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Abstract: We provide a dynamic programming approach through
the level set setting to structural optimization problems. By construct-
ing a dual dynamic programming method we provide the verification
theorem for optimal and ε−optimal solutions of shape optimization
problem.
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1. Introduction

1.1. The background

One of the most typical problems we meet in shape optimization of deformable
structures can be formulated as follows: determine the shape of the structure of a
prescribed volume exhibiting the highest stiffness. The area of optimization of the
shape of continuum structures is now dominated by methods that employ the ma-
terial distribution concept. The typical ones are the homogenization approach and
the variable density approach. In the variable density approach, a density function
is introduced into the problem formulation to represent the material distribution
in the design domain. In order to achieve the goal of topology design, the density
function is related to the stiffness of the material by a power law. This choice
has the effect of penalizing the intermediate densities, since in this case volume is
proportional, while stiffness is less than proportional to density. In this way, it is
hoped that the optimal structure may almost entirely consist of elements, which
only have minimal or maximal densities. Numerical algorithms based on these
two approaches are element-based. One of the disadvantage of the element-based
optimization model is that in the representation of the geometric information,
such as the location and shape of the boundary, the normal vector or curvature
of the boundary are not straightforward (see the detailed description in Sethian,
1996). To overcome that disadvantage, some more geometry-oriented topology
optimization algorithms have been proposed recently by Sethian and Wiegmann
(Sethian, 2000). The essential feature of that method is the introduction of a
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function, so called level set function, that describes the shape and topology of the
structure implicitly. The level set approach, instead of the interface itself, takes
the original interface and adds an extra dimension to the problem. Level set meth-
ods, basing on the dynamic programming approach (Hamilton-Jacobi equation)
provide mathematical and computational tools for tracking evolving interfaces
with sharp corners and cusps, topological changes, and multidimensional compli-
cations. They efficiently compute optimal robot path around obstacles, extract
clinically useful features from the noisy output of medical images, and model the
manufacturing steps that transfer a street map of circuitry onto a tiny piece of
silicon. The Hamilton-Jacobi equation has been used for tracing the motion of the
structural boundary based on ad hoc constructed speed function. In the present
paper, the framework of dual dynamic programming, together with sufficient op-
timality conditions (the so-called verification theorem for relative minimum) is
proposed for a solution of the optimum design problem. Different approaches are
given in Bellman (1957) or Sokolowski and Zochowski (1999). The shape problem
is formulated in terms of the level set functions which satisfy the Hamilton-Jacobi
PDE. There is a lack of convexity in our optimization problem (P̃), since the set
of admissible level set functions (deformation) given by the Hamilton-Jacobi PDE
is nonconvex. Our goal is not the standard analysis of the problem as, e.g., in
Delfour and Zolesio (2001), but the approximate solution by application of the suf-
ficient optimality conditions given by dual dynamic programming. This approach
seems to be new and the result obtained is original, to our best knowledge. We
construct a dual dynamic programming approach to our shape control problems.
This approach allows us to obtain the sufficient conditions for optimality in the
problem considered, as well as sufficient optimality conditions for the approximate
solutions. We believe that the conditions for problems of type (P̃) in terms of dual
dynamic programming, that we formulate here, have not been provided earlier.

There are two main difficulties that must be overcome in problems such as
(P̃). The first one consists in the following observation. We have no possibility
to perform perturbations of the problem - as it is considered in the fixed set
with boundary condition - which can be compared to the one-dimensional case
given in Bellman (1957) or Fleming and Rishel (1975). The second one is that
we deal with elliptic type equation for state. The technique we apply is similar
to the methods from Galewska and Nowakowski (2006) or Nowakowski (1992 and
2013). The main idea of the methods from Galewska and Nowakowski (2006)
and Nowakowski (2013) is that they carry over all objects used in dynamic pro-
gramming to dual space: space of multipliers (similar to those which appear in
the Pontryagin maximum principle). Next, instead of the classical value func-
tion (which for problem (P̃) makes no sense), we define an auxiliary function
V (τ, x, p), satisfying the first order partial differential equation of dual dynamic
programming, which is very similar to level set PDE (compare Galewska and
Nowakowski, 2006). Investigations of properties of this function lead to an ap-
propriate verification theorem. Our dual dynamic equation (sufficient optimality
conditions and approximate sufficient optimality conditions) is just of the type
of Hamilton-Jacobi PDE. The main advantage and difference of our approach is:
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after solving our ”dual Hamilton-Jacobi PDE” we substitute this solution to in-
equality for approximate solution and check whether it is really the solution we
are looking for, or at least we know the error indicating how wrong is the solution
obtained numerically.

The shape optimization problems are considered, for instance, in Haslinger
and Mäkinen (2003) or Sokolowski and Zolesio (1992), where necessary optimal-
ity conditions, results concerning convergence of finite-dimensional approximation
and numerical results are provided. In the monograph of Sokolowski and Zolesio
(1992), the material derivative method is employed to calculate both the sensi-
tivity of solutions to shape problems and the derivatives of domain depending
functionals with respect to variations of the boundary of the domain occupied
by the body. In Myśliński (2004), Myśliński (2005), or Myśliński (2010), the
level set based method is applied to find numerically the optimal topology and
shape in elastic contact problems. To formulate the necessary optimality condi-
tion for simultaneous shape and topology optimization, the shape and topological
derivatives are employed. The notion of topological derivative and the results
concerning its application in optimization of elastic structures are reported, in
particular, in the papers by Burger, Hackl and Ring (2004), or Fulmański, Lau-
rin, Scheid, and Sokołowski (2007), or Garreau, Guillaume and Masmoudi (2001),
or Myśliński (2005), or Sokolowski and Zochowski (2003), or Sokolowski and Zo-
chowski (2004).

The approach presented in this article is different from the one given in the
mentioned papers. It stays close to the classical dynamic programming approach
to optimization problems and gives sufficient ε−optimality conditions (see, e.g.,
Nowakowski, 2008, or Nowakowski, 2013, or Nowakowski and Sokołowski 2012),
while in Sokołowski and Zolesio (1992), or Myśliński (2010) only necessary op-
timality conditions are stated. We provide a dynamic programming approach
through the level set setting to structural optimization problems. This approach
allows us to obtain conditions for ε−optimality in the problem considered, with
the application of known numerical tools, such as the fast marching method
(FMM) (see Sethian, 1987, or Sethian, 1996, compare also Hüber, Stadler and
Wohlmuth, 2008).

