
Control and Cybernetics

vol. 43 (2014) No. 2

Cryptanalysis of the FSR-255 hash function

by

Marcin Kontak1 ∗ and Janusz Szmidt2

1Institute of Computer Science, Polish Academy of Sciences
ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

m.kontak@ipipan.waw.pl
2Military Communication Institute

ul. Warszawska 22A, 05-130 Zegrze, Poland
j.szmidt@wil.waw.pl

Abstract: In this paper we analyse the security of the FSR-255
cryptographic hash function. As a result of our security analysis we
present preimage and second-preimage attacks. The attacks base on
practical reversibility of the compression function. The complexity of
preimage attack is about 211 evaluations of the compression function.
The second-preimage attack has the complexity equivalent to one
time evaluation of the compression function. Both of the attacks
have been practically realised.

Keywords: cryptography, cryptanalysis, FSR-255 hash func-
tion, preimage attack, second-preimage attack, collision

1. Introduction

A hash function is a function that maps strings of arbitrary length to strings
of fixed length. A cryptographic hash function is a hash function that can be
computed efficiently and has three additional security properties: it should be
preimage resistant, second-preimage resistant, and collision-resistant.
A hash function h is preimage resistant if for essentially all pre-specified

outputs, it is computationally infeasible to find any input which hashes to that
output, i.e., to find any preimage m such that h(m) = y when given any y for
which a corresponding input is not known.
A hash function h is second-preimage resistant if for essentially all pre-

specified outputs, it is computationally infeasible to find any second input which
has the same output as any specified input, i.e., given m, to find a second-
preimage m′ 6= m such that h(m′) = h(m).

∗This author is supported by the European Union from the resources of the European

Social Fund, project PO KL “Information technologies: Research and their interdisciplinary

applications”.



366 M. Kontak and J. Szmidt

A hash function h is called collision resistant if it is computationally infea-
sible to find any two distinct inputs m, m′ which hash to the same output, i.e.,
such that h(m) = h(m′).
Collision resistance implies second-preimage resistance (Menezes, van Oorschot

and Vanstone, 1996).

2. FSR-255 algorithm

FSR-255 is a dedicated cryptographic hash function with variable length of hash
result. The function was proposed by Janicka-Lipska and Stokłosa (2001) and
by Gajewski, Janicka-Lipska and Stokłosa (2003). A general idea was based
on the previous work of Stokłosa (1995, 1996). The FSR-255 hash function is
oriented at hardware implementations.
The FSR-255 hash function takes as input a message m (bitstring) of ar-

bitrary finite length n ≥ 0 and gives as output a hash result (bitstring) of a
desired length 1 ≤ r ≤ 255 (in Janicka-Lipska and Stokłosa, 2001, r ≥ 128 is
recommended).
The following steps are performed to compute the hash value h(m).

1. Extending the message. Append padding bits to the message m so that
the extended message x is of the form x = m ‖ 1 ‖ 0k ‖ b where 0k is the
concatenation of k zero bits, b is a 32-bit representation of n mod 232 and k ≥ 0
is the least integer such that the length (in bits) of x is a multiple of 2040.

2. Splitting the extended message. Divide the extended message x into
255-bit words x1, x2, . . . , xq such that x = x1 ‖ x2 ‖ . . . ‖ xq.

3. Iterative processing. For each i = 1, 2, . . . , q compute Hi = F (Hi−1, xi),
where F : {0, 1}255 ×{0, 1}255 → {0, 1}255 is a predefined transformation called
the compression function of the hash function, Hi−1 serves as the 255-bit chain-
ing variable between stage i − 1 and stage i, and H0 is a predefined starting
value called the initialization vector.

4. Final transformation. Compute G(Hq) where G : {0, 1}255 → {0, 1}r is
a predefined final transformation.

We can see in Fig. 1 that in order to produce the output hash value, the
FSR-255 hash function uses the general model for iterated hash functions as
presented in Menezes, van Oorschot and Vanstone (1996).
The compression function F for FSR-255 is defined as follows:

Hi = F (Hi−1, xi) = NPB(xi ⊕ yi−1 ⊕Hi−1)⊕Hi−1, (1)

where⊕ denotes the exclusive-or operation, NPB : {0, 1}255 → {0, 1}255 is a pre-
defined transformation called the nonlinear processing block, and y0, y1, . . . , yq−1



