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Abstract: The purpose of this paper is to introduce a new class
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1. Introduction

Multiobjective optimization deals with solving problems having several conflict-
ing objectives simultaneously, while the control problem consists in transferring
the state variable from an initial state to a final state so as to optimize a given
functional, subject to constraints on the control and state variables.

Thus, multiobjective control problem is a wide field of research having exten-
sive applications in real world situations, ranging from engineering to economics,
and many more. For example, multiobjective control problems are used in flight
control design, in the control of space structures, in industrial process control
and other diverse fields.

Convexity plays a significant role in optimization as it gives global validity
to propositions otherwise only locally true. However, in the real world of math-
ematical and economic models, convexity appears to be a restrictive condition.
As a result, nonconvex optimization problems have been studied by various au-
thors. Naniewicz and Puchala (2012) studied a nonconvex optimization problem

∗The research of the second author has been supported by the DST, New Delhi, India
through Grant No.: SR/FTP/MS-007/2011.

†Submitted: April 2014; Accepted: August 2014



404 S. SHARMA, A. JAYSWAL, S. CHOUDHURY

in the case when the functional to be minimized has integrand expressed as a
minimum of two quadratic functions by constructing an appropriate minimizing
sequence. Tabor and Tabor (2012) showed that the Takagi class can serve as an
important source of examples and counterexamples for paraconvex and semi-
convex functions. By similar motivation, several researchers have generalized
the concept of convexity.

Firstly, Hanson (1981) introduced the concept of invexity to extend the
validity of the sufficiency of the Kuhn-Tucker conditions. Mond and Smart
(1988) obtained duality results for a control problem using invexity and showed
that for invex functions, the necessary conditions are also sufficient. Bhatia and
Kumar (1995) introduced multiobjective control problems and proved duality
results under generalized ρ-invexity assumptions. Nahak and Nanda (1997,
2007) further extended this concept by proving duality results for multiobjective
variational control problems, under the assumption of (F, ρ)-convexity and V-
invexity, respectively.

Gulati, Husain and Ahmed (2005) derived optimality conditions and dual-
ity results for multiobjective control problems involving generalized convexity.
Also, Ahmad and Gulati (2005) proved results for mixed type dual for mul-
tiobjective variational problems under generalized (F, ρ)-convexity. Later, Ah-
mad and Sharma (2010) extended the notion of generalized (F, α, ρ, θ)-V-convex
functions to variational control problems. Recently, Kailey and Gupta (2013)
further extended the concept of generalized (F, α, ρ, d)-convexity and proved du-
ality results for a class of symmetric non-differentiable multiobjective fractional
variational problems.

The concept of univex functions as a generalization of invex functions was in-
troduced by Bector, Suneja and Gupta (1992). Later on, many authors (Arana-
Jiménez, Ruiz-Garzón, Rufián-Lizana and Osuna-Gómez, 2012; Chen, 2002;
de Oliveira, Silva and Rojas-Medar, 2009; Khazafi and Rueda, 2009; Khazafi,
Rueda and Enflo, 2010; Zhian and Qingkai, 2001) extended the concept of gen-
eralized convexity. Being inspired by Bector, Suneja and Gupta (1992), Noor
(2004), Nahak and Nanda (1997, 2007), and Preda, Stancu-Minasian, Beldiman
and Stancu (2009), we introduce the concept of α-V-univex functions for a multi-
objective variational control problem and obtain sufficient optimality conditions
and duality results.

The rest of the paper is organized as follows: In Section 2, we introduce
the definitions of α-V-univex and generalized α-V-univex functions, and recall
a set of necessary optimality conditions. In Section 3, we prove the sufficient
optimality conditions, and in Section 4, we present the Mond-Weir type multi-
objective variational control dual problem and derive weak and strong duality
results. Finally, we conclude our paper in Section 5.

2. Notations and preliminaries

Let Rn denote the n-dimensional Euclidean space. Let y, z ∈ Rn, we denote:
y ≦ z ⇔ yi ≦ zi, i = 1, 2, . . . , n; y ≤ z ⇔ y ≦ z and y 6= z; y < z ⇔ yi < zi, i =
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1, 2, . . . , n.
Let I = [a, b] be a real interval. Let fi : I × Rn × Rn × Rm × Rm → R,

i ∈ P = {1, 2, . . . , p}, gj : I×R
n×Rn×Rm×Rm → R, j ∈M = {1, 2, . . . ,m}

and hk : I × Rn × Rn × Rm × Rm → R, k ∈ N = {1, 2, . . . , n} be continu-
ously differentiable functions. Consider the function f(t, x(t), ẋ(t), u(t), u̇(t)),
where t is the independent variable, x : I → Rn is the state variable and
u : I → Rm is the control variable. u(t) is related to x(t) via the state equation
h(t, x(t), ẋ(t), u(t), u̇(t)) = 0, where the dot denotes the derivative with respect
to t. fix, fiẋ, fiu and fiu̇ denote the partial derivatives of fi with respect to
x, ẋ, u and u̇, respectively. For instance,

fix =

(

∂fi
∂x1

,
∂fi
∂x2

, . . . ,
∂fi
∂xn

)

, fiẋ =

(

∂fi
∂ẋ1

,
∂fi
∂ẋ2

, . . . ,
∂fi
∂ẋn

)

.