Another advantage of the dynamic programming approach is that we derive
the sufficient optimality (ε−optimality) conditions for the given shape optimiza-
tion problem - in such a case we do not need any existence of minimum with
respect to some family of admissible sets (compact family) followed by necessary
optimality conditions. The existence of minimum is in itself a challenging issue,
which requires usually the sufficiently rich (or very poor) family of admissible sets
and semicontinuity of the functional with respect to a topology introduced in the
family of admissible sets (the idea of Hilbert). We follow the ideas originated by
Weierstrass, Carathēodory and Bellman, constructing sufficient optimality condi-
tions (then existence and necessary optimality conditions are not needed), which
can be done, (in most cases) for a given (analytically) family of admissible sets -
more convenient in practice.
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1.2. Model problem formulation: optimization of deformable struc-
tures

Let a body occupying a bounded domain Ω ⊂ R3 be loaded by body forces of
density f = (f1, f2, f2) and surface tractions of density P = (P1, P2, P3) on a
portion ΓP of the boundary of Ω. On the remaining part Γu = ∂Ω \Γ̄P , the body
is fixed. We want to find an equilibrium state of Ω. This state is characterized by
a symmetric stress tensor σ, defined in Ω, with values in R3, in equilibrium with
f and P , i.e., satisfying

−
∂σ

∂x
= f in Ω, (1)

σν = P on ΓP ,

ν being the normal vector to ΓP . The deformation of Ω is characterized by a
displacement vector u = (u1, u2, u3) and the respective linearized strain tensor
ε(u) = (εij(u))

3
i,j=1 with εij(u) = 1

2 (
∂ui

∂xj
+

∂uj

∂xi
). We seek a displacement vector u

such that (1) is satisfied with σ = σ(u), where σ(u) = Kε(u), (K-matrix), i.e.

−div σ = f in Ω,

u = 0 on Γu = ∂Ω\Γ̄P , (2)

σν = P on ΓP .

The shape optimization of deformable structures Pm can be formulated as follows
(see Haslinger and Mäkinen, 2003): determine the shape of the structure of a
prescribed volume exhibiting the highest stiffness. The mathematical formulation
of this problem is as follows:

Find Ω∗ ∈ Θ such that

J(Ω∗, u(Ω∗)) ≤ J(Ω, u(Ω)), Ω ∈ Θ,

where Θ is a certain family of subdomains of D ⊂ R3 bounded with Lipschitz
boundary, and

J(Ω, u) =

∫

Ω

fudx+

∫

ΓP

Pudx (3)

is the compliance functional, where u(Ω) solves (2) in Ω.

2. Formulation of a general problem

In this section, the general approach, not limited only to the problem presented
in the previous section, is described. Consider the following shape optimization
problem:

minimize J(Ω) =
∫

Ω

L(x, u(x),∇u(x))dx (4)
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subject to

Ω ∈ Θ,

Au(x) = f(x, u(x)) a.e. on Ω, (5)

u(x) = ϕ(x) on ∂Ω\Γ̃, (6)

Bu(x) = Υ(x) on Γ̃, (7)

where Γ̃ ⊂ ∂Ω, Θ is a certain family of subdomains of D ⊂ Rn bounded with
Lipschitz boundary, which will be defined precisely in the subsection below, A is
a differential operator, e.g., div σ from the former section and B is the differential
operator acting on ∂Ω. We assume that L : Rn × Rn × Rn×n → R is Lipschitz
continuous with respect to all variables, f : Rn × Rn → Rn is continuous with
respect to all variables and Lipschitz continuous with respect to the last variable,
ϕ(·) is continuous on D and Υ(·) is L2 on D. As it is usually done in optimization
problems (control theory) we assume that the problem (5)-(7) has at least one
weak solution for some Ω’s from Θ.

3. The level set method - Hamilton-Jacobi equation

3.1. Definition of the level set and contour function

We recall some facts from the level set approach to shape optimization. The level
set (contour) of a function f : Rn → R, corresponding to a real value c, is a set
of points x ∈ Rn, for which

f(x) < c,

(f(x) = c).

Let Ω be an open and connected subset Rn with a Lipschitz boundary, for
which there exists Lipschitz continuous function Ψ(x) : Rn → R such that

Ω = {x ∈ R
n : Ψ(x) < 0}. (8)

In consequence, boundary Γ of Ω is a set of all points x ∈ Rn such that Ψ(x) = 0.
Let φ : (t, x) ∈ [0, 1]× Rn → R be any Lipschitz function, such that

φ(0, x) = Ψ(x), x ∈ R
n.

According to the definition of function Ψ(·) and the level set function, the level
set of the function φ(t, ·) at time t = 0 is identical to Ω, i.e.

Ω = {x ∈ R
n : φ(0, x) < 0}

while the boundary of Ω is equal to Γ, i.e.

Γ = {x ∈ R
n : φ(0, x) = 0}.
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Thus, if Ω is subject to change in time, we can describe a deformation of Ω and
its boundary Γ at time t (denoted as Ωt and Γt) as

Ωt(φ) = {x ∈ R
n : φ(t, x) < 0}

and

Γt(φ) = {x ∈ R
n : φ(t, x) = 0}.

Let x : [0, 1] × Γ0(φ) → Rn be a continuous function, which for every point
x0 ∈ Γ0(φ) is absolutely continuous and assigns its location at time t, t ∈ [0, 1],
i.e.

x(t, x0) = x ∈ Γt(φ).

In particular, we obtain

x(0, x0) = x0.

The function x(·, x0) represents the location of point x0 at successive time steps
t, and determines in this way a trajectory, starting from the point x0 ∈ Γ0(φ).