Cryptanalysis of the FSR-255 hash function 367

Figure 1. Block diagram of the FSR-255 hash function

are predefined constants such that y0 = 0255, y1 = RL4(H0), and

yi =

{

RL4(yi−1) if i 6≡ 0 (mod 8)
H0 otherwise

for i = 2, 3, . . . , q − 1. (2)

RLk(w) denotes left rotation by k bits of the wordw, and the initialization vector
H0 = 0x511c ‖ 0x1b59 ‖ 0x0b4d ‖ 0x0333 ‖ 0x0979 ‖ 0x04f4 ‖ 0x09ac ‖
0x0e0f ‖ 0x04fa ‖ 0x0fc3 ‖ 0x01eb ‖ 0x0353 ‖ 0x01fa ‖ 0x0674 ‖ 0x0c50 ‖
0x0e98 ‖ 0x0a75 is a 255-bit word given as the concatenation of seventeen 15-bit
words written hexadecimally.
The block diagram of FSR-255 computations is shown in Fig. 2.

Figure 2. FSR-255 computations

The NPB transformation is a processing structure, shown in Fig. 3, con-
sisting of seventeen 15-bit nonlinear feedback shift registers NFSR1, NFSR2,
. . . , NFSR17 and the bit permutation function BP. The 255-bit input word v

for the NPB transformation is split into seventeen 15-bit words vi such that
v = v1 ‖ v2 ‖ . . . ‖ v17, where vi ∈ {0, 1}15. Every word vi is used as initial
value for NFSRi. Then, each of the nonlinear feedback shift registers is clocked
nineteen times. Afterwards, BP(z) is computed, which gives the output of the



368 M. Kontak and J. Szmidt

NPB transformation, where z = z1 ‖ z2 ‖ . . . ‖ z17 and zi ∈ {0, 1}15 denotes
the state of NFSRi after execution of nineteen clock cycles.

Figure 3. Block diagram of the NPB transformation

The general structure of a k-bit feedback shift register is shown in Fig. 4.
It consists of k binary storage elements, called stages, and a feedback function
f(s1, s2, . . . , sk). For each i = 1, 2, . . . , k, the state variable si represents the
value of the i-th bit. At each clock cycle, the content of the register is shifted
one bit left. The value of the k-th bit is updated according to the feedback
function f . When the feedback function is nonlinear, this structure is called a
nonlinear feedback shift register. The truth tables of seventeen nonlinear feed-
back functions used in the FSR-255 hash function can be found in Janicka-Lipska
(no date).

Figure 4. Block diagram of a feedback shift register

The bit permutation function BP : {0, 1}255 → {0, 1}255 is defined as follows:

BP(w) = BP(w1, w2, . . . , w255) = wπ(1) ‖ wπ(2) ‖ . . . ‖ wπ(255),

where w = w1 ‖ w2 ‖ . . . ‖ w255, wi ∈ {0, 1}, and π = {175, 10, 174, 209, 155,
182, 244, 193, 219, 26, 22, 107, 214, 236, 173, 14, 215, 44, 97, 153, 28, 8, 185,
254, 204, 25, 164, 37, 195, 255, 231, 154, 158, 159, 29, 19, 243, 151, 6, 90, 200,



Cryptanalysis of the FSR-255 hash function 369

4, 252, 206, 94, 118, 95, 42, 191, 218, 116, 180, 110, 65, 93, 17, 190, 117, 136,
144, 87, 140, 88, 162, 40, 123, 115, 71, 52, 226, 132, 147, 53, 250, 248, 32, 80,
16, 64, 225, 15, 166, 232, 86, 251, 160, 83, 187, 181, 101, 129, 130, 201, 33, 249,
176, 125, 109, 146, 30, 41, 138, 76, 34, 27, 127, 85, 78, 3, 47, 106, 228, 213, 48,
61, 75, 178, 230, 57, 72, 23, 111, 1, 100, 20, 247, 55, 212, 13, 227, 12, 81, 145,
62, 188, 39, 246, 133, 245, 38, 135, 235, 2, 221, 241, 56, 5, 237, 170, 224, 233,
184, 202, 114, 203, 70, 124, 113, 239, 103, 156, 196, 177, 148, 59, 122, 210, 220,
168, 242, 92, 36, 194, 51, 84, 186, 63, 99, 238, 46, 102, 171, 18, 142, 149, 89,
137, 161, 112, 31, 119, 120, 50, 98, 253, 108, 134, 192, 217, 79, 167, 43, 234, 143,
199, 163, 179, 69, 45, 198, 152, 9, 157, 121, 58, 77, 11, 189, 105, 49, 150, 183,
223, 21, 91, 66, 165, 74, 216, 96, 141, 169, 229, 104, 54, 131, 7, 240, 126, 82, 67,
68, 207, 222, 24, 35, 73, 197, 139, 128, 208, 60, 172, 205, 211} is a predefined
255-element permutation.
The final transformation G : {0, 1}255 → {0, 1}r returns as the hash re-

