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Abstract: With an adaptation of the PLUTO code, we present
a 2.5-dimensional Cartesian magnetohydrodynamic model with the
invariant (∂/∂z = 0) coordinate z of propagating magnetohydrody-
namic-gravity waves in the solar atmosphere, permeated by curved
magnetic field and constant gravity field g = −gŷ. This code imple-
ments second-order accurate Godunov-type numerical scheme and
MPI for high level of parallelization. We show that the inhomo-
geneous grid, originally built in the code, resolves well the system
dynamics, resulting from the localized pulse initially launched in
the transverse component of velocity Vz . We consider two cases for
background magnetic field Be = [Bex, Bey, Bez] with its transverse
component: (a) Bez = 0 and (b) Bez 6= 0. In case (a), the ini-
tial pulse triggers only Alfvén waves, described solely by Vz. These
waves drive by ponderomotive forces the magnetoacoustic waves, as-
sociated with perturbations in Vx and Vy. As a result of Bez 6= 0,
in the (b) case, Alfvén waves are coupled to their magnetoacoustic
counterparts and all three velocity components are perturbed. We
show that in this case the PLUTO code is accurate, its order being
1.97 and the numerically induced flow is of magnitude ≈ 0.1 km
s−1, i.e. by a factor of at least ≈ 103 lower than the characteristic
(Alfvén) speed of the system. The errors, associated with the se-
lenoidal condition, are low with the max |∇ · B| ≈ 1.3 · 10−10 Tesla
km−1. We conclude that the PLUTO code copes well with resolv-
ing all spatial and temporal scales that appear in this numerically
challenging system.



322 P. Wo loszkiewicz, K. Murawski, Z. Musielak, and A. Mignone

Keywords: MHD, Alfvén waves

1. Introduction

Recent observational and theoretical results indicate that Alfvén waves are
present in the solar atmosphere (see, e.g. Banerjee et al., 2007; Chmielewski
et al., 2013). As Alfvén waves are incompressible, they are difficult do detect,
yet several reports of their presence in the solar atmosphere were published,
based on observational data provided by contemporary space missions, such
as TRACE and SDO (see, e.g., Banerjee et al., 2007; Tomczyk et al., 2007;
De Pontieu et al., 2007). Alfvén waves require magnetic fields, whose tension is
the restoring force for these waves. Observations revealed that the solar atmo-
sphere is permeated by magnetic fields, which are organized in various structures
such as flux-tubes and coronal arcades. According to a traditional view, Alfvén
waves can be excited in lower dynamic layers of the solar atmosphere. These
waves carry their energy into overlaying regions, significantly contributing to
their heating.

The study of the injection and propagation of Alfvén waves into the so-
lar corona from the photosphere is an important problem in solar physics,
motivated by recent satellite observations of these waves, and by the unre-
solved question of corona heating and acceleration of the solar wind, where
these waves can provide the required energy and momentum input (see Ofman,
2010). Extensive theoretical studies of Alfvén waves in the solar atmosphere
were performed in the past. Among others, Murawski and Musielak (2010)
considered Alfvén waves in the solar atmosphere, showing that as the result of
cut-off frequencies, these waves are not able to propagate freely into the up-
per regions of the solar atmosphere, undergoing reflection towards lower layers.
While studying the impulsively triggered Alfvén waves in the solar atmosphere,
Chmielewski et al. (2013) concluded that they may result in the observed non-
thermal broadening of some spectral lines in solar coronal holes. The non-
linear wave equations were derived for magnetoacoustic waves driven by pon-
deromotive forces associated with Alfvén waves (see Murawski, 1992; Nakari-
akov, Roberts and Murawski, 1997, 1998). Gruszecki et al. (2007) showed that
Alfvén waves are attenuated by energy leakage into the ambient plasma as a
result of curved magnetic lines. A number of papers have been published on the
modelling and propagation of the Alfvén waves from the photosphere into the
corona in 1.5D (see, e.g., Kudoh and Shibata, 1999; Suzuki and Inutsuka, 2006;
Suzuki, 2007; Matsumoto and Shibata, 2010), in 2.5D (see, e.g. Fedun et al.,
2011; Matsumoto and Suzuki, 2012), and 3D (see, e.g., Vigeesh et al., 2012).
Chmielewski et al. (2014) discussed Alfvén wave propagation in a solar corona
arcade, but they did not consider coupling between Alfvén and magnetoacoustic
waves, which is the subject of this paper.

We study Alfvén-magnetoacoustic waves coupling in the gravitationally strat-
ified solar atmosphere by solving numerically the time-dependent magnetohy-
drodynamic equations with a realistic temperature distribution. This paper is
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organized as follows. Section 2 presents the numerical model we devised. In
Section 3, we describe briefly the PLUTO code, and in Section 4, we show some
numerical experiments performed. We conclude this paper with the presentation
of our main numerical results.