To derive the level set formula (Hamilton-Jacobi equation) according to which
the changes of the function φ(t, ·) affect boundary Γt (represented by the zero
contour of φ(t, ·)) we require for every x0 ∈ Γ0 that

φ(t, x(t, x0)) = 0 (9)

along the deformation x(·, ·) of the point x0. By differentiating (9) with respect
to t we get

∂φ

∂t
(t, x(t, x0)) +∇φ(t, x(t, x0))x

′(t, x0) = 0. (10)

Let Q(x(t, x0)), t ∈ [0, 1], x0 ∈ Γ0(φ), to be a Lipschitz mapping assigning
to every point x(t, x0) its speed of moving in normal (outer) direction to the
boundary Γt(φ). We have

Q(x(t, x0)) = x′(t, x0) · n, (11)

where

n =
∇φ

|∇φ|
(t, x0) (12)

is a normal vector to the boundary Γt at the point x(t, x0). It is clear that having
Q and φ we can find x(t, x0). Applying (11) and (12) to (10), finally we have

∂φ

∂t
(t, x(t, x0)) + |∇φ(t, x(t, x0))|Q(x(t, x0)) = 0,
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i.e. φ has to satisfy the following equation of Hamilton-Jacobi type:

∂φ

∂t
(t, x) + |∇φ(t, x)|Q(x) = 0, (t, x) ∈ (0, 1)× R

n (13)

with initial condition

φ(0, x) = Ψ(x), x ∈ R
n. (14)

It transforms the pure geometry problems into the language of partial differential
equations, where theoretical results about existence of solutions may be used to
analyze the solutions for different speed functions Q (see Sethian, 1996). One of
the novelties of the paper is just to consider a family of the level set functions
φ generated by a certain set of functions Q (speed functions) with fixed initial
function Ψ according to (13) and (14).

3.2. Level set functions in shape optimization

Let two connected domains D, Ω, Ω̄ ⊂ D ⊂ Rn, Ω with Lipschitz boundary and
initial Lipschitz continuous function Ψ : D → R, with the property

Ψ(x) < 0 on Ω, Ψ(x) = 0 on ∂Ω, Ψ(x) > 0 on D\Ω̄

be given. In order to apply the level set function in shape optimization let us intro-
duce the Heaviside function H(φ(t, ·)) to change the dependence of our functional
(4) on sets Ωt to dependence of it upon the level set functions φ(t, ·), t ∈ [0, 1].
These functions are defined as

H(φ(t, ·)) = 1 if φ(t, ·) ≤ 0, H(φ(t, ·)) = 0 if φ(t, ·) > 0, t ∈ [0, 1].

Denote, for fixed K ∈ R+, by

̥ = {Q : Q ∈ Lips(D), −K ≤ Q(x) ≤ K, x ∈ D}

and for each given Q ∈ ̥ denote by φQt , t ∈ [0, 1] any Lipschitz solution of (13)
in (0, 1) × D with initial condition (14). Thus, Ωt(φ

Q
t ), t ∈ [0, 1], has Lipschitz

boundary. Next, put for each fixed t ∈ [0, 1]

J(φQt ) =

∫

D

L(x, ut(x),∇ut(x))H(φQt (x))dx

where ut satisfies

Aut(x) = f(x, ut(x)), x ∈ Ωt(φ
Q
t ), (15)

ut(x) = ϕ(x) on ∂Ωt(φ
Q
t )\Γ̃t (16)

But(x) = Υ(x) on Γ̃t
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and Γ̃t ⊂ ∂Ωt(φ
Q
t ) is a part of ∂Ωt(φ

Q
t ) corresponding to Γ̃ ⊂ ∂Ω by φQt . We

assume, similarly as in Section 2, that the problem (15)-(16) has a weak solution.
Denote

J(φQtf ) = min
t∈[0,1]

J(φQt ). (17)

The family Θ of sets, over which the (4) is considered, we define as:

Θ = {Ωt(φ
Q
t ) : t ∈ [0, 1], Q ∈ ̥}. (18)

The sets from Θ are called admissible sets. Put

Φ =
{

φQt : Ωt(φ
Q
t ) ∈ Θ, t ∈ [0, 1]

}

.

Now we can reformulate our shape optimal problem (4) with (5) into the
following optimization problem:

J(φQtf ) = min
φ
Q
t ∈Φ

J(φQt ). (19)

Notice that problem (19) is the free time optimal control problem, so we minimize
J also with respect to time. This is why we cannot directly apply the classical
dynamic programming approach. We use a certain idea of a trick from Maurer
(see Maurer and Oberle, 2002) to transform the free time optimal problem (with
final time t and variable s ∈ [0, t]) (19) to a problem with fixed final time t = 1
and then, to this new problem with fixed final time, we apply the dual dynamic
programming method. The transformation proceeds by augmenting the state
dimension and by introducing the free final time as an additional state variable.
To this effect, we define the new time variable τ ∈ [0, 1] by

s = τ · t, 0 ≤ τ ≤ 1, t ∈ [0, 1], s ∈ [0, t]. (20)

We shall use the same notation φ(τ, x) = φ(τ · t, x) for the deformation of Ω with
respect to the new variable τ . The augmented state

φ̃ =

(

φ
φ1

)

∈ R
2, φ1 = t, (21)

satisfies the differential equations

(∂φ/∂τ) = −t · |∇φ(τ, x)|Q(x), dφ1/dτ ≡ 0.

To underline the dependence of φ̃ on Q we shall write φ̃Q.
As a result of this time transformation, we consider the following control prob-

lem (P̃) on the fixed interval [0, 1]: minimize the functional

J(φ̃Q) = J(φQ, t) (22)

=

∫

D

L̃(x, ũφ̃Q (x),∇ũφ̃Q (x))H̃(φ̃Q(x))dx
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subject to

φ̃Q ∈ Φ̃,

i.e. φ̃Q satisfies
(

∂φ̃Q/∂τ
)

= ϕ̃(τ, x),

with

ϕ̃(τ, x) =

(

−t · |∇φ(τ, x)|Q(x)

0

)

and ũφ̃Q satisfies

Aũφ̃Q (x) = f̃(x, ũφ̃Q (x)), x ∈ Ω̃(φ̃Q), (23)

ũφ̃Q (x) = ϕ(x) on ∂Ω̃(φ̃Q)\Γ̃φ̃Q ,

ũφ̃Q (x) = Υ(x) on Γ̃φ̃Q ,

where Γ̃φ̃Q ⊂ ∂Ω̃(φ̃Q) is a part of ∂Ω̃(φ̃Q) corresponding to Γ̃ ⊂ ∂Ω by φ̃Q. The
functions herein are given by

L̃(x, ũφ̃Q (x),∇ũφ̃Q (x)) = L(x, ut(x),∇ut(x)),

H̃(φ̃Q(x)) = H(φQt (x))

f̃(x, ũφ̃Q (x)) = f(x, ut(x))

and the sets

Φ̃ = Φ× [0, 1],

Ω̃(φ̃Q) = Ωt(φ
Q
t ).

