Control and Cybernetics

vol. 43 (2014) No. 3

Minimax theorems for Φ-convex functions with applications*

by

Ewa M. Bednarczuk ${ }^{1}$ and Monika Syga ${ }^{2}$
${ }^{1}$ Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
Ewa.Bednarczuk@ibspan.waw.pl
${ }^{2}$ Warsaw University of Technology, Faculty of Mathematics and Information Science, Koszykowa 75, 00-662 Warsaw, Poland M.Syga@mini.pw.edu.pl

Abstract

We investigate minimax theorems for Φ-convex functions. As an application we provide a formula for the Φ-conjugation of the pointwise maximum of Φ-convex functions.

Keywords: abstract convexity, Φ-convexity, Φ-conjugation, convexlikeness, minimax theorems, joint Φ-convexlikeness, Φ-intersection property

1. Introduction

Let X, Y be nonempty sets and let $f: X \times Y \rightarrow \mathbb{R}$ be a function. Minimax theorems provide sufficient conditions for the equality

$$
\inf _{Y} \sup _{X} f(x, y)=\sup _{X} \inf _{Y} f(x, y)
$$

to hold. The first minimax theorem was given by Neumann (1928). Since then, generalizations of the original theorem have been proved under various conditions.

Following Simons $(1994,1995)$, the existing minimax theorems can be divided into three groups: topological, algebraic and mixed, according to the types of conditions which appear in their formulation.

In topological minimax theorems the crucial role is played by connectedness (e.g. Kindler and Trost, 1989; Ricceri, 1993, 2008; Simons, 1994; Tuy, 1974; Wu, 1959, and the references therein). Algebraic minimax theorems are based on some extensions or generalizations of convexlike properties (see, for example,

[^0]Fan, 1953; Kindler, 1990; Stefanescu, 1985, 2007). Theorems with both algebraic and topological conditions can be found in Kindler (1990), Simons (1990), Terkelsen (1972), and the references therein.

In the present paper we prove minimax theorems for Φ-convex functions.
Φ-convex functions are abstract convex functions. Theory of Φ-convex functions has been developed by Dolecki and Kurcyusz (1978), Pallaschke and Rolewicz (1997), Rubinov (2000), Singer (1997). Φ-convex functions are defined as pointwise suprema of functions from a given class Φ. Such an approach to abstract convexity generalizes the classical fact that each lower semicontinuous convex function is the upper envelope of a certain set of affine functions.

Let Φ be a class of functions $\varphi: X \rightarrow \mathbb{R}$
which is closed under addition of constants, i.e. if $\varphi \in \Phi$, then $\varphi+c \in \Phi$ for any $c \in \mathbb{R}$. Classes Φ with this property were considered in Dolecki and Kurcyusz (1978); Pallaschke and Rolewicz (1997); Rubinov (2000).

Recall that a set $A \subset \Phi$ is called conic if for all $\varphi \in A$ and $k>0$ we have $k \varphi \in A$. A set $K \subset \Phi$ is called additive if for all $\varphi_{1}, \varphi_{2} \in K$ we have $\varphi_{1}+\varphi_{2} \in K$. A set $C \subset \Phi$ is called convex if for all $\varphi_{1}, \varphi_{2} \in C$ and $t \in[0,1]$ we have $t \varphi_{1}+(1-t) \varphi_{2} \in C$.

For any $f, g: X \rightarrow \mathbb{R}$

$$
f \leq g \Leftrightarrow f(x) \leq g(x) \quad \forall x \in X
$$

Definition 1 Let $f: X \rightarrow \mathbb{R}$. The set

$$
\operatorname{supp}(f, \Phi):=\{\varphi \in \Phi: \varphi \leq f\}
$$

is called the support of f with respect to Φ.
In the sequel, we will use the notation $\operatorname{supp}(f)$ if the class Φ is obvious from the context.

Definition 2 (Pallaschke and Rolewicz, 1997; Rubinov, 2000) A function f : $X \rightarrow \mathbb{R}$ is called Φ-convex if

$$
f(x)=\sup \{\varphi(x): \varphi \in \operatorname{supp}(f)\} \quad \forall x \in X
$$

By $H(\Phi)$ we denote the set of all Φ-convex functions $f: X \rightarrow \mathbb{R}$ defined on X. In Section 2, we introduce two concepts of joint convexlikeness, namely, the joint convexlikeness for a given class of functions Φ (Definition 4), and joint Φ-convexlikeness for Φ-convex functions (Definition 5), and we discuss their properties. In Section 3 we prove that joint Φ-convexlikeness implies the Φ-intersection property (Definition 6). Although technically involved, the Φ-intersection property is the main tool in proving our minimax theorems for Φ-convex functions (Theorem 1, Section 4). Furthermore, Theorem 2 of Section 4, which is a corollary of Theorem 1, provides sufficient conditions for the minimax equality expressed in terms of jointly convexlike Φ-convex functions. In Section 5 we give an example of a class Φ satisfying the assumptions of

Theorem 2 and such that the level sets of jointly convexlike Φ-convex functions are not necessarily connected. In Section 6, as an application of the results of Section 4, we provide a formula for Φ-conjugations of pointwise maxima of two Φ-convex functions.

2. Joint Φ-convexlikeness

Starting from the paper by Fan (1953), convexlike properties were used in those minimax theorems which do not refer to linear structures of the underlying spaces.