Similarly, gjx, gjẋ, gju, gju̇ and hkx, hkẋ, hku, hku̇ can be defined. For nota-
tional convenience, we use x, ẋ, u, u̇ in place of x(t), ẋ(t), u(t), u̇(t), respectively.
Let the differentiation operator D be given by

z = Dx⇔ x(t) = γ +

∫ t

a

z(s)ds,

where γ is a given boundary value. Therefore, D = d/dt except at discontinu-
ities. Let X denote the space of all piecewise smooth functions x : I 7→ Rn with
norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞ and Y denote the space of all piecewise smooth
functions u : I 7→ Rm with norm ‖u‖∞.
In this paper, we consider the following multiobjective variational control prob-
lem:

(CP) Minimize

∫ b

a

f(t, x, ẋ, u, u̇)dt = (

∫ b

a

f1(t, x, ẋ, u, u̇)dt,

∫ b

a

f2(t, x, ẋ, u, u̇)dt, . . . ,

∫ b

a

fp(t, x, ẋ, u, u̇)dt)

subject to

x(a) = γ, x(b) = δ,

g(t, x, ẋ, u, u̇) ≦ 0, t ∈ I, (1)

h(t, x, ẋ, u, u̇) = 0, t ∈ I. (2)

We denote the set of all feasible solutions to (CP) by X◦, i.e.,

X◦ = {(x, u) ∈ (X,Y ) : x(a) = γ, x(b) = δ, g(t, x, ẋ, u, u̇) ≦ 0, h(t, x, ẋ, u, u̇) = 0}.

Definition 1 A point (x̄, ū) ∈ X◦ is said to be an efficient solution of (CP),
if there exists no other point (x, u) ∈ X◦ such that

∫ b

a

f(t, x, ẋ, u, u̇)dt ≤

∫ b

a

f(t, x̄, ˙̄x, ū, ˙̄u)dt.
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Definition 2 A feasible point (x̄, ū) ∈ X◦ is said to be a weakly efficient solu-
tion of (CP), if there exists no other point (x, u) ∈ X◦ such that

∫ b

a

f(t, x, ẋ, u, u̇)dt <

∫ b

a

f(t, x̄, ˙̄x, ū, ˙̄u)dt.

Let b◦(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u) ∈ R+, α(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u) ∈ Rp
+\{0}, η(t, x, ẋ, u,

u̇, x̄, ˙̄x, ū, ˙̄u) ∈ Rn, ξ(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u) ∈ Rm and φ◦ : R → R. For nota-
tional convenience, we use b◦ for b◦(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u),
αi for αi(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u), η for η(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u), and ξ for
ξ(t, x, ẋ, u, u̇, x̄, ˙̄x, ū, ˙̄u). Let ψ : I×X×X×Y ×Y 7→ Rp be a vector functional.

Now, we introduce the concept of α-V-univexity as follows.

Definition 3 A vector functional
∫ b

a
ψ(t, x, ẋ, u, u̇)dt is said to be α-V-univex

at (x̄, ū) with respect to the functions b◦, φ◦, α, η and ξ, if for all (x, u) ∈ (X,Y )
and i ∈ P ,

b◦

∫ b

a

φ◦[ψi(t, x, ẋ, u, u̇)−ψi(t, x̄, ˙̄x, ū, ˙̄u)]dt

≧

∫ b

a

αi[(ψix(t, x̄, ˙̄x, ū, ˙̄u)−Dψiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (ψiu(t, x̄, ˙̄x, ū, ˙̄u)−Dψiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt.

Remark 1 If we take b◦ = 1, φ◦(a) = a and Dψiu̇ = 0, then α-V-univex
function reduces to V -invex function given by Nahak and Nanda (2007).

Now, we present the following example which is α-V-univex but not V -invex.

Example 1 Let I = [0, 1] and X = Y = C([0, 1], R+). We define the function
ψ : I ×X ×X × Y × Y 7→ R2 as

ψ(t, x, ẋ, u, u̇) = (−4(x2(t) + x(t) + u(t)),−x2(t)− 2x(t)− 3u(t)).

Further, let φ◦ : R 7→ R be given as φ◦(a) = −2a. Define

α1 =
x̄(t)ū(t) + 1

2
, α2 =

x̄(t)ū(t) + 3

2
,

η =
x2(t) + 3u(t)

4
, ξ =

2x2(t) + 3x(t) + x̄(t)ū(t)

4
,

and take b◦ = 2, x̄(t) = t and ū(t) = t2. Then,
∫ 1

0
ψ(t, x, ẋ, u, u̇)dt is α-V-

univex at (x̄, ū) = (0, 0) but not V -invex for the same functions α, η and ξ as
can be seen below.
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Explanation: Firstly, we have to show that

b◦

∫ 1

0

φ◦[ψ1(t, x, ẋ, u, u̇)− ψ1(t, x̄, ˙̄x, ū, ˙̄u)]dt

≧

∫ 1

0

α1[(ψ1x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1ẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (ψ1u(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1u̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt, at (x̄, ū) = (0, 0).