sult the r leftmost bits of LPB(Hq), where LPB, called the linear permutation
block, is in fact the bit permutation function for which the permutation π′ is
defined by succeeding states of an 8-bit shift register with linear feedback func-
tion f(s1, s2, . . . , s8) = s1 ⊕ s3 ⊕ s4 ⊕ s5, and initialized by the 00000001 binary
value, i.e., π′ = {1, 2, 4, 8, 17, 35, 71, 142, 28, 56, 113, 226, 196, 137, 18, 37, 75,
151, 46, 92, 184, 112, 224, 192, 129, 3, 6, 12, 25, 50, 100, 201, 146, 36, 73, 147,
38, 77, 155, 55, 110, 220, 185, 114, 228, 200, 144, 32, 65, 130, 5, 10, 21, 43, 86,
173, 91, 182, 109, 218, 181, 107, 214, 172, 89, 178, 101, 203, 150, 44, 88, 176,
97, 195, 135, 15, 31, 62, 125, 251, 246, 237, 219, 183, 111, 222, 189, 122, 245,
235, 215, 174, 93, 186, 116, 232, 209, 162, 68, 136, 16, 33, 67, 134, 13, 27, 54,
108, 216, 177, 99, 199, 143, 30, 60, 121, 243, 231, 206, 156, 57, 115, 230, 204,
152, 49, 98, 197, 139, 22, 45, 90, 180, 105, 210, 164, 72, 145, 34, 69, 138, 20, 41,
82, 165, 74, 149, 42, 84, 169, 83, 167, 78, 157, 59, 119, 238, 221, 187, 118, 236,
217, 179, 103, 207, 158, 61, 123, 247, 239, 223, 191, 126, 253, 250, 244, 233, 211,
166, 76, 153, 51, 102, 205, 154, 53, 106, 212, 168, 81, 163, 70, 140, 24, 48, 96,
193, 131, 7, 14, 29, 58, 117, 234, 213, 170, 85, 171, 87, 175, 95, 190, 124, 249,
242, 229, 202, 148, 40, 80, 161, 66, 132, 9, 19, 39, 79, 159, 63, 127, 255, 254,
252, 248, 240, 225, 194, 133, 11, 23, 47, 94, 188, 120, 241, 227, 198, 141, 26, 52,
104, 208, 160, 64, 128}.

3. Properties of the nonlinear processing block

The nonlinear processing block NPB introduces nonlinearity into the FSR-255
hash function. NPB is the composition of two transformations: the bit permu-
tation function BP and the layer of seventeen nonlinear feedback shift registers.

Lemma 1 The nonlinear processing block NPB is a bijective transformation.

Proof It is easy to see that the bit permutation function BP is bijective
as π is a 255-element permutation.
Every nonlinear feedback shift register in the FSR-255 hash function uses

a feedback function fi such that the register generates all the 2
15 possible states



370 M. Kontak and J. Szmidt

when it is clocked 215 times (Janicka-Lipska, no date). In the NPB transfor-
mation every register is clocked nineteen times. Thus, for a given 15-bit initial
value it stops for sure with a 15-bit state, which is different from the initial value
and is unique, i.e., there are no two different initial values for which the register
state value after nineteen clock cycles would be the same. Hence, the register
working in that way is a 15-bit bijective mapping. Concatenating seventeen
such mappings yields a 255-bit bijective mapping.
Composition of two bijective mappings of the same size is a bijective map-

ping. �

Corollary 1 Since NPB is bijective, we conclude that NPB−1 exists.

The NPB−1 transformation can be determined by composing BP−1 and
inversion of the layer of seventeen nonlinear feedback shift registers. BP−1 can
be easily calculated by calculating π−1.
Inversion of the nonlinear feedback shift registers layer is easy if we notice

that in one clock cycle of a single NFSR only one bit of the state is updated by
the feedback function and only one bit is lost by the shift of the stage. So, if we
want to obtain the previous state of a single NFSR, we have to predict only the
previous value of s1, which can be either 0 or 1, because of uniqueness of the
state values. The remaining stages s2, s3, . . . , s15 are known. The prediction
can be done just by taking one of two possible values for s1 and checking if
we get the current state from the predicted one after the clock cycle of NFSR.
Repeating this procedure nineteen times for all seventeen shift registers gives us
the inversion of the nonlinear feedback shift registers layer.
Thus, the value of NPB−1 for a given input can be computed with negligible

complexity.