The transformed problem (P̃) on the fixed time interval [0, 1] falls into the category
of Lagrange control problems treated in many books (e.g. Fleming and Rishel,
1975). Thus, we define for problem (P̃) the optimal value

S = inf
φ̃Q∈Φ̃

J(φ̃Q).

We have to notice that problem (P̃) does not admit perturbation, i.e. the optimal
value S can not be defined for any particular point of Φ̃ or at least a starting
point of φ̃Q, which could be perturbed. That is the reason why we can not
apply dynamic programming directly. We need a different approach to dynamic
programming, which would allow for treating the problem of type (P̃). We will
develop for that problem ideas described in Nowakowski (1992).
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3.3. Dual dynamic programming approach to problem (P̃)

In the classical dynamic programming (i.e. in the one dimensional case) we have a
value function S(t, z) depending on time t and state variable z. Having the possi-
bility to perturb a given point (t, z), we are able to calculate the full derivative of
S(t, z) : St(t, z)+Sz(t, z)ż and using some properties of the value function we can
derive the Hamilton-Jacobi equation. The essential point in that approach is that
we can perturb S(t, z) at each point of the open domain of definition of S. As we
mentioned in former section, the problem (P̃) does not admit perturbation. That
is why we have to develop, basing on the ideas of Nowakowski (1992, 2013), a new
approach to dynamic programming so called dual dynamic programming. Thus,
instead of considering notions of dynamic programming, such as value function
S(t, z), or the Hamilton-Jacobi equation in the space (t, z), a new space – the dual
space is proposed and new notions of dual dynamic programming are defined: an
auxiliary function, a dual optimal value, and a dual Hamilton-Jacobi equation
which the auxiliary function should satisfy. The dual space in Nowakowski (1992
and 2013) is, in fact, defined by conjugate (dual) functions (variables) which ap-
pear in Pontryagin maximum principle. It turns out that this approach works
also in control problems of type (P̃). That means: in dual approach to dynamic
programming the perturbation of optimal value is not needed – instead, we deal
with an auxiliary function. However, there is a price to be paid for that, as we
have to impose on the auxiliary function some additional condition, called the
transversality condition. We need to define the dual notions in some dual space.
Thus, let P ⊂ R1+n+2 be an open (dual) set of the variables (τ, x, p) = (τ, x, y0, y),
(τ, x) ∈ [0, 1]× Ω, y0 ≤ 0, y ∈ R. We shall also use the subset of P

P1 = {(x, p) : (1, x, p) ∈ P} .

Let V (x, p) of W 2,2(P ) be an (auxiliary) function defined on P and satisfying
the following condition:

V (τ, x, p) = y0Vy0(τ, x, p) + yVy(τ, x, p) = pVp(τ, x, p), (24)

for (τ, x, p) ∈ P . Here, Vy0 , Vy, and Vp denote the partial derivatives and the
gradient with respect to the dual variables y0, y, and p = (y0, y), respectively.

Now, we denote by p(τ, x) = (y0, y(τ, x)), (τ, x) ∈ [0, 1] × Ω, the dual de-
formation, while φ̃Q((τ, x), (τ, x) ∈ [0, 1] × Ω stands for the primal deformation
(we should have in mind the convention φ̃Q(τ, x) = φ̃Q(τ · t, x) and this concerns
also the dual deformation, i.e., p(τ, x) = p(τ · t, x), but not the auxiliary function
V (τ, x, p)!). Let us put

φ(τ, x, p) = −Vy(τ, x, p), for (τ, x, p) ∈ P . (25)

Using the function φ it is possible to come back from the dual deformations p(τ, x),
(τ, x) ∈ [0, 1]×Ω, lying in P , to the primal deformations φ̃Q((τ, x), (τ, x) ∈ [0, 1]×
Ω. The way to find Vy is described below (V is a solution to (26), (27)). Further,
we confine ourselves only to those admissible deformations φ̃Q(·), for which there
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exist functions p(τ, x) = (y0, y(τ, x)), (τ, x, p(τ, x)) ∈ P , y(·) ∈ W 1,2(P ), such
that φQ((τ, x) = φ(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1]×Ω. Thus, for any given y0 < 0,
denote

Φφ =
{

φ̃Q(·) ∈ Φ̃: there is p(τ, x) = (y0, y(τ, x)), y(·) ∈W 1,2(P ), (τ, x, p(τ, x)) ∈ P,

(τ, x) ∈ [0, 1]× Ω and ψ : Rn 7→ R, y(0, x) = ψ(x), φ(0, x, y0, ψ(x)) = Ψ(x),

such that φQ((τ, x) = φ(τ, x, p(τ, x)), (τ, x) ∈ [0, 1]× Ω }.

Actually, this means that we are going to study problem (P̃) possibly in some
smaller set Φφ, which is determined by the function (25).

In order to prove the verification theorem we require the function V (τ, x, p) to
satisfy the first order partial differential equation in the dynamic programming
form:

Vτ (τ, x, p) = inf
t∈[0,1], Q∈̥

{−t |∇xV (τ, x, p)|Q(x) (26)

+y0(div)−1(L̃(x, ũφ̃Q (x),∇ũφ̃
Q

(x)))
d

dτ
H(Vy(τ, x, p)))

}

, (τ, x, p) ∈ P

with the terminal condition

Vy0(1, x, p) = 0, (x, p) ∈ P1, (27)

where ũφ̃
Q

satisfies (23) for Ω̃(φ̃Q) and (div)−1 is an inverse of divergence operator
acting on the space L2(Ω). In terms of the dual feedback speed Q(τ, x, p), (26)
has the form

Vτ (τ, x, p) = −t |∇xV (τ, x, p)|Q(τ, x, p)

+y0(div)−1(L̃(x, ũφ̃Q (x),∇ũφ̃Q (x)))
d

dτ
H(Vy(τ, x, p))), (τ, x, p) ∈ P.

We shall not discuss here the question of existence of solution to (26) and
satisfying the condition (24). We simply assume in the verification theorem (given
in the next section) that such a function exists. We define a dual optimal value
Sφ
D for the problem (P̃) by the formula

Sφ
D = inf

φ̃Q∈Φφ

∫

D

L̃(x, ũφ̃Q (x),∇ũφ̃Q (x))H̃(φ̃Q(x))dx, (28)

where ũφ̃Q satisfies (23) in Ω̃(φ̃Q).