L.H.S.:

b◦

∫ 1

0

φ◦[ψ1(t, x, ẋ, u, u̇)− ψ1(t, x̄, ˙̄x, ū, ˙̄u)]dt

= 2

∫ 1

0

φ◦[−4(x2(t) + x(t) + u(t)) + 4(x̄2(t) + x̄(t) + ū(t))]dt

= 2

∫ 1

0

(−2)[−4(x2(t) + x(t) + u(t)) + 4(x̄2(t) + x̄(t) + ū(t))]dt

= 16

∫ 1

0

(x2(t) + x(t) + u(t))dt.

R.H.S.:

∫ 1

0

α1[(ψ1x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1ẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+(ψ1u(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1u̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt

=

∫ 1

0

x̄(t)ū(t) + 1

2
[−4(2x̄(t) + 1)

x2(t) + 3u(t)

4
− 4

2x2(t) + 3x(t) + x̄(t)ū(t)

4
]dt

= −

∫ 1

0

x̄(t)ū(t) + 1

2
[(2x̄(t) + 1)(x2(t) + 3u(t)) + 2x2(t) + 3x(t) + x̄(t)ū(t)]dt

= −
3

2

∫ 1

0

(x2(t) + x(t) + u(t))dt.

Therefore, it follows that

b◦

∫ 1

0

φ◦[ψ1(t, x, ẋ, u, u̇)−ψ1(t, x̄, ˙̄x, ū, ˙̄u)]dt

≧

∫ 1

0

α1[(ψ1x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1ẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (ψ1u(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1u̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt, at (x̄, ū) = (0, 0).

Similarly, it can be shown that

b◦

∫ 1

0

φ◦[ψ2(t, x, ẋ, u, u̇)− ψ2(t, x̄, ˙̄x, ū, ˙̄u)]dt
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≧

∫ 1

0

α2[(ψ2x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ2ẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (ψ2u(t, x̄, ˙̄x, ū, ˙̄u)−Dψ2u̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt, at (x̄, ū) = (0, 0).

Therefore,
∫ 1

0
ψ(t, x, ẋ, u, u̇)dt is α-V-univex at (x̄, ū) = (0, 0). Again,

∫ 1

0

[ψ1(t, x, ẋ, u, u̇)− ψ1(t, x̄, ˙̄x, ū, ˙̄u)]dt

=

∫ 1

0

[−4(x2(t) + x(t) + u(t)) + 4(x̄2(t) + x̄(t) + ū(t))]dt

= −4

∫ 1

0

(x2(t) + x(t) + u(t))dt.

Also,
∫ 1

0

α1[(ψ1x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1ẋ(t, x̄, ˙̄x, ū, ˙̄u))η + ψ1u(t, x̄, ˙̄x, ū, ˙̄u)ξ]dt

=

∫ 1

0

x̄(t)ū(t) + 1

2
[−4(2x̄(t) + 1)

x2(t) + 3u(t)

4
− 4

2x2(t) + 3x(t) + x̄(t)ū(t)

4
]dt

= −

∫ 1

0

x̄(t)ū(t) + 1

2
[(2x̄(t) + 1)(x2(t) + 3u(t)) + 2x2(t) + 3x(t) + x̄(t)ū(t)]dt

= −
3

2

∫ 1

0

(x2(t) + x(t) + u(t))dt.

Hence, it follows that
∫ 1

0

[ψ1(t, x, ẋ, u, u̇)−ψ1(t, x̄, ˙̄x, ū, ˙̄u)]dt

6≧

∫ 1

0

α1[(ψ1x(t, x̄, ˙̄x, ū, ˙̄u)−Dψ1ẋ(t, x̄, ˙̄x, ū, ˙̄u))η+ψ1u(t, x̄, ˙̄x, ū, ˙̄u)ξ]dt,

which shows that
∫ 1

0
ψ(t, x, ẋ, u, u̇)dt is not V -invex at (x̄, ū) = (0, 0).

Definition 4 A vector functional
∫ b

a
ψ(t, x, ẋ, u, u̇)dt is said to be (strictly) α-

V-pseudounivex at (x̄, ū) with respect to the functions b◦, φ◦, α, η and ξ, if for
all (x, u) ∈ (X,Y ) and i ∈ P ,

∫ b

a

[(
∑

i∈P

ψix(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

i∈P

ψiu(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt ≧ 0

⇒ b◦

∫ b

a

φ◦[
∑

i∈P

αiψi(t, x, ẋ, u, u̇)−
∑

i∈P

αiψi(t, x̄, ˙̄x, ū, ˙̄u)]dt(>) ≧ 0.
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Definition 5 A vector functional
∫ b

a
ψ(t, x, ẋ, u, u̇)dt is said to be (strictly) α-

V-quasiunivex at (x̄, ū) with respect to the functions b◦, φ◦, α, η and ξ, if for all
(x, u) ∈ (X,Y ) and i ∈ P ,

b◦

∫ b

a

φ◦[
∑

i∈P

αiψi(t, x, ẋ, u, u̇)−
∑

i∈P

αiψi(t, x̄, ˙̄x, ū, ˙̄u)]dt ≦ 0

⇒

∫ b

a

[(
∑

i∈P

ψix(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

i∈P

ψiu(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt(<) ≦ 0.