4. The second-preimage attack

To show that a hash function h is not second-preimage resistant we have to find
for a given m a distinct m′ such that h(m) = h(m′). It does not matter how
much m′ differs from m.
Letm be a given message of length n ≥ 255 bits and x = x1 ‖ x2 ‖ . . . ‖ xq be

the corresponding extended message. If we were able to find x′

1 6= x1 such that
F (x′

1, H0) = F (x1, H0), i.e., H
′

1 = H1, then, by taking x
′

2 = x2, . . . , x
′

q = xq we
would getH ′

q = Hq and finally h(m
′) = h(m). Unfortunately, NPB is a bijective

transformation, which implies that for a given H0 the compression function F

is bijective, too, and there is no x′

1 6= x1 for which F (x′

1, H0) = F (x1, H0),
i.e., H ′

1 = H1. So, the compression function of the FSR-255 hash function is
collision-free.
Assume that the message m has the length of n ≥ 2 · 255 bits. Then, for

given x1, x2 we can try to find a pair x
′

1, x
′

2, where x
′

1 6= x1 and x′

2 6= x2, such
that H ′

2 = H2. From the FSR-255 specification we have

F (x′

2, H
′

1) = F (x2, H1), (3)



Cryptanalysis of the FSR-255 hash function 371

where H ′

1 = F (x′

1, H0) and H1 = F (x1, H0).
Because x1 and x2 are given, the right hand side of equation (3), equal to

H2, is fixed. Additionally, we can fix x′

1 by choosing its value arbitrarily, it
must only be different from x1. This implies that H

′

1 is fixed, too. Then, using
equation (1) we can calculate the value of x′

2 as follows:

x′

2 = NPB
−1(H2 ⊕H ′

1)⊕H ′

1 ⊕ y1. (4)

The inversion NPB
−1 in equation (4) exists and can be efficiently calculated

(see Section 3). If n ≥ 2 · 255, we can take x′

3 = x3, . . . , x
′

q = xq. Then, we get
H ′

q = Hq and finally h(m
′) = h(m). The message m′ can be retrieved from x′

by removing padding bits.
Example 1 Let us assume that the given message is m = x1 ‖ x2 = 0255 ‖

0255. Then, we have padding x3 = 1 ‖ 0254, x4 = x5 = x6 = x7 = 0255,
x8 = 0246 ‖ 111111110 and the FSR-255 hash value h(m) = 0x7443 ‖ 0x5477 ‖
0x2a0e ‖ 0x6e19 ‖ 0x4bb4 ‖ 0x6f96 ‖ 0x5e2a ‖ 0x61b8 ‖ 0x0297 ‖ 0x51cc ‖
0x2c86 ‖ 0x24f5 ‖ 0x54d4 ‖ 0x2004 ‖ 0x73f1 ‖ 0x48d6 ‖ 0x00d1 (255-bit
value written in the same convention as H0 was given in Section 2).
Let x′

1 = 0127 ‖ 1 ‖ 0127, then from equations (4) and (3) we get x′

2 =
0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0042 ‖ 0x0000 ‖
0x6bd4 ‖ 0x0024 ‖ 0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0000 ‖ 0x0008 ‖ 0x0000 ‖
0x0000, and for m′ = x′

1 ‖ x′

2 we have that h(m
′) = h(m), which means that

we have found the second-preimage m′ for the given message m (and we have
found the collision as well).

5. The preimage attack

To show that a hash function h is not preimage resistant we have to provide
a method of finding a message m for a given digest y such that h(m) = y. It
does not matter what m looks like (it may have no sense) and how long it is.
Let a digest y, having a length of 255 bits be given. Then, as the G trans-

formation is invertible, we have

Hq = G−1(y). (5)

If we choose arbitrary values for x1, x2, . . . , xq−1, then we can determine the
value of Hq−1. From equation (1) we have

Hq = NPB(xq ⊕ yq−1 ⊕Hq−1)⊕Hq−1 (6)

and so

xq = NPB
−1(Hq ⊕Hq−1)⊕Hq−1 ⊕ yq−1. (7)

The extended message x = x1 ‖ x2 ‖ . . . ‖ xq gives the value of Hq, for which
G(Hq) = h(m). Unfortunately, the x obtained in that way has inappropriate
format and m cannot be retrieved from it by removing the padding bits.