3.4. The verification theorem

In this section we formulate and prove one of our main theorems, called "verifica-
tion theorem", which provides the sufficient optimality conditions for (P̃) in terms
of a solution V (τ, x, p) to the first order partial differential equation of dynamic
programming (26).
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Theorem 1 Assume that there exists a W 2,2(P ) solution V (τ, x, p) of (26) on P
with terminal condition (27) such that (24) holds and let φ̄(τ, x, p) = −Vy(τ, x, p),

(τ, x, p) ∈ P . Let φ̃Q̄(·) ∈ Φφ̄, and p(τ, x) = (y0, y(τ, x)), ȳ(·) ∈ W 1,2([0, 1] ×

Ω), (τ, x, p̄(τ, x)) ∈ P , y(0, x) = ψ(x), x ∈ Ω, y0 < 0, be a function such that
φ̃Q̄(τ, x) = −Vy(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1] × Ω. Suppose that, for (τ, x) ∈
[0, 1]× Ω, and some t̄ ∈ [0, 1]

Vτ (τ, x, p(τ, x)) = −t̄ |∇xV (τ, x, p(τ, x))|Q(τ, x, p(τ, x)), (29)

+ȳ0(div)−1(L̃(x, ũφ̃
Q̄

(x),∇ũφ̃
Q̄

(x)))
d

dτ
H(Vy(τ, x, p(τ, x)))),

with

Vy0(1, x, p(t̄, x)) = 0,

where Q(τ, x, p) is a dual feedback speed. Then φ̃Q̄(·) is an optimal deformation

relative to all φ̃Q(·) ∈ Φ
φ̄
.

Proof Let us take a W 2,2(P ) solution V (τ, x, p) of (26) on P with terminal
condition (27) such that (24) holds. Fix any φ̃Q(·) ∈ Φ

φ̄
corresponding to some

Q(·) and t, and take any p(τ, x) = (y0, y(τ, x)), y(·) ∈ W 1,2(P ), (τ, x, p(τ, x)) ∈
P , such that φ̃Q(τ, x) = Vy(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1] × Ω. Let x(τ, x0, p),
x0 ∈ Γ0(φ̃

Q), be a trajectory generated by the velocity Q and normal

n =
∇xVy(τ, x, p)

|∇xVy(τ, x, p)|
,

i.e. Q(x(τ, x0, p)) = x′(τ, x0, p)n. From the transversality condition (24), we see
that for (τ, x) ∈ [0, 1]× Ω,

Vτ (τ, x, p(τ, x)) + t |∇xV (τ, x, p(τ, x))|Q(x)

= y0
(

(d/dτ) Vy0(τ, x, p(τ, x)) + t
∣

∣∇xVy0(τ, x, p(τ, x))
∣

∣ x′(τ, x0, p(τ, x))
)

+y(τ, x) ((d/dτ) Vy(τ, x, p(τ, x)) + t |∇xVy(τ, x, p(τ, x))|Q(x)) . (30)

Since φQ(τ, x) = −Vy(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1] × Ω, (13) shows that for
(τ, x) ∈ [0, 1]× Ω,

(d/dτ) Vy(τ, x, p(τ, x)) + t |∇xVy(τ, x, p(τ, x))|Q(x) = 0. (31)

Now, define a function [0, 1]× Ω ∋ (τ, x) 7→W (τ, x, p(τ, x)) by

W (τ, x, p(τ, x)) =

y0
[

− (d/dτ)Vy0(τ, x, p(τ, x)) − t
∣

∣∇xVy0(τ, x, p(τ, x))
∣

∣ x′(τ, x0, p(τ, x))

+(div)−1(L̃(x, ũφ̃Q (x),∇ũφ̃Q (x)))
d

dτ
H(Vy(τ, x, p)))

]

. (32)
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We conclude from (30)–(32) that

W (τ, x, p(τ, x)) = Vτ (τ, x, p(τ, x)) + t |∇xV (τ, x, p(τ, x))|Q(x)

+y0(div)−1(L̃(x, ũφ̃Q (x),∇ũφ̃
Q

(x))) d
dτ
H(Vy(τ, x, p))), (τ, x) ∈ [0, 1]× Ω.

(33)

Hence, (26) and (33) imply

W (τ, x, p(τ, x)) ≤ 0 for (τ, x) ∈ [0, 1]× Ω. (34)

By integrating (34) along x(τ, x0, p), τ ∈ [0, 1] (we remember that in x(τ, x0, p),
τ = τt) for any fixed x0 ∈ Γ0(φ̃

Q), and applying (32) and (27), and next inte-
grating over Γ0(φ̃

Q), we obtain

−y0
∫

Γ0(φ̃Q)

Vy0(0, x, y0, ψ(x))dx ≤ −y0
∫

D

L(x, ũφ̃Q (x),∇ũφ̃Q (x)))H(φQ(t, x))dx.

(35)

By proceeding similarly as above, from (29) we get

−y0
∫

Γ0(φ̃Q)

Vy0(0, x, y0, ψ(x))dx = −y0
∫

D

L̃(x, ũφ̃Q̄ (x),∇ũφ̃Q̄ (x)))H(φQ(t̄, x))dx.

Thus, from (35) and the last equality it follows that
∫

D

L̃(x, ũφ̃
Q̄

(x),∇ũ
φ̃Q̄

(x)))H(φQ̄(t̄, x))dx (36)

≤

∫

D

L̃(x, ũφ̃
Q
t (x),∇ũφ̃Q (x)))H(φQ(t, x))dx,

which completes the proof. �

3.5. ε−optimality, the verification theorem

From the practical point of view, more important than optimality is ε−optimality
and the possibility of verifying that a given value - calculated e.g. numerically,
is ε−optimal. In this section we define the dual ε−optimal value and we prove
the verification theorem for that value. Let the function V (τ, x, p) satisfy the first
order partial differential inequality of dynamic programming form, (τ, x, p) ∈ P :

0 ≤ −Vτ (τ, x, p) + inf
t∈[0,1], Q∈̥

{−t |∇xV (τ, x, p)|Q(x) (37)

+y0(div)−1(L̃(x, ũφ̃
Q

(x),∇ũφ̃Q (x)))
d

dτ
H(Vy(τ, x, p)))

}

≤ −y0εε,

for any fixed y0ε < 0, with initial condition

Vy0(1, x, p) = 0, (x, p) ∈ P1, (38)

where ũφ̃
Q

satisfies (23) for Ω̃(φ̃Q) and (div)−1 is an inverse of divergence operator
acting on the space L2(Ω).
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Definition 1 Let ε > 0 be fixed. A scalar Sφ
εD is called a dual ε-optimal value

for problem (P̃) if

Sφ
D ≤ Sφ

εD ≤ Sφ
D − εy0εvol(Ω) (39)

for any fixed y0ε < 0.