Definition 6 A vector functional
∫ b

a
ψ(t, x, ẋ, u, u̇)dt is said to be prestrictly

α-V-quasiunivex at (x̄, ū) with respect to the functions b◦, φ◦, α, η and ξ, if for
all (x, u) ∈ (X,Y ) and i ∈ P ,

b◦

∫ b

a

φ◦[
∑

i∈P

αiψi(t, x, ẋ, u, u̇)−
∑

i∈P

αiψi(t, x̄, ˙̄x, ū, ˙̄u)]dt < 0

⇒

∫ b

a

[(
∑

i∈P

ψix(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

i∈P

ψiu(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt ≦ 0.

Remark 2 In the proofs of theorems, sometimes it may be more convenient
to use certain alternative, but equivalent, forms of the above definitions. For

example: a vector functional
∫ b

a
ψ(t, x, ẋ, u, u̇)dt is said to be α-V-pseudounivex

with respect to the functions b◦, φ◦, α, η and ξ, if for all (x, u) ∈ (X,Y ) and
i ∈ P ,

b◦

∫ b

a

φ◦[
∑

i∈P

αiψi(t, x, ẋ, u, u̇)−
∑

i∈P

αiψi(t, x̄, ˙̄x, ū, ˙̄u)]dt < 0

⇒

∫ b

a

[(
∑

i∈P

ψix(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

i∈P

ψiu(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

ψiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt < 0.

Lemma 1 (Kuhn-Tucker type necessary conditions) (Ahmad and Sharma, 2010)
Let (x̄, ū) solve the following single objective problem:
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Minimize

∫ b

a

φ(t, x, ẋ, u, u̇)dt

subject to

x(a) = γ, x(b) = δ,

g(t, x, ẋ, u, u̇) ≦ 0, t ∈ I,

h(t, x, ẋ, u, u̇) = 0, t ∈ I.

If the Frëchet derivative [D − Hx(x̄, ū)] is surjective and the optimal solution
(x̄, ū) is normal, then there exist piecewise smooth functions µ̄ : I 7→ Rm and
ν̄ : I 7→ Rn satisfying the following conditions:

φx(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gjx(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hkx(t, x̄, ˙̄x, ū, ˙̄u)

= D[φẋ(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gjẋ(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hkẋ(t, x̄, ˙̄x, ū, ˙̄u)],

φu(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gju(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hku(t, x̄, ˙̄x, ū, ˙̄u)

= D[φu̇(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gju̇(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hku̇(t, x̄, ˙̄x, ū, ˙̄u)],

∑

j∈M

µ̄j(t)gj(t, x̄, ˙̄x, ū, ˙̄u) = 0,

µ̄(t) ≧ 0, ∀t ∈ I.

Lemma 2 (Chankong and Haimes, 1983) (x̄, ū) is an efficient solution for (CP)
if and only if (x̄, ū) solves

(CP)s Minimize

∫ b

a

fk(t, x, ẋ, u, u̇)dt

subject to

x(a) = γ, x(b) = δ,

∫ b

a

fi(t, x, ẋ, u, u̇)dt ≤

∫ b

a

fi(t, x̄, ˙̄x, ū, ˙̄u)dt, ∀i ∈ P, i 6= k,

g(t, x, ẋ, u, u̇) ≤ 0, t ∈ I,

h(t, x, ẋ, u, u̇) = 0, t ∈ I.

3. Sufficient optimality conditions

In the sequel of the paper,
∫ b

a
λ̄f(t, x̄, ˙̄x, ū, ˙̄u)dt denotes the vector (

∫ b

a
λ̄1f1(t, x̄, ˙̄x,

ū, ˙̄u)dt,
∫ b

a
λ̄2f2(t, x̄, ˙̄x, ū, ˙̄u)dt, . . . ,

∫ b

a
λ̄pfp(t, x̄, ˙̄x, ū, ˙̄u)dt). Similarly,

∫ b

a
µ̄(t)g(t,

x̄, ˙̄x, ū, ˙̄u)dt and
∫ b

a
ν̄(t)h(t, x̄, ˙̄x, ū, ˙̄u)dt can be defined.
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Theorem 1 (Sufficiency) Let (x̄, ū) be a feasible solution to (CP). Suppose that
there exist scalars λ̄i ≧ 0,

∑

i∈P

λ̄i = 1, µ̄j(t) ≧ 0, j ∈M , such that for all t ∈ I,

∑

i∈P

λ̄ifix(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gjx(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hkx(t, x̄, ˙̄x, ū, ˙̄u)

= D[
∑

i∈P

λ̄ifiẋ(t, x̄, ˙̄x, ū, ˙̄u)+

∑

j∈M

µ̄j(t)gjẋ(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hkẋ(t, x̄, ˙̄x, ū, ˙̄u)], (3)

∑

i∈P

λ̄ifiu(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gju(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hku(t, x̄, ˙̄x, ū, ˙̄u)

= D[
∑

i∈P

λ̄ifiu̇(t, x̄, ˙̄x, ū, ˙̄u) +
∑

j∈M

µ̄j(t)gju̇(t, x̄, ˙̄x, ū, ˙̄u)

+
∑

k∈N

ν̄k(t)hku̇(t, x̄, ˙̄x, ū, ˙̄u)], (4)

∫ b

a

∑

j∈M

µ̄jgj(t, x̄, ˙̄x, ū, ˙̄u)dt = 0, (5)

