi and tn we introduce the following notation:

qni ≡ q(xi, t
n) . (10)

We approximate now the partial derivatives by finite differences; for the
temporal (spatial) derivative we adopt the forward (centered) Euler scheme
(see Morton, 2005, or Murawski, 2002)

q,t ≃
qn+1
i − qni

∆t
, q,x ≃

qni+1 − qni−1

2∆x
. (11)

From the 1D advection equation (4) we get the Forward in Time and Centered
in Space (FTCS) numerical scheme (see Murawski, 2002)

qn+1
i = qni +

c

2
(qni−1 − qni+1) , (12)
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where we implemented the Courant-Friedrichs-Lewy (CFL or Courant) number
c as

c =
λx∆t

∆x
=

λx

∆x/∆t
=

advection speed

grid speed
. (13)

From Eq. (12) we compute explicitly the evolution of q in time at every i
point, except for i = 0 and i = imax. For these points we need to specify the
boundary conditions. As an example we set open (or transmissive) boundary
conditions

qn0 = qn1 , qnimax+1 = qnimax
. (14)

The main drawback of the FTCS scheme is that it is unconditionally unstable
and therefore it cannot be used in practice (see Murawski, 2002).

3.1. Lax-Friedrichs numerical scheme

The FTCS scheme of Eq. (12) can be stabilized by replacing qni , standing on
the right-hand side, by the arithmetical average of solutions at the neighboring
points. As a result, we arrive at the Lax-Friedrichs (LF) scheme,

qn+1
i =

qni+1 + qni−1

2
+

c

2
(qni−1 − qni+1) . (15)

We can rewrite this scheme as

qn+1
i =

1 + c

2
qni−1 +

1 − c

2
qni+1 . (16)

The LF scheme is conditionally stable for |c| ≤ 1 (see Toro, 2008), and it is
first-order accurate in space and time, which means that numerical errors are
proportional to ∆x and ∆t (see Toro, 2008). In order to obtain a spatially
high-order differencing, one can implement a piece-wise linear representation
of a function q(x) and add slope limiters (see LeVeque, 2002) to filter out the
numerically induced oscillations. The LF method of Eq. (15) is known for its
simplicity as no Riemann problem (see Toro, 2008) needs to be solved. We
replace qi+1 and qi with the second-order accurate boundary values qR

i+ 1

2

and

qL
i+ 1

2

(Fig. 1), respectively, as

qR
i+ 1

2

= qi+1 −
1

2
∆q̄i+1 ,

qL
i+ 1

2

= qi +
1

2
∆q̄i , (17)

where ∆q̄i is a limited version of ∆qi and the index i + 1
2 corresponds to the

right interface. A good choice is the minmod slope limiter which is given by
(see LeVeque, 2002)

∆q̄ni = minmod(∆qni ) = sgn(qni − qni−1)

max[0,min{|qni − qni−1|, (q
n
i+1 − qni )sgn(qni − qni−1)}]. (18)
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Figure 1. Piece-wise linear representation of q(x) and boundary extrapolated
values qR

i+ 1

2

and qL
i+ 1

2

As a result, the first-order accurate LF scheme becomes TVDLF (or Rusanov),
which is second-order accurate in space (see Tóth and Odstrcil, 1996),

qn+1
i = qni −

∆t

∆x
(Fn

i+ 1

2

− Fn
i− 1

2

) , (19)

where the numerical flux is specified as

Fn
i+ 1

2

(qn
i+ 1

2

)=
1

2

[

f(qR
i+ 1

2

) + f(qL
i+ 1

2

) −

∣

∣

∣

∣

∣

cmax

(

qR
i+ 1

2

+ qL
i+ 1

2

2

)∣

∣

∣

∣

∣

∆qRL
i+ 1

2

]

. (20)

Here

∆qRL
i+ 1

2

= qR
i+ 1

2

− qL
i+ 1

2

(21)

and the symbol cmax(q) denotes the maximum value of the characteristic speed
in the system, i.e.

cmax(q) = max

(

∂f

∂q

)

. (22)

Note that f(q) is a physical flux, which for the 1D advection equation is
f(q) = λxq. Hence, ∂f/∂q = λx and cmax(q) = λx.

For practical reasons this numerical method should be enhanced to second
order in time by implementing the Predictor-Corrector method (see LeVeque,
2002),

q
n+ 1

2

i = qni −
∆t

2∆x
[f(qn

i+ 1

2

) − f(qn
i− 1

2

)] , (23)

qn+1
i = qni −

∆t

∆x
[F (q

n+ 1

2

i+ 1

2

) − F (q
n+ 1

2

i− 1

2

)] , (24)

where F (q) is specified by Eq. (3.1).
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4. MPI-GPU/CUDA code for the 2D advection equation

The code scalar eq 2d cuda mpi.cu that we developed comprises a collection of
routines, which run on the host or on the GPU. The following CUDA routines
are executed on the device:

• flux x/flux y - returns the flux value along x-/y-direction for the given
velocity and q(x, y, t) value,

• fluxTVDLF x/fluxTVDLF y - returns the TVDLF flux value along x-/y-
direction,

• setBoundaryConditionsOpen - sets open boundary conditions,
• setBoundaryConditionsPeriodic - sets periodic boundary conditions,
• evolveQ predictionStep - first step (prediction) of evolving the solution,
• evolveQ correctionStep - final step (correction) of evolving the solution,
• cudaSafe, cudaCheckError - error debugging functions.