372 M. Kontak and J. Szmidt

Let us assume that in the last block xq we have the last 222 bits of the
message m. Then, padding has to consist of 1 bit equal to one and 32 bits
equal to b = n mod 232. By changing randomly the values of x1, x2, . . . , xq−1

we will get from equation (7) with probability of about 2−33 a proper value for
xq, which is of the form mq ‖ 1 ‖ b, where mq ∈ {0, 1}222 is the value of the last
222 bits of the sought message m for the given digest y. The whole message m,
such that h(m) = y, is given by m = x1 ‖ x2 ‖ . . . ‖ xq−1 ‖ mq and has the
length of n = 255 · (q − 1) + 222 bits.
As the length of the extended message x is a multiple of 2040, the proper

value for b is of the form k ·2040− 33, where 1 ≤ k ≤ 2105376 and padding is of
the form given above. So, by changing randomly the values of x1, x2, . . . , xq−1

we will get from equation (7) with probability equal about 2−11 a value for xq,
which has the proper value of b and thus with probability equal about 2−12 has
the proper format of the entire padding given above.
Of course, other paddings, like 1 ‖ 0 ‖ b or 1 ‖ 02 ‖ b or even 1 ‖ 0222 ‖ b can

also be taken into account. The probability that we get a proper padding in xq

when we change randomly the values of x1, x2, . . . , xq−1 is equal to

2−11
223
∑

i=1

1

2i
≈ 2−11. (8)

Hence, for xq we should care only about the proper value of b, because the other
values will be proper with probability close to 1.
The length of the message can be matched using fixed points, i.e., xi such

that F (Hi−1, xi) = Hi−1. It is easy to see from equation (1) that if xi is a fixed
point then NPB(xi ⊕ yi−1 ⊕Hi−1) = 0255. Thus, the fixed point is given by

xi = NPB
−1(0255)⊕Hi−1 ⊕ yi−1. (9)

From equation (9) we can calculate the values of xi, xi+1, . . . , xi+7 and then
insert the block xi ‖ xi+1 ‖ . . . ‖ xi+7 to the extended message x without any
change of the digest. In that way we can increase the length of the message by
2040 bits and the given digest y still remains the same. This procedure can be
repeated several times until we get a message of the desired length, given by the
proper value of b.
Example 2 Let us assume that the FSR-255 hash value h(m) = 0255. Then,

for this given hash value, the extended message x = x1 ‖ x2 ‖ . . . ‖ x8, found
by the algorithm described above, is equal to
x1 = 0x1248 ‖ 0x76ec ‖ 0x7904 ‖ 0x2896 ‖ 0x2ce3 ‖ 0x6420 ‖ 0x000d ‖
0x654f ‖ 0x4f83 ‖ 0x10ab ‖ 0x506f ‖ 0x4241 ‖ 0x7432 ‖ 0x6d80 ‖ 0x3de0 ‖
0x0e0e ‖ 0x3794,
x2 = 0x7db8 ‖ 0x47bc ‖ 0x23e9 ‖ 0x5dc3 ‖ 0x41a7 ‖ 0x3b72 ‖ 0x15a5 ‖
0x3042 ‖ 0x6269 ‖ 0x459d ‖ 0x2443 ‖ 0x0460 ‖ 0x6c17 ‖ 0x413d ‖ 0x4a88 ‖
0x4ab8 ‖ 0x775d,
x3 = 0x1c78 ‖ 0x0892 ‖ 0x22d6 ‖ 0x2973 ‖ 0x1b39 ‖ 0x0d39 ‖ 0x6ab6 ‖