∫ b

a

∑

k∈N

ν̄khk(t, x̄, ˙̄x, ū, ˙̄u)dt = 0. (6)

Further, assume that

(i)
∫ b

a
λ̄f(t, ·, ·, ·, ·)dt is α̂-V-pseudounivex at (x̄, ū) with respect to b◦, φ◦, α̂,

η and ξ;

(ii)
∫ b

a
µ̄(t)g(t, ·, ·, ·, ·)dt is α̃-V-quasiunivex at (x̄, ū) with respect to b1, φ1, α̃,

η and ξ;

(iii)
∫ b

a
ν̄(t)h(t, ·, ·, ·, ·)dt is α∗-V-quasiunivex at (x̄, ū) with respect to b2, φ2, α

∗,
η and ξ;

(iv) φ2(0) = 0 and for any scalar function p(t),
∫ b

a
p(t)dt < 0 ⇒

∫ b

a
φ◦(p(t))dt < 0,

∫ b

a
φ1(p(t))dt > 0 ⇒

∫ b

a
p(t)dt > 0;

(v) b◦ > 0, b1 > 0.

Then (x̄, ū) is a weakly efficient solution of (CP).

Proof. Suppose, contrary to the result, that (x̄, ū) ∈ X◦ is not a weakly efficient
solution to (CP). Then there exists (x, u) ∈ X◦ such that

∫ b

a

f(t, x, ẋ, u, u̇)dt <

∫ b

a

f(t, x̄, ˙̄x, ū, ˙̄u)dt,
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which by λ̄i ≧ 0,
∑

i∈P

λ̄i = 1, α̂i > 0, i ∈ P, gives

∫ b

a

∑

i∈P

α̂iλ̄ifi(t, x, ẋ, u, u̇)dt <

∫ b

a

∑

i∈P

α̂iλ̄ifi(t, x̄, ˙̄x, ū, ˙̄u)dt. (7)

From the assumptions (iv), (v) and inequality (7), it follows that

b◦

∫ b

a

φ◦(
∑

i∈P

α̂iλ̄ifi(t, x, ẋ, u, u̇)−
∑

i∈P

α̂iλ̄ifi(t, x̄, ˙̄x, ū, ˙̄u))dt < 0.

Therefore, by hypothesis (i) and the above inequality, we get

∫ b

a

[(
∑

i∈P

λ̄ifix(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

λ̄ifiẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

i∈P

λ̄ifiu(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

i∈P

λ̄ifiu̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt < 0.

(8)

Now, from the feasibility of (x, u) to (CP), hypothesis (6), and using ν̄ 6= 0, we
have

∫ b

a

∑

k∈N

ν̄k(t)hk(t, x, ẋ, u, u̇)dt =

∫ b

a

∑

k∈N

ν̄k(t)hk(t, x̄, ˙̄x, ū, ˙̄u)dt. (9)

Again, by hypothesis (iii) and (9), we have

∫ b

a

[(
∑

k∈N

ν̄k(t)hkx(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

k∈N

ν̄k(t)hkẋ(t, x̄, ˙̄x, ū, ˙̄u))η

+ (
∑

k∈N

ν̄k(t)hku(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

k∈N

ν̄k(t)hku̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt ≦ 0. (10)

On adding inequalities (8) and (10), we obtain

∫ b

a

[(
∑

i∈P

λ̄ifix(t, x̄, ˙̄x, ū, ˙̄u)+
∑

k∈N

ν̄k(t)hkx(t, x̄, ˙̄x, ū, ˙̄u)−D(
∑

i∈P

λ̄ifiẋ(t, x̄, ˙̄x, ū, ˙̄u)

+
∑

k∈N

ν̄k(t)hkẋ(t, x̄, ˙̄x, ū, ˙̄u)))η+(
∑

i∈P

λ̄ifiu(t, x̄, ˙̄x, ū, ˙̄u)+
∑

k∈N

ν̄k(t)hku(t, x̄, ˙̄x, ū, ˙̄u)

−D(
∑

i∈P

λ̄ifiu̇(t, x̄, ˙̄x, ū, ˙̄u) +
∑

k∈N

ν̄k(t)hku̇(t, x̄, ˙̄x, ū, ˙̄u)))ξ]dt < 0.

The above inequality together with relations (3) and (4), yields

∫ b

a

[(
∑

j∈M

µ̄j(t)gjx(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

j∈M

µ̄j(t)gjẋ(t, x̄, ˙̄x, ū, ˙̄u))η
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+ (
∑

j∈M

µ̄j(t)gju(t, x̄, ˙̄x, ū, ˙̄u)−D
∑

j∈M

µ̄j(t)gju̇(t, x̄, ˙̄x, ū, ˙̄u))ξ]dt > 0,

which along with the hypothesis (ii), gives

b1

∫ b

a

φ1(
∑

j∈M

α̃j µ̄j(t)gj(t, x, ẋ, u, u̇)−
∑

j∈M

α̃j µ̄j(t)gj(t, x̄, ˙̄x, ū, ˙̄u))dt > 0. (11)

Hence, it follows from inequality (11), assumptions (iv), (v) and α̃j > 0, j ∈M ,
that

∫ b

a

(
∑

j∈M

µ̄j(t)gj(t, x, ẋ, u, u̇)−
∑

j∈M

µ̄j(t)gj(t, x̄, ˙̄x, ū, ˙̄u))dt > 0. (12)

On the other hand, from the feasibility of (x, u) to (CP) and (5), we have

∫ b

a

∑

j∈M

µ̄j(t)gj(t, x, ẋ, u, u̇)dt ≦

∫ b

a

∑

j∈M

µ̄j(t)gj(t, x̄, ˙̄x, ū, ˙̄u)dt,

which contradicts (12). Hence (x̄, ū) is a weakly efficient solution to (CP). This
completes the proof. �

The proofs of the following two theorems are similar to that of Theorem 1 and
hence are being omitted.