Definition 2 Let ε > 0 be fixed and let V (τ, x, p) be a given W 2,2(P ) function
satisfying (37), (38) and let φε(τ, x, p) = Vy(τ, x, p), (τ, x, p) ∈ P . Let φ̃Qε (·) =
(φQε (·), tε) ∈ Φφε

and let pε(τ, x) = (y0ε , yε(τ, x)), yε(τ, x) ∈ W 1,2([0, 1] × Ω),
(τ, x, pε(τ, x)) ∈ P , yε(0, x) = ψ(x), x ∈ Ω, y0ε < 0, be such a function that

φQε (τ, x) = Vy(τ, x, pε(τ, x)) for (τ, x) ∈ [0, 1]× Ω. (40)

The deformations φ̃Qε (·) is called an ε-optimal deformation relative to all admis-
sible deformation φ̃Q(·) ∈ Φφε

if

− y0ε

∫

D

L̃(x, ũφ̃
Q
ε (x),∇ũφ̃

Q
ε (x)))H(φQε (tε, x))dxdτ ≤ (41)

− y0ε

∫

D

L̃(x, ũφ̃Q (x),∇ũφ̃
Q

(x)))H(φQ(t, x))dxdτ − y0εεvol(Ω),

where ũφ̃
Q
ε , ũφ̃Q satisfies (23) for Ω̃(φ̃Qε ), Ω̃(φ̃

Q), respectively and vol(Ω) =
∫

Ω
dx.

Now we formulate and prove the ε-version of the verification theorem which, as
it appears, could be applied in constructing the numerical methods for computing
an optimal value in (P̃).

Theorem 2 Assume that there exists a W 2,2(P ) solution V (τ, x, p) of (37) on P
with terminal condition (38) such that (24) holds and let φε(τ, x, p) = Vy(τ, x, p),

(τ, x, p) ∈ P . Let φ̃Qε (·) = (φQε (·), tε) ∈ Φφε
, and pε(τ, x) = (y0ε , yε(τ, x)), yε(·) ∈

W 1,2([0, 1] × Ω), (τ, x, pε(τ, x)) ∈ P , yε(0, x) = ψ(x), x ∈ Ω, be a function such
that φQε (τ, x) = Vy(τ, x, pε(τ, x)) for (τ, x) ∈ [0, 1]× Ω. Suppose that, for (τ, x) ∈
[0, 1]× Ω

0 ≤ −Vτ (τ, x, pε(τ, x)) − tε |∇xV (τ, x, pε(τ, x))|Q(τ, x, pε(τ, x)) (42)

+y0ε(div)
−1(L(x, ũφ̃

Q
ε (x),∇ũφ̃

Q
ε (x)))

d

dτ
H(Vy(τ, x, pε(τ, x)))) ≤ −y0εε,

where Q(τ, x, p) is a dual feedback speed. Then φ̃Qε (·) is an ε−optimal deformation

relative to all φ̃Q(·) ∈ Φφε
.

Proof Let us take a W 2,2(P ) solution V (τ, x, p) to (26) on P with terminal
condition (27) such that (24) holds. Fix any φ̃Q(·) ∈ Φφε

corresponding to some
Q(·) and t, and take any p(τ, x) = (y0ε , y(τ, x)), y(·) ∈ W 1,2(P ), (τ, x, p(τ, x)) ∈
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P , such that φQ(τ, x) = Vy(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1] × Ω. Let x(τ, x0, p),
x0 ∈ Γ0(φ̃

Q), be a trajectory generated by the velocity Q and normal

n =
∇xVy(τ, x, p)

|∇xVy(τ, x, p)|
,

i.e. Q(x(τ, x0, p)) = x′(τ, x0, p)n. From transversality condition (24), we see that
for (τ, x) ∈ [0, 1]× Ω,

Vτ (τ, x, p(τ, x)) + t |∇xV (τ, x, p(τ, x))|Q(x)

= y0ε
(

(d/dτ) Vy0(τ, x, p(τ, x)) + t
∣

∣∇xVy0(τ, x, p(τ, x))
∣

∣ x′(τ, x0, p(τ, x))
)

(43)

+y(τ, x) ((d/dτ) Vy(τ, x, p(τ, x)) + t |∇xVy(τ, x, p(τ, x))|Q(x)) .

Since φQ(τ, x) = Vy(τ, x, p(τ, x)) for (τ, x) ∈ [0, 1]×Ω, (13) shows that for (τ, x) ∈
[0, 1]× Ω,

(d/dτ) Vy(τ, x, p(τ, x)) + t |∇xVy(τ, x, p(τ, x))|Q(x) = 0.

Now, define a function [0, 1]× Ω ∋ (τ, x) 7→W (τ, x, p(τ, x)) by

W (τ, x, p(τ, x)) =

y0ε
[

− (d/dτ)Vy0(τ, x, p(τ, x)) − t
∣

∣∇xVy0(τ, x, p(τ, x))
∣

∣ x′(τ, x0, p(τ, x))

+(div)−1(L̃(x, ũφ̃
Q

(x),∇ũφ̃
Q

(x)))
d

dτ
H(Vy(τ, x, p)))

]

. (44)

We conclude from (43)–(44) that

W (τ, x, p(τ, x)) = Vτ (τ, x, p(τ, x)) + t |∇xV (τ, x, p(τ, x))|Q(x)

+y0ε(div)
−1(L̃(x, ũφ̃Q (x),∇ũφ̃Q (x))) d

dτ
H(Vy(τ, x, p))), (τ, x) ∈ [0, 1]× Ω.