2. Numerical model

We consider a gravitationally-stratified solar atmosphere that is described by
the ideal MHD equations:
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Here, the symbol ̺ denotes mass density, v is the velocity, pt = p + B2/(2µ)
is the total (thermal + magnetic) pressure, B is the magnetic field such that
∇·B = 0, µ is the magnetic permeability, I is the unit matrix, and E is the total
energy density (the sum of the internal, kinetic, and magnetic energy densities),
viz.

E =
p

γ − 1
+

̺v2

2
+

B2

2µ
(2)

with γ = 5/3 being the specific heats ratio. The system (1) is closed by the
ideal gas law

p =
kB
m̂

̺T . (3)

In this expression, T denotes temperature, kB is the Boltzmann constant, and
m̂ is the mean particle mass. We specify m̂ by the mean mass equal 0.6, which is
typical value for the solar corona. The source terms on the right hand side of Eq.
(1) include contributions from gravity g = [0,−g, 0] with its magnitude g = 274
m s−2. The use of constant gravity is only applicable close to the photosphere. In
Eq. (1) we neglected non-ideal (plasma viscosity, magnetic diffusivity, thermal
conduction) and non-adiabatic (cooling/heating) effects. The former (latter) are
expected to be important in strong spatial gradients such as those occurring at
the transition region (at low atmosphere layers). However, these effects modify
the amplitude of the MHD waves and therefore they are not expected to alter
the qualitative behaviour of the system. We plan to include these effects in our
future studies.
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2.1. Numerical model of the solar atmosphere

2.1.1. Equilibrium
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Figure 1. Equilibrium magnetic field lines in the solar atmosphere

In the numerical model we devise, we assume that z is an invariant coordinate
such as ∂/∂z = 0 but allow the z-components of velocity, Vz, and magnetic
field, Bz, to vary with x and y. The solar atmosphere is in static equilibrium
(Ve = 0) with current-free (and therefore force-free) magnetic field, i.e.

∇× Be = 0 , (∇× Be) × Be = 0 . (4)

Henceforth, the subscript e corresponds to equilibrium quantities. As a result
of Eq. (4) we determine the magnetic field as

Be(x, y) = [Bex, Bey, Bez] = ∇× (Aeẑ) + Bezẑ , (5)

where ẑ is the unit vector along the z-direction and the magnetic flux function
is

Ae(x, y) =
x(yref − b)2

x2 + (y − b)2
Bref . (6)
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We set and hold fixed the vertical coordinate of the magnetic pole, b = −5 Mm,
and the reference level, yref = 10 Mm. We choose Bref by requiring that the
Alfvén speed,

cA(x, y) =

√

B2
ex + B2

ey

µ̺e(y)
, (7)

and sound speed,

cs(y) =

√

γpe(y)

̺e(y)
, (8)

satisfy the following constraint: cA(0, yref) = 10 cs(yref). The equilibrium mag-
netic field lines, which are described by Eq. (5), are presented in Fig. 1. Note
that magnetic field lines diverge with height. This magnetic field models solar
coronal structures and the non-active region in the solar photosphere.
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Figure 2. Equilibrium profile of temperature Te(y) in the solar atmosphere

As a result of Eq. (4), the pressure gradient has to be balanced by the
gravity force,

−∇pe + ̺eg = 0 . (9)

Using the ideal gas law of Eq. (3) and the y-component of the hydrostatic
pressure balance, indicated by Eq. (9), we express the equilibrium gas pressure
and the mass density as

pe(y) = pref exp

(

−
∫ y

yref

dy′

Λ(y′)

)

, ̺e(y) =
pe(y)

gΛ(y)
, (10)

where

Λ(y) =
kBTe(y)

m̂g
(11)
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is the pressure scale-height, and pref denotes the gas pressure at the reference
level, yref .

We adopt a realistic model of the plasma temperature profile that was de-
rived by Avrett and Loeser (2008). This profile is displayed in Fig. 2, which
reveals that Te(y) falls off with height up to y ≈ 0.5 Mm, where Te attains
its minimum of about 4400 K. Higher up, Te(y) grows with y and displays an
abrupt rise at the transition region, located at y ≈ 2.1 Mm. Yet higher up,
in the solar corona, Te(y) settles at about the value of 1 MK. The tempera-
ture profile determines uniquely the equilibrium mass density ̺e(y) and the gas
pressure pe(y) profiles, which are obtained by means of equation (10). These
profiles are displayed in Fig. 3, which shows that pe(y) and ̺e(y) fall off with
altitude.
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Figure 3. Equilibrium profiles of mass density ̺e (left) and gas pressure pe
(right) vs. height in the solar atmosphere

2.1.2. Perturbations

At t = 0 s we perturb the model equilibrium (described in Section 2.1.1) by the
initial pulse in the z-component of velocity, which is expressed as follows:

Vz(x, y) = AV × x− x0

w
× exp

(

− (x− x0)2 + (y − y0)2

w2

)

, (12)

where (x0, y0) is initial position of the pulse, w is its width, and AV specifies its
amplitude. We set and hold fixed (x0 = 0, y0 = 1.6) Mm, w = 0.05 Mm, and
AV = 0.25 Mm s−1. The latter value results in the effective pulse amplitude of
about 0.1 Mm s−1. The pulse of Eq. (12) would mimic a twist in 3D, which
corresponds to Alfvén waves.