The following functions are executed on the host:

• readSettings - reads the parameters of the problem from the file set-
tings.ini,

• outputData - saves results to file n data.xxx, where n is the rank id and
xxx is the consecutive data number,

• outputSettingsForGDL - saves to file config.ini settings used in GDL for
visualizing the data,

• setVariables - declares and sets variables and arrays,
• setGridXY - sets the 2D grid,
• setInitialConditions - specifies the initial conditions,
• loopIteration - a single iteration in time of the main loop of the program,
• main - calls the required routines and manages the communication be-

tween MPI ranks.

The flow chart of the code is illustrated in Fig. 2. After the program has been
called, the initial settings are read from a file. These include the CFL value,
advection speeds λx and λy, limits of a numerical box, initial signal size and
position, the number of grid cells along x- and y-directions, maximum time of
the simulation, type of boundary conditions, number of data dumps, and CUDA
block size (number of threads in a block). In the following step, the variables
(i.e. ∆x, ∆y, ∆t, etc.), arrays (2D q, 1D x and y) and initial conditions are
set. The following part of the code is the main loop, which is run until current
time (tCurr) is smaller or equal than maximum simulation time (tMax). In
the loop, the main simulation array q is sent to the device, and then a single
kernel iteration is executed. Next, the array is copied back to the host and
common parts are being exchanged between MPI nodes, transfer of which is
described below. Then, current simulation time is being updated and in the
case it is larger than the data output time (tOut), data is being dumped into a
file, which completes the main simulation loop.

MPI is used as follows. Each node keeps a part of the array q. For instance,
in case of four available nodes, each one holds a quarter of the array. As for
the calculation of qn+1

ij in a single cell, eight neighboring values are required
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Figure 2. Flow chart of the scalar eq 2d cuda mpi.cu code

(Fig. 3), there are common parts of the array which have to be exchanged
between particular nodes after each iteration. As shown in Fig. 4, node (0, 0)
sends its lowest common part to node (0, 1), while (0, 1) sends its uppermost
common part to node (0, 0). The same happens to the most right common part
of node (0, 0), which is sent to node (1, 0). Node (1, 0) also sends its most
left common part to node (0, 0). In a case of more available nodes, the number
of send/receive operations can grow up to four for each node. The number of
these operations for each possible node configuration is presented in Fig. 5.
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Figure 3. Cells used to evaluate a single cell value q
n+1
ij

4.1. Numerical results

The advection equation (5) is solved numerically using the original code. As
the initial condition we set at t = 0 seconds the square wave profile (Fig. 6, top-
left panel). Sample results with the use of TVDLF scheme and 1024x1024 grid
points are displayed in Fig. 6. It follows from Eq. (7) that the initial condition
is supposed to move towards the upper-right corner, without changing its form,
with advection velocities λx and λy , which in the current numerical experiment
are both set to 1. However, as a result of numerical diffusion, which is an
inherent feature built in every numerical code, the initial profile spreads in
space, and this spreading grows in time. Similarly, the dispersive errors, which
reveal themselves by numerically induced unphysical oscillations, are present
too. As the presented spatial profiles of q(x, t) do not show much of these
inherent features we infer from the numerical data that the TVDLF method
represents well the square wave profile.

4.2. Performance tests

The code has been tested on the SOLARIS cluster, which is located in the
building of the Faculty of Mathematics, Physics and Computer Sciences of the
Maria Curie Sk lodowska University in Lublin. This cluster contains 40 nodes,
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Figure 4. Parts of arrays being exchanged between four nodes, using MPI

each with two Intel Xeon X5650 (6 cores each, 2.67 GHz, 48GB RAM) and two
NVIDIA Tesla M2050 (448 cores, 3GB GDDR5 RAM with ECC off), connected
using 40 Gbit/s Infiniband, running under Linux with NVIDIA CUDA Toolkit
ver. 5.0 and Intel Cluster Studio ver. 2012. The MPI program has been tested
for 4, 16, and 64 MPI processes with two processes per node, thus each process
has been responsible for managing one GPU card. The tests have been run
for the following grid sizes: 512 × 512, 1024 × 1024, 2048 × 2048, 4096 × 4096,
8192 × 8192, and 16384 × 16384.