(45)

The inequality (37), together with (45) imply

−y0εε ≤W (τ, x, p(τ, x)) ≤ 0 for (τ, x) ∈ [0, 1]× Ω. (46)

By integrating (46) along x(τ, x0, p), τ ∈ [0, 1] (we remember that in x(τ, x0, p),
τ = τt) for any fixed x0 ∈ Γ0(φ̃

Vn) and applying (44) and (38), and next inte-
grating over Γ0(φ̃

Vn), we obtain

−y0ε

∫

Γ0(φ̃Q)

Vy0(0, x, y0ε , ψ(x))dx ≤ −y0ε

∫

D

L̃(x, ũφ̃Q (x),∇ũφ̃
Q

(x)))H(φQ(t, x))dx.

(47)

Following, similarly as above, from (42) we get

−y0ε

∫

Γ0(φ̃Q)

Vy0(0, x, ψ(x))dx ≥

−y0ε

∫

D

L̃(x, ũφ̃
Q
ε (x),∇ũφ̃

Q
ε (x)))H(φQε (tε, x))dxdτ − y0εεvol(Ω).
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Thus, from (47) and the last equality it follows that

− y0ε

∫

D

L̃(x, ũφ̃
Q
ε (x),∇ũφ̃

Q
ε (x)))H(φQε (tε, x))dxdτ

≤− y0ε

∫

D

L̃(x, ũφ̃
Q

(x),∇ũφ̃Q (x)))H(φQ(t, x))dxdτ − y0εεvol(Ω),

which completes the proof. �

4. Algorithm

4.1. General description

Recall the previously introduced formula (see Theorem 2)

0 ≤ −Vτ (τ, x, p) + inf
t∈[0,1], Q∈̥

{−t |∇xV (τ, x, p)|Q(x) (48)

+y0ε(div)
−1L̃(x, ũφ̃

Q

(x),∇ũφ̃Q (x)))H(Vy(τ, x, p))
}

≤ −y0εε, (τ, x, p) ∈ P.

Our first step is to find an auxiliary function V . To this effect, we base on
the traditional dynamic programming theory - an auxiliary function V can be
computed by iteration, i.e. to start from the initial V 0 and update iteratively
according to

W k+1(x, p) = V k(x, p) + inf
t∈[0,k·∆τ ], Q∈̥

{

−t
∣

∣∇xV
k(x, p)

∣

∣Q(x) (49)

+y0ε(div)
−1L̃(x, ũφ̃

Q

(x),∇ũφ̃Q (x)))H(Vy(τ, x, p))
}

,

(k ·∆τ, x, p) ∈ P

V k+1(x, p) = F (W k+1)(x, p)

where F (W k+1)(x, p) is a formula, which depends on W k+1, and will be defined
later. An initial function V 0 should satisfy the condition (24)

V 0(x, p) = y0V 0
y0(x, p) + yV 0

y (x, p)

and (25)

φ(0, x, p) = −V 0
y (x, p), for (0, x, p) ∈ P.

Because at k = 0 we have that

φ(0, x, p) = Ψ(x)

so

−V 0
y (x, p) = Ψ(x), for (0, x, p) ∈ P.

The algorithm consists of the following steps
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1. Define two connected domains D, Ω, Ω̄ ⊂ D, Ω with Lipschitz boundary.
2. In D define a Lipschitz continuous function Ψ such that

Ψ(x) < 0 on Ω, Ψ(x) = 0 on ∂Ω,

3. In D introduce the rectangular mesh M and use it to discretise the function
Ψ.

4. Define P as a set of points (τ, x, p), where p = (y0, y),

P = {[0, 1]× Ω× [a1, 0]× [a2, a3]} ,

where a1, a2 and a3 are constant parameters of the algorithm, and discretise
the set P with ∆τ , ∆y0 and ∆y such that 1 = ∆τ · cτ , 0 = a1 +∆y0 · cy0

and a3 = a2 +∆y · cy, where a1, a2, a2 are real numbers, cτ , cy0 and cy are
natural numbers, all at the beginning arbitrarily chosen (we change them if
the calculated V k+1 does not satisfy (48)). Denote by Pd the discretization
of P .

5. Take ̥ as a finite set of functions Q

̥ = {Q : Q ∈ Lips(Rn), −K ≤ Q(x) ≤ K, x ∈ D} ,

where K > 0 is arbitrarily chosen (we do not relate Q, K to the gradient of
the functional).

6. Calculate function V 0 in every node of M .
An initial function V 0 should satisfy condition (24)

V 0(x, p) = y0V 0
y0(x, p) + yV 0

y (x, p)

and (25)

φ(0, x, p) = −V 0
y (x, p), for (0, x, p) ∈ P.

Because at k = 0 we have that

φ(0, x, p) = Ψ(x)

so

−V 0
y (x, p) = Ψ(x), for (0, x, p) ∈ P.

Define V 0 as

V 0(x, p) = y0 − yΨ(x).

7. Calculate W 1. To do this

(a) i. For all triples (0, x, p) ∈ Pd do
ii. find a minimum of

y0(div)−1L̃(x, ũφ̃
Q

(x),∇ũφ̃
Q

(x))H(V 0
y (x, p)),

over all Q ∈ ̥, and denote it by M0(x, p):
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A. Find ũ using software FreeFEM (or any other solver of PDE)
from equation

Aũ(x) = f(x, ũ(x)) a.e. on Ω,

ũ(x) = ϕ(x) on ∂Ω\Γ̃,

Bũ(x) = Υ(x) on Γ̃.

B. Calculate

y0ε(div)
−1L̃(x, ũφ̃

Q

(x),∇ũφ̃
Q

(x))H(V 0
y (x, p)).

iii. Put W 1(x, p) = V 0(x, p) +M0(x, p).

(b) To ensure that V 1 satisfies condition (24) define it as

V 1(x, p) = F (W 1)(x, p) =
1

2
y0yW 1(x, p).

8. For k = 1, . . . , cτ − 1, based on W k+1, calculate V k+1. To do this

(a) For all triples (k ·∆τ, x, p) ∈ Pd do

i. find a minimum of

−t
∣

∣∇xV
k(x, p)

∣

∣Q(x)+y0(div)−1L̃(x, ũφ̃
Q

(x),∇ũφ̃
Q

(x))H(V k
y (x, p)),

over all discrete t ∈ [0, k · ∆τ ] and Q ∈ ̥, and denote it by
Mk(x, p):

A. Calculate φ̃Q solving the H-J equation for the given Q.

B. Calculate the domain Ω̃t(φ̃
Q) in Ω.

C. Find ũφ̃
Q

using software FreeFEM (or any other solver of PDE)
from equation

Aũ(x) = f̃(x, ũ(x)), x ∈ Ω̃t(φ̃
Q),

ũ(x) = ϕ(x) on ∂Ω̃t(φ̃
Q)\Γ̃φ̃Q ,

Bũ(x) = Υ(x) on Γ̃φ̃Q .