Theorem 2 Let (x̄, ū) be a feasible solution of (CP). Suppose that there exist
scalars λ̄i ≧ 0,

∑

i∈P

λ̄i = 1, µ̄j(t) ≧ 0, j ∈ M satisfying the conditions (3) to

(6).
Further, assume that

(i)
∫ b

a
λ̄f(t, ·, ·, ·, ·)dt is prestrictly α̂-V-quasiunivex at (x̄, ū) with respect to b◦,

φ◦, α̂, η and ξ;

(ii)
∫ b

a
µ̄(t)g(t, ·, ·, ·, ·)dt is α̃-V-quasiunivex at (x̄, ū) with respect to b1, φ1, α̃,

η and ξ;

(iii)
∫ b

a
ν̄(t)h(t, ·, ·, ·, ·)dt is strictly α∗-V-quasiunivex at (x̄, ū) with respect to b2,

φ2, α
∗, η and ξ;

(iv) φ2(0) = 0 and for any scalar function p(t),
∫ b

a
p(t)dt < 0 ⇒

∫ b

a
φ◦(p(t))dt < 0,

∫ b

a
φ1(p(t))dt > 0 ⇒

∫ b

a
p(t)dt > 0;

(v) b◦ > 0, b1 > 0.
Then (x̄, ū) is a weakly efficient solution of (CP).
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Theorem 3 Let (x̄, ū) be a feasible solution of (CP). Suppose that there exist
scalars λ̄i > 0,

∑

i∈P

λ̄i = 1, µ̄j(t) ≧ 0, j ∈M satisfying the conditions (3) to (6).

Further, assume that

(i)
∫ b

a
λ̄f(t, ·, ·, ·, ·)dt is α̂-V-pseudounivex at (x̄, ū) with respect to b◦, φ◦, α̂,

η and ξ;

(ii)
∫ b

a
µ̄(t)g(t, ·, ·, ·, ·)dt is α̃-V-quasiunivex at (x̄, ū) with respect to b1, φ1, α̃,

η and ξ;

(iii)
∫ b

a
ν̄(t)h(t, ·, ·, ·, ·)dt is α∗-V-quasiunivex at (x̄, ū) with respect to b2, φ2, α

∗,
η and ξ;

(iv) φ2(0) = 0 and for any scalar function p(t),
∫ b

a
p(t)dt < 0 ⇒

∫ b

a
φ◦(p(t))dt < 0,

∫ b

a
φ1(p(t))dt > 0 ⇒

∫ b

a
p(t)dt > 0;

(v) b◦ > 0, b1 > 0.
Then (x̄, ū) is an efficient solution of (CP).

4. Duality

In this section, we present the following Mond-Weir type dual program (Ahmad
and Sharma, 2010) for (CP) and prove some duality results.

(MD) Maximize

∫ b

a

f(t, x◦, ẋ◦, u◦, u̇◦)dt

subject to

x◦(a) = γ, x◦(b) = δ,

∑

i∈P

λifix◦(t, x◦, ẋ◦, u◦, u̇◦) +
∑

j∈M

µj(t)gjx◦(t, x◦, ẋ◦, u◦, u̇◦)

+
∑

k∈N

νk(t)hkx◦(t, x◦, ẋ◦, u◦, u̇◦) = D[
∑

i∈P

λifiẋ◦(t, x◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µj(t)gjẋ◦(t, x◦, ẋ◦, u◦, u̇◦) +
∑

k∈N

νk(t)hkẋ◦(t, x◦, ẋ◦, u◦, u̇◦)], t ∈ I,

(13)

∑

i∈P

λifiu◦(t, x◦, ẋ◦, u◦, u̇◦) +
∑

j∈M

µj(t)gju◦(t, x◦, ẋ◦, u◦, u̇◦)

+
∑

k∈N

νk(t)hku◦(t, x◦, ẋ◦, u◦, u̇◦) = D[
∑

i∈P

λifiu̇◦(t, x◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µj(t)gju̇◦(t, x◦, ẋ◦, u◦, u̇◦) +
∑

k∈N

νk(t)hku̇◦ (t, x◦, ẋ◦, u◦, u̇◦)], t ∈ I,

(14)
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∫ b

a

∑

j∈M

µj(t)gj(t, x
◦, ẋ◦, u◦, u̇◦)dt ≧ 0, (15)

∫ b

a

∑

k∈N

νk(t)hk(t, x
◦, ẋ◦, u◦, u̇◦)dt = 0, (16)

λi ≧ 0,
∑

i∈P

λi = 1, µj(t) ≧ 0, j ∈M, t ∈ I.