Cryptanalysis of the FSR-255 hash function 373

0x1dac ‖ 0x1ba2 ‖ 0x68ee ‖ 0x15dc ‖ 0x2956 ‖ 0x7609 ‖ 0x695c ‖ 0x4641 ‖
0x58df ‖ 0x19f0,
x4 = 0x6a64 ‖ 0x7460 ‖ 0x22c5 ‖ 0x5e38 ‖ 0x4690 ‖ 0x165d ‖ 0x1d47 ‖
0x4772 ‖ 0x043e ‖ 0x1239 ‖ 0x26c5 ‖ 0x5b85 ‖ 0x7fa8 ‖ 0x23da ‖ 0x7e8d ‖
0x31f9 ‖ 0x1f1a,
x5 = 0x7d05 ‖ 0x6baf ‖ 0x7ac4 ‖ 0x114c ‖ 0x634a ‖ 0x1feb ‖ 0x6a38 ‖
0x22df ‖ 0x3dc7 ‖ 0x5d94 ‖ 0x3df4 ‖ 0x54a8 ‖ 0x4f32 ‖ 0x4772 ‖ 0x4d01 ‖
0x676b ‖ 0x7f74,
x6 = 0x0473 ‖ 0x6253 ‖ 0x5f44 ‖ 0x45bb ‖ 0x5117 ‖ 0x6770 ‖ 0x054f ‖
0x6c85 ‖ 0x5658 ‖ 0x516e ‖ 0x5447 ‖ 0x045a ‖ 0x0c3b ‖ 0x2138 ‖ 0x5e39 ‖
0x1202 ‖ 0x7172,
x7 = 0x63e4 ‖ 0x62cc ‖ 0x651c ‖ 0x28f4 ‖ 0x0a32 ‖ 0x58f9 ‖ 0x53b8 ‖
0x1060 ‖ 0x00e1 ‖ 0x49a1 ‖ 0x42dc ‖ 0x4955 ‖ 0x580b ‖ 0x675c ‖ 0x170a ‖
0x2554 ‖ 0x4192,
x8 = 0x7927 ‖ 0x43ab ‖ 0x6a72 ‖ 0x249a ‖ 0x79d8 ‖ 0x0509 ‖ 0x290c ‖
0x1caf ‖ 0x1422 ‖ 0x4eac ‖ 0x6587 ‖ 0x0aef ‖ 0x7182 ‖ 0x7bf8 ‖ 0x234c ‖
0x0000 ‖ 0x07d7.
The last 33 bits of x8 are padding bits. Thus, preimage m = x1 ‖ x2 ‖ . . . ‖

x7 ‖ m8, where x8 = m8 ‖ 1 ‖ b and b = 000 . . .0011111010111, is a 32-bit
representation of the length of the message m.

6. Summary

In this paper we have shown that FSR-255 hash function is not second-preimage
resistant (which implies that it is not collision resistant either) and finding
second-preimages for FSR-255 is an easy task (of negligible complexity). The
presented second-preimage attack shows that a collision-free compression func-
tion does not guarantee the collision resistance of the whole iterated hash func-
tion.
We have also shown a preimage attack on the FSR-255 hash function with

complexity of about 211.
As a consequence, when designing iterated hash algorithms, the compression

function should not be easily invertible for a given output and intermediate
chaining variable.
Due to the security flaws, shown in this paper, the FSR-255 hash function

should not be used in cryptographic applications.
Both attacks presented in this paper have been implemented and work in

practice.

References

Gajewski, T., Janicka-Lipska, I., Stokłosa, J. (2003) The FSR-255 fam-
ily of hash functions with a variable length of hash result. In: J. Sołdek,
L. Drobiazgiewicz, eds., Artificial Intelligence and Security in Computing
Systems. Kluwer Academic Publishers, Boston, 239-248.



374 M. Kontak and J. Szmidt

Janicka-Lipska, I. (no date) Truth tables of some nonlinear feedback func-
tions for 15-bit feedback shift registers with the maximum length of state
cycles. Website http://www.sk-kari.put.poznan.pl/Janicka/functions/

Janicka-Lipska, I., Stokłosa, J. (2001) FSR-255 cryptographic hash func-
tion. In: W. Burakowski, A. Wieczorek, eds. NATO Regional Conference
on Military Communications and Information Systems, Zegrze 2001, vol. I,
321-324.

Kontak, M., Szmidt, J. (2013) The FSR-255 Hash Function Is Not Second-
Preimage Resistant. In: M. Amanowicz, ed., Military Communications
and Information Technology: Recent Advances in Selected Areas. Military
University of Technology, Warsaw, 229-235.

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.(1996) Handbook of
Applied Cryptography. CRC Press, Boca Raton, FL.

Stokłosa, J. (1995) Integrity of data: FSR-hash. In: Z. Bubnicki, ed., Pro-
ceedings of the 12th International Conference on Systems Science. Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław, III, 120–125.

Stokłosa, J. (1996) O pewnej funkcji skrótu. (in Polish) In: A. Wieczorek, L.
Sufa, eds., V Krajowa Konferencja Naukowa KNSŁ–96 Systemy ła̧czności
i informatyki na potrzeby obrony i bezpieczeństwa RP. Wyższa Szkoła Ofi-

cerska Wojsk Ła̧czności, Zegrze, III, 51–56.