Table 1 shows the execution times of the MPI program, for #GPUs = 4,
16, 64, and for the single-GPU version for particular grid sizes and various
numbers of MPI processes, where all results are averaged values of ten separate
runs. Figure 7 presents the speedup of the MPI program over its single-GPU
version for particular from two points of view. The first one (left) shows how the
speedup scales when the number of cells grows. The next one (right) shows how
the speedup changes when the number of processes (and GPU cards) grows.

Note that for smaller grid sizes, namely 512× 512 and 1024× 1024, the MPI
version of the code is slower than the non-MPI version. The reason for this
lack of performance boost is that the execution of MPI transfer functions takes
time, which in case of smaller arrays has a big impact on the overall computing
time. However, in the case of the grid 2048 × 2048, the MPI version already
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Figure 5. The numbers of MPI send/receive operations for each possible node con-
figuration

becomes faster than the non-MPI version. The bigger the grid size, the higher
the performance gain measured by the speedup factor. However, the use of 64
processes is reasonable only for grid sizes bigger than 4096× 4096 and then the
performance of the MPI version of the code grows significantly. For the grid
size of 8192 × 8192 the speedup is about 12, whereas for 16384 × 16384 the
performance gain grows up to 60 when 64 processes are used.

5. Summary and conclusions

In this paper we presented the TVDLF numerical scheme for the 2D advection
equation, its implementation into the original MPI-GPU/CUDA code, and the
results of numerical tests that we performed. These tests reveal that the code
represents well the steep spatial profiles and it performs up to 60-times faster
for large numerical grids than its non-MPI counterpart.

The original MPI-GPU/CUDA code that was introduced in Section 4 can
be generalized along various ways. A first potential generalization of this code
would be to adapt it for a nonlinear hyperbolic equation such as inviscid Burgers
equation (see Toro, 2008),

q,t + qq,x + qq,y = 0 . (25)

The code is ready for this adaptation, which would require minor changes of the
routines evolveQ predictionStep and evolveQ correctionStep. These routines
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Figure 6. Numerical solutions of the 2D advection equation for TVDLF method and
1024 × 1024 grid cells at times t = 0 s (top-left panel), t = 0.8 s, t = 1.6 s, t = 2.4 s,
t = 3.2 s and t = 4 s (bottom-right panel)
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Table 1. Execution time of the MPI program and its single-GPU version for
particular grid sizes and various numbers of processes

#GPUs=
n 1 4 16 64

512 0.30 1.49 1.30 8.13
1024 2.17 3.06 1.56 8.12
2048 16.43 11.01 3.26 8.26
4096 133.64 65.77 11.59 10.06
8192 1145.91 469.33 70.02 19.42

16384 – 3727.84 500.57 78.73
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Figure 7. Speedup of the MPI program over its single-GPU version for particular
grid sizes (left) and various numbers of processes and GPUs (right)



MPI-GPU/CUDA implementation of TVDLF for two-dimensional advection equation 319

evaluate fluxes along the x- and y-directions in the prediction and correction
steps, respectively.

The MPI-GPU/CUDA code can be also extended for a set of hyperbolic
equations (see LeVeque, 2002)

q,t + f(q),x + g(q),y = 0 , (26)

where q = (q1, q2, ..., qm)T is a state vector and f and q are vector fluxes along
x- and y-direction, respectively. Here ()T stands for transposition. This task
does not seem to be very difficult, as it requires recoding for the vector q(x, y, t)
instead for the scalar q(x, y, t).

Other important generalization of the code would be the development of its
version for the 3D hyperbolic equation,

q,t + f(q),x + g(q),y + h(q)z = 0 , (27)

where f(q), g(q) and h(q) denote scalar fluxes along x-, y- and z-directions,
respectively. This is a formidable task as this generalization would require quite
a large amount of effort. In particular, CUDA grid and block configuration
would have to be reconstructed in order for the code to perform efficiently.

Although the TVDLF method can correctly describe discontinuous spatial
profiles, the advantages offered by its employment are evident in presence of
smooth flow. As a result, more advanced and accurate, numerical methods
for solving nonlinear hyperbolic equations, which naturally possess shock so-
lutions, can be implemented. Among these methods are robust higher-order
Godunov-type numerical schemes (see Toro, 2008; LeVeque, 2002; or Murawski,
2012). Finally, the code can be optimized in order to gain higher computing
performance. One way of optimizing it would be to change the array transfer
between the host and the device. In the current version during one simulation
iteration the whole simulation array is copied to the device. Next, the kernel
is executed and the array is copied back to the host. The major part of time
is consumed on CUDA transfers, which are almost 200 times slower than MPI
transfers of the common parts of the array. This can be fixed by transferring
only the common parts, instead of the whole array. Then, these parts would be
exchanged between nodes using MPI and sent back to the device. Although the
non-optimized version of the code worked well for the 2D advection equation,
its optimization seems to be vital for efficient calculations in the case of more
complex systems.

The authors express their thanks to all referees for their effort and time spent
on reading the draft and providing the stimulating comments, which resulted in
a significant improvement of the draft.
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