Theorem 4 (Weak duality) Let (x, u) and (x◦, u◦, λ, µ(t), ν(t)) be the feasible
solutions to (CP) and (MD), respectively. If

(i)
∫ b

a
λf(t, ·, ·, ·, ·)dt is α̂-V-pseudounivex at (x◦, u◦) with respect to b◦, φ◦, α̂,

η and ξ;

(ii)
∫ b

a
µ(t)g(t, ·, ·, ·, ·)dt is α̃-V-quasiunivex at (x◦, u◦) with respect to b1, φ1, α̃,

η and ξ;

(iii)
∫ b

a
ν(t)h(t, ·, ·, ·, ·)dt is α∗-V-quasiunivex at (x◦, u◦) with respect to b2, φ2, α

∗,
η and ξ;

(iv) φ2(0) = 0 and for any scalar function p(t),
∫ b

a
φ◦(p(t))dt =

∫ b

a
p(t)dt,

∫ b

a
φ1(p(t))dt =

∫ b

a
p(t)dt;

(v) b◦ > 0, b1 > 0.
Then

∫ b

a

f(t, x, ẋ, u, u̇)dt 6<

∫ b

a

f(t, x◦, ẋ◦, u◦, u̇◦)dt.

Proof. We proceed by contradiction. Suppose that

∫ b

a

f(t, x, ẋ, u, u̇)dt <

∫ b

a

f(t, x◦, ẋ◦, u◦, u̇◦)dt,

which, by λi ≧ 0,
∑

i∈P

λi = 1, α̂i > 0, i ∈ P , implies

∫ b

a

∑

i∈P

α̂iλifi(t, x, ẋ, u, u̇)dt <

∫ b

a

∑

i∈P

α̂iλifi(t, x
◦, ẋ◦, u◦, u̇◦)dt.

From the assumptions (iv), (v) and the above inequality, it follows that

b◦

∫ b

a

φ◦(
∑

i∈P

α̂iλifi(t, x, ẋ, u, u̇)−
∑

i∈P

α̂iλifi(t, x
◦, ẋ◦, u◦, u̇◦))dt < 0. (17)

Therefore, by hypothesis (i) and inequality (17), we get

∫ b

a

[(
∑

i∈P

λifix◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

i∈P

λifiẋ◦(t, x◦, ẋ◦, u◦, u̇◦))η
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+(
∑

i∈P

λifiu◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

i∈P

λifiu̇◦(t, x◦, ẋ◦, u◦, u̇◦))ξ]dt < 0. (18)

Now, from the feasibility of (x, u) and (x◦, u◦, λ, µ(t), ν(t)) to (CP) and (MD),
respectively, and ν 6= 0, we have

∫ b

a

∑

k∈N

νk(t)hk(t, x, ẋ, u, u̇)dt =

∫ b

a

∑

k∈N

νk(t)hk(t, x
◦, ẋ◦, u◦, u̇◦)dt. (19)

Again, by hypothesis (iii), (iv) and (19), we have

∫ b

a

[(
∑

k∈N

νk(t)hkx◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

k∈N

νk(t)hkẋ◦(t, x◦, ẋ◦, u◦, u̇◦))η

+ (
∑

k∈N

νk(t)hku◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

k∈N

νk(t)hku̇◦ (t, x◦, ẋ◦, u◦, u̇◦))ξ]dt ≦ 0.

(20)
On adding inequalities (18) and (20), we obtain

∫ b

a

[(
∑

i∈P

λifix◦(t, x◦, ẋ◦, u◦, u̇◦)+
∑

k∈N

νk(t)hkx◦(t, x◦, ẋ◦, u◦, u̇◦)

−D(
∑

i∈P

λifiẋ◦(t, x◦, ẋ◦, u◦, u̇◦)+
∑

k∈N

νk(t)hkẋ◦(t, x◦, ẋ◦, u◦, u̇◦)))η

+(
∑

i∈P

λifiu◦(t, x◦, ẋ◦, u◦, u̇◦)+
∑

k∈N

νk(t)hku◦(t, x◦, ẋ◦, u◦, u̇◦)

−D(
∑

i∈P

λifiu̇◦(t, x◦, ẋ◦, u◦, u̇◦) +
∑

k∈N

νk(t)hku̇◦(t, x◦, ẋ◦, u◦, u̇◦)))ξ]dt < 0.

The above inequality, together with relations (13) and (14), yields

∫ b

a

[(
∑

j∈M

µj(t)gjx◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

j∈M

µj(t)gjẋ◦(t, x◦, ẋ◦, u◦, u̇◦))η

+(
∑

j∈M

µj(t)gju◦(t, x◦, ẋ◦, u◦, u̇◦)−D
∑

j∈M

µj(t)gju̇◦(t, x◦, ẋ◦, u◦, u̇◦))ξ]dt > 0,

which, along with the hypothesis (ii), gives

b1

∫ b

a

φ1(
∑

j∈M

α̃jµj(t)gj(t, x, ẋ, u, u̇)−
∑

j∈M

α̃jµj(t)gj(t, x
◦, ẋ◦, u◦, u̇◦))dt > 0.