3. The PLUTO code

PLUTO is a finite-volume/finite-difference code (see Mignone et al., 2007, 2012),
that is designed to integrate numerically a system of conservation laws

∂U

∂t
+ ∇ · T (U) = S(U) , (13)
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where U represents a set of conservative quantities, T (U) is the flux tensor, and
S(U) defines the source terms.

PLUTO adopts a structured mesh approach for the solution of the system of
conservation laws (13). Flow quantities are discretized on a logically rectangular
computational mesh enclosed by a boundary and augmented with ghost cells
in which boundary conditions are implemented. For all considered cases we
set the simulation box as (-1,1) Mm × (1,7) Mm, meaning that a 2 Mm (6
Mm) span along the horizontal (vertical) direction is imposed. The extent of
the simulation box in the y-direction ensures that we catch the essential physics
occurring in the solar atmosphere. We impose the boundary conditions by fixing
in there all plasma quantities at all four boundaries to their equilibrium values.
Computations are done using double precision arithmetic with the use of MPI
(see Mignone et al., 2007). The required number of processors was 24 and we
used 1.2 hours of CPU time for this calculation. For the present application we
adopted a static uniform grid. Along the x-direction this grid is divided into
800, while in y-direction into 2400 equal cells.

In our problem, we set the Courant-Friedrichs-Lewy number equal to 0.8
and choose piecewise TVD linear interpolation in MUSCL-Hancock scheme,
which leads to 2nd order accuracy in space, and adopt the Harten-Lax-van Leer
Discontinuities (HLLD) approximate Riemann solver.

4. Results of numerical simulations

4.1. Error analysis

Figure 4 illustrates the numerically induced flow in the case when no initial
pulse (AV = 0 in Eq. 12) was launched in the system. It is discernible that
the flow magnitude is of the order of ≈ 0.1 km s−1, which is much lower than
the characteristic sound, cs =

√

γpe/̺e ≈ 0.1 Mm s−1, and Alfvén, cA =
|Be|

√
µ̺e ≈ 1 Mm s−1, speeds.

We perform now the error analysis in order to verify that the obtained numer-
ical results do not suffer from excessive numerical errors, which can be quantized
by the following formula:

Error =
∑

ij

∆x∆y|Vij| . (14)

Figure 5 illustrates the results of a mesh refinement study for the case of Bez = 0
and the initial pulse-free (AV = 0) structure. The numerically induced flow is
evaluated on a sequence of different grids, and the norm of the error is plotted
as a function of ∆x, while the grid along y remains fixed.

Figure 5 shows the errors at four moments of time. Note that as a result of
growing numerically the induced flow, the error grows in time. Yet, it becomes
smaller for a finer grid size ∆x.
With the use of the following formula:

log|Error| ≈ const + a log|∆x| (15)
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Figure 4. Spatial profiles of spurious flow
√
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y at t = 2 s (left) and t = 8

s (right) for the case of Bez = Bref and initial pulse-free system, AV = 0 in
Eq. (12)
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Figure 5. Log-log plot of the error (ℓ1-norm) vs. grid size at four different
instants of time t
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Figure 6. Spatial profiles of ∇ · B at t = 2 s (left) and t = 8 s (right) for the
case of Bez = Bref and no pulse in the system, AV = 0 in Eq. (12)

we find the observed order of accuracy, a = 1.97, which is very close to the
theoretical order of accuracy 2.

Finally, we verify that numerical errors associated with non-zero ∇ · B are
very small. Indeed, Fig. 6 displays spatial profiles of ∇ · B at two consecutive
moments of time. We conclude from this figure that the magnitude of ∇ · B is
of the order of 10−10 T km−1 and its average value is 3.5 ·10−12 T km−1, which
is very low.

4.2. The case of Bez = 0

In the case of Bez = 0 the transverse component of velocity Vz(x, y), correspon-
ing to Alfvén waves as in the linear limit, small amplitude waves, are described
by the wave equation (see Murawski and Musielak, 2010)

∂2Vz

∂t2
− c2A(x, y)

∂2Vz

∂s2
= 0 , (16)

where s is the coordinate along magnetic field lines. The x- and y-components
of velocity, Vx, Vy , describe magnetoacoustic waves which are coupled (see
Murawski, 2002). In a strongly magnetized plasma, such as in the solar corona,
the coupling is weak and Vx describes essentially fast magnetoacoustic waves,
while Vy is associated with slow magnetoacoustic waves, which are affected by
the gravity.