D. Calculate

−t
∣

∣∇xV
k(x, p)

∣

∣Q(x)+y0(div)−1L̃(x, ũφ̃
Q

(x),∇ũφ̃
Q

(x))H(V k
y (x, p)).

E. Minimum over t is denoted by tkε .

ii. Put W k+1(x, p) = V k(x, p) +Mk(x, p).

(b) To ensure that V k+1 satisfies condition (24), define it as

V k+1(x, p) = F (W k+1)(x, p) =
1

2
y0yW k+1(x, p). (50)
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9. Calculate V tcτε
y (x, p) as

V
tcτε
y (x, p) =

1

2
y0W cτ (x, p).

10. Calculate pε(tcτε , x) from φQ(tcτε , x) = −V
tcτε
y (x, pε(t

cτ
ε , x)) and check whether

(42) is satisfied. If it is satisfied, then φQ(tε, x) is an ε−optimal deformation,
if not, then go to step 6 and choose different ̥ as a finite set of functions
Q.

4.2. Example of implementation

We consider an implementation of our algorithm for a very simple example to
focus on algorithm itself and not on technical details.

Put

• L̃1 = 0
• L̃2 = x1x2(1 − x1)(1 − x2)
• L̃ = L̃1 + divL̃2

• x1 ∈ [0, 1]
• x2 ∈ [0, 1]
• x = (x1, x2)
• τ ∈ [0, 1]
• a1 = −1
• y0 ∈ [a1, 0]
• a2 = 0
• a3 = 1
• y ∈ [a2, a3]
• y0ε = −1
• ∆x1

= 0.1, cx1
= 10

• ∆x2
= 0.1, cx2

= 10
• ∆τ = 0.1, cτ = 10
• ∆y0 = 0.1, cy0 = 10
• ∆y = 0.1, cy = 10.

• Step 1. Ω = [0, 1]× [0, 1] and D = Ω.
• Step 2. In D define the Lipschitz continuous function Ψ as

Ψ(x) = −x1x2(1 − x1)(1 − x2).

• Step 3. In D we use a rectangular mesh M and discretise function Ψ in
points from the set

(∆x1
· 0,∆x1

· 1, . . . ,∆x1
· cx1

)× (∆x2
· 0,∆x2

· 1, . . . ,∆x2
· cx2

).
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• Step 4. Put P = [0, 1]× [0, 1]× [0, 1]× [−1, 0]× [0, 1] and

Pd =(∆τ · 0,∆τ · 1, . . . ,∆τ · cτ )

×(∆x1
· 0,∆x1

· 1, . . . ,∆x1
· cx1

)

×(∆x2
· 0,∆x2

· 1, . . . ,∆x2
· cx2

)

×(a1 +∆y0 · 0, a1 +∆y0 · 1, . . . , a1 +∆y0 · cy0)

×(a2 +∆y · 0, a2 +∆y · 1, . . . , a2 +∆y · cy).

• Step 5. Define ̥ as a finite set of functions Q

̥ =
{

Q(x) = − k2k: k = 0, 1, . . . , 50, x ∈ D
}

.

Now we can rewrite formulas (48) and (49) as

0 ≤ −Vτ (τ, x, p)+ inf
t∈[0,1], Q∈̥

{−t |∇xV (τ, x, p)|Q(x)− x1x2(1− x1)(1 − x2)} ≤ ε,

(51)

W k+1(x, p) =

V k(x, p) + inf
t∈[0,k∆τ ], Q∈̥

{

−t
∣

∣∇xV
k(x, p)

∣

∣Q(x)− x1x2(1− x1)(1 − x2)
}

.

(52)

• Step 6. Define V 0 as

V 0(x, p) = y0 + yx1x2(1− x1)(1 − x2).

• For all triples (0, x, p) ∈ Pd calculate

– Step 7a i.

M0(x, p) = y0x1x2(1 − x1)(1 − x2).

– Step 7a ii.

W 1(x, p) = V 0(x, p) +M0(x, p).

– Step 7b.

V 1(x, p) = Y
(

V 0(x, p) +M0(x, p)
)

,

where Y = 1
2y

0y.

• Changing k from 1 to cτ − 1 for all triples (k∆τ , x, p) ∈ Pd and tkε = k∆τ
calculate

– Step 8a i.

Mk(x, p) =M0(x, p) = y0x1x2(1− x1)(1 − x2).
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– Step 8a ii.

W k+1 = V k +M0 = Y kV 0 +M0(Y k + Y k−1 + ...+ Y + 1).

– Step 8b.

V k+1 = YW k+1 = Y k+1V 0 +M0(Y k+1 + Y k + ...+ Y 2 + Y ).

• Step 9. Calculate V t10ε
y with t10ε = 1 for all (x, p) ∈ [0, 1]×[0, 1]×[−1, 0]×[0, 1]

as

V
t10ε
y =

1

2
y0W 10 =

1

2
y0

(

Y 9V 0 +M0(Y 9 + Y 8 + ...+ Y + 1)
)

.

• Step 10. Notice that V tkε
y > 0, therefore H(V

tkε
y ) = 0. Moreover, the mini-

mum in (52) is attained for Q = 0 and so φ0(tε, x) = −x1x2(1−x1)(1−x2)+
const, assume const = 0. Thus, y = 0 satisfies (51) with any ε > 0. Hence
φ0(tε, x) = −x1x2(1 − x1)(1 − x2) is an ε−optimal deformation.

5. Conclusion

The advantage of the algorithm presented above is that after having calculated the
result, the difference between this result and the exact solution can be precisely
calculated. In other words, we know how far this result is from the real optimal
value. As a disadvantage notice that solution is searched among the predefined
elements of finite sets ̥. If those sets are generated to be "dense" or "represen-
tative" for all solutions, the result we find is near to the real optimal value. The
question how to generate the representative sets remains still open.
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