(21)
Hence, it follows from inequality (21), assumptions (iv), (v) and α̃j > 0, j ∈M ,
that

∫ b

a

(
∑

j∈M

µj(t)gj(t, x, ẋ, u, u̇)−
∑

j∈M

µj(t)gj(t, x
◦, ẋ◦, u◦, u̇◦))dt > 0. (22)
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On the other hand, from the feasibility of (x, u) and (x◦, u◦, λ, µ(t), ν(t)) to
(CP) and (MD), respectively, we have

∫ b

a

∑

j∈M

µj(t)gj(t, x, ẋ, u, u̇)dt ≦

∫ b

a

∑

j∈M

µj(t)gj(t, x
◦, ẋ◦, u◦, u̇◦)dt,

which contradicts (22). This completes the proof. �

Theorem 5 (Strong duality) Let (x◦, u◦) be an efficient solution to (CP) at
which a constraint qualification is satisfied. Then there exist piecewise smooth
λ ∈ Rp, µ : I 7→ Rm and ν : I 7→ Rn such that (x◦, u◦, λ, µ(t), ν(t)) is feasible
for (MD). Furthermore, if weak duality (Theorem 4) holds between (CP) and
(MD), then (x◦, u◦, λ, µ(t), ν(t)) is an efficient solution of the problem (MD).

Proof. Since (x◦, u◦) is an efficient solution for (CP), then from Lemma 2,
(x◦, u◦) solves (CP)s. As (x

◦, u◦) satisfies the constraint qualification for (CP)s,
it follows from Lemma 1 that there exist piecewise smooth λ̄ ∈ Rp−1, µ̄ : I 7→ Rm

and ν̄ : I 7→ Rn such that for all t ∈ I,

fkx(t, x
◦, ẋ◦, u◦, u̇◦) +

p
∑

i=1
i6=k

λ̄ifix(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µ̄jgjx(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

ν̄khkx(t, x
◦, ẋ◦, u◦, u̇◦)

= D
[

fkẋ(t, x
◦, ẋ◦, u◦, u̇◦) +

p
∑

i=1
i6=k

λ̄ifiẋ(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µ̄jgjẋ(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

ν̄khkẋ(t, x
◦, ẋ◦, u◦, u̇◦)

]

,

fku(t, x
◦, ẋ◦, u◦, u̇◦) +

p
∑

i=1
i6=k

λ̄ifiu(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µ̄jgju(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

ν̄khku(t, x
◦, ẋ◦, u◦, u̇◦)

= D
[

fku̇(t, x
◦, ẋ◦, u◦, u̇◦) +

p
∑

i=1
i6=k

λ̄ifiu̇(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µ̄jgju̇(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

ν̄khku̇(t, x
◦, ẋ◦, u◦, u̇◦)

]

,

∫ b

a

∑

j∈M

µ̄jgj(t, x
◦, ẋ◦, u◦, u̇◦)dt = 0,

µ̄ ≥ 0.
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Let 1
α
= 1 +

p
∑

i=1
i6=k

λ̄i. Then, we get

∑

i∈P

λifix(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

j∈M

µjgjx(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

k∈N

νkhkx(t, x
◦, ẋ◦, u◦, u̇◦) = D

[

∑

i∈P

λifiẋ(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µjgjẋ(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

νkhkẋ(t, x
◦, ẋ◦, u◦, u̇◦)

]

,

∑

i∈P

λifiu(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

j∈M

µjgju(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

k∈N

νkhku(t, x
◦, ẋ◦, u◦, u̇◦) = D

[

∑

i∈P

λifiu̇(t, x
◦, ẋ◦, u◦, u̇◦)

+
∑

j∈M

µjgju̇(t, x
◦, ẋ◦, u◦, u̇◦) +

∑

k∈N

νkhku̇(t, x
◦, ẋ◦, u◦, u̇◦)

]

,

∫ b

a

∑

j∈M

µjgj(t, x
◦, ẋ◦, u◦, u̇◦)dt = 0,

µ ≥ 0,

where λk = α > 0, λi = α
∑

i∈P

λ̄i, i 6= k,
∑

j∈M

µj = α
∑

j∈M

µ̄j ,
∑

k∈N

νk = α
∑

k∈N

ν̄k.

Also we have
∫ b

a

∑

k∈N

νkhk(t, x
◦, ẋ◦, u◦, u̇◦)dt = 0. Therefore (x◦, u◦, λ, µ(t), ν(t))

is a feasible solution for (MD).

Moreover, if we assume that (x◦, u◦, λ, µ(t), ν(t)) is not an efficient solution
to (MD), then there exists a feasible solution (x, u, λ◦, µ◦, ν◦) to (MD) such that

∫ b

a

f(t, x, ẋ, u, u̇)dt ≥

∫ b

a

f(t, x◦, ẋ◦, u◦, u̇◦)dt,

which contradicts the weak duality Theorem 4. Hence, (x◦, u◦, λ, µ(t), ν(t)) is
an efficient solution to (MD). �

5. Conclusion

In this paper, we have considered a multiobjective variational control problem
and its Mond-Weir type dual problem. Using the concept of efficiency, weak and
strong duality theorems have been proved under the assumptions of generalized
α-V-univexity. There is a rich scope to extend these notions to the class of non-
differentiable multiobjective variational problems. This will orient the future
research of the authors.
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