Figure 7 shows the spatial profiles of Vz(x, y, t) at four moments of time.
The initial pulse spreads into two counter-propagating Alfvén waves, which are
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Figure 7. Spatial profiles of Vz(x, y) and (Vx, Vy) (arrows) at t = 0.1 s (left-top),
t = 0.4 s (right-top), t = 0.7 s (left-bottom) and t = 1.5 s (right-bottom) for
the case of Bez = 0
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Figure 8. Spatial profiles of Vz(x, y) and (Vx, Vy) (arrows) at t = 0.1 s (left-top),
t = 0.4 s (right-top), t = 0.7 s (left-bottom) and t = 1.5 s (right-bottom) for
the case of Bez = Bref
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Figure 9. Total kinetic energy (in normalized units) of magnetoacoustic waves
for different instants of time

already seen at t = 0.1 s (left-top). These waves propagate along magnetic
field lines with a local Alfvén speed. As this speed is lower for lower values
of y, the downward propagating Alfvén waves move slower than their upward
propagating counterparts. As a result of that, the upward propagating Alfvén
waves cover longer distance than the downward moving waves. At t = 0.4 s the
upward moving waves reached the altitude of y ≈ 1.75 Mm while the downward
propagating waves covered about twice smaller distance (top-right). At t = 1.5 s
the upward moving waves already reached the transition region and entered the
solar corona (left-bottom). Some Alfvén waves are subject to reflection from the
transition region. This effect is discernible at t = 1.5 s (right-bottom). With
Alfvén waves some magnetoacoustic waves are seen. These waves are driven
by Alfvén waves through the ponderomotive forces, which are associated with
spatial gradients of magnetic pressure, and they are represented by the arrows
in Fig. 7.

4.3. The case of Bez 6= 0

In the case of Bez 6= 0 the linear Alfvén waves are linearly coupled to the
magnetoacoustic waves and these waves correspond to all velocity components.
Figure 8 illustrates spatial profiles of the transversal component of velocity Vz

and velocity vectors (Vx, Vy). Comparing this figure to Fig. 7 we see much
more of the signal associated with Vx and Vy. This is a consequence of the
Alfvén-magnetoacoustic waves coupling resulting from Bez 6= 0. The initial
pulse excites all MHD waves which are later on affected by the constant gravity
field.
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Figure 9 displays the kinetic energy

Em−w(t) =
1

2

∑

ij

∆x∆y̺ij(V
2
x,ij + V 2

y,ij) . (17)

It is discernible that Em−w is much larger in the case of Bez > 0 (Fig. 9,
top curve) which results from much more flow [Vx, Vy] being generated due to
coupling between Alfvén and magnetoacoustic waves.

5. Summary

We performed numerical simulations of Alfvén and magnetoacoustic waves in a
magnetically structured and gravitationally stratified solar atmosphere, which
is specified by the realistic temperature profile (see Avrett and Loeser, 2008).
The curved magnetic field that satisfies the current-free condition was devised by
Konkol, Murawski and Zaqarashvili (2012). This magnetic field is supplemented
by a uniform transversal component, Bez.

The results of our simulations are summarized as follows. The initial pulse
that is launched in the transversal velocity triggers Alfvén waves in the case
of Bez = 0. These waves propagate along magnetic field lines in agreement
with theoretical findings (see Murawski and Musielak, 2010). Finite-amplitude
Alfvén waves drive through ponderomotive forces magnetoacoustic waves that
are affected by the gravity. In the case of Bez 6= 0, the initial pulse excites all
MHD-gravity waves and Alfvén waves are coupled to magnetoacoustic waves.

The solar atmosphere is stratified by the gravity and a strong, curved mag-
netic field, this posing a formidable task for numerical simulations. Notwith-
standing this, we showed that the numerical errors are of small magnitude, and
the PLUTO code is a good numerical tool to simulate MHD waves in the solar
atmosphere. In particular, we showed that the numerically induced flow is of
the order of 0.1 km s−1, which is by a factor of at least ≈ 103 lower than the
characteristic speeds of the system. As a result of this flow the accuracy of the
PLUTO code is slightly reduced from its theoretical value 2 to 1.97. We have
also verified that |∇ · B/(B0/L0)| ≈ 10−10, which is very close to its expected
value of 0. Here, B0 = 10−3 Tesla is the typical magnitude of the magnetic field
and L0 = 1 Mm is the typical length scale. We conclude that the PLUTO code
copes well with resolving all spatial and temporal scales in this very numerically
challenging system. The paper demonstrates that the PLUTO code works well
and that its numerical results are encouraging.
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