Let X be a set and Φ be a class of functions $\varphi: X \rightarrow \mathbb{R}$ defined on X. Following Fan (1953) we say that the class Φ is convexlike on X if for any $x_{1}, x_{2} \in X$ and $t \in[0,1]$ there exists $x_{0} \in X$ such that

$$
\varphi\left(x_{0}\right) \leq t \varphi\left(x_{1}\right)+(1-t) \varphi\left(x_{2}\right) \text { for } \quad \varphi \in \Phi
$$

Numerous extensions and generalizations of convexlikeness have been proposed (see, for example, Fan, 1953; Kindler, 1990; Stefanescu, 1985, 2007). We introduce the concept of joint convexlikeness which generalizes the convexlikeness and is shaped for Φ-convex functions.

We start with two underlying concepts.
Definition 3 Let $\varphi_{1}, \varphi_{2}: X \rightarrow \mathbb{R}$ be two real-valued functions defined on X. We say that φ_{1} and φ_{2} are jointly convexlike on X if for every $x_{1}, x_{2} \in X$ and $t \in[0,1]$ there exists $x_{0} \in X$ such that

$$
\begin{align*}
& \max \left\{\varphi_{1}\left(x_{0}\right), \varphi_{2}\left(x_{0}\right)\right\} \leq \\
& \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\} . \tag{1}
\end{align*}
$$

Definition 4 We say that the class Φ is jointly convexlike on X if any two $\varphi_{1}, \varphi_{2} \in \Phi$ are jointly convexlike on X.

If the class Φ consists of convex functions, then Φ is convexlike and jointly convexlike on X. When $\varphi_{1}=\varphi_{2}=\varphi$, the jointly convexlikeness reduces to the condition that for every $x_{1}, x_{2} \in X$ and $t \in[0,1]$ there exists $x_{0} \in X$ such that

$$
\begin{equation*}
\varphi\left(x_{0}\right) \leq t \varphi\left(x_{1}\right)+(1-t) \varphi\left(x_{2}\right) \tag{2}
\end{equation*}
$$

Hence, if Φ is convexlike on X, then Φ is jointly convexlike on X. In numerous important applications, the class Φ is jointly convexlike and not convexlike (see Example 1 below).

Note that functions φ_{1}, φ_{2} are jointly convexlike on X if and only if the family $\Phi=\left\{\varphi_{1}, \varphi_{2}\right\}$ is weakly convexlike as defined in Stefanescu (2007).

The following definition is crucial for proving the minimax theorems of Section 4.

Definition 5 Let $f, g \in H(\Phi)$. We say that f and g are jointly Φ-convexlike on X if every two $\varphi_{1}, \varphi_{2} \in \Phi, \varphi_{1} \in \operatorname{supp}(f), \varphi_{2} \in \operatorname{supp}(g)$ are jointly convexlike on X.

If the class Φ is jointly convexlike on X then any $f, g \in H(\Phi)$ are jointly Φ convexlike on X. An important feature of Definition 5 is that it is expressed in terms of functions $\varphi \in \Phi$ and not in terms of Φ-convex functions f, g directly. In majority of applications, the functions $\varphi \in \Phi$ are of simple structure (e.g. quadratic functions, step functions) and are much easier to handle than generic Φ-convex functions f, g (see Example 1 below).

Below, we give an example of a class Φ, which is jointly convexlike on \mathbb{R} and not convexlike on \mathbb{R}.

Example 1 Let $X=\mathbb{R}$ and $\Phi=\left\{\varphi_{\theta}\right\}$ be a class of functions indexed by a triplet $\theta=\left(u ; c_{1}, c_{2}\right)$, where $u \in \mathbb{R}, c_{1} \geq 0, c_{2} \geq 0$. For a given $\theta=\left(u ; c_{1}, c_{2}\right)$, function $\varphi_{\theta}: \mathbb{R} \rightarrow \mathbb{R}$ is given by the formula

$$
\varphi_{\theta}(x):=\left\{\begin{array}{ll}
c_{1} & x<u \\
c_{1}+c_{2} & x=u \\
c_{2} & x>u
\end{array} .\right.
$$

A function $p: \mathbb{R} \rightarrow[0,+\infty)$ is called a $P-$ function if

$$
p(\lambda x+(1-\lambda) y) \leq p(x)+p(y) \quad \text { for all } \quad \lambda \in(0,1) \quad \text { and } \quad x, y \in \mathbb{R}
$$

P-functions were investigated in Rubinov (2000), Chapter 6. By Proposition 6.16 in Rubinov (2000) P-functions are Φ-convex with respect to our class $\Phi=\left\{\varphi_{\theta}\right\}$.

We show that any $f, g \in H(\Phi)$ are jointly Φ-convexlike on \mathbb{R}. Let $\theta_{1}=$ $\left(u ; c_{1}, c_{2}\right)$ and $\theta_{2}=\left(w ; d_{1}, d_{2}\right)$. Let $\varphi_{1}:=\varphi_{\theta_{1}}$ and $\varphi_{2}:=\varphi_{\theta_{2}}$. Without loss of generality we can assume that $u \leq w$. Then we need to show that for any $x_{1}, x_{2} \in \mathbb{R}$ and $t \in[0,1]$ we have

$$
\begin{align*}
& L:=\inf _{x \in \mathbb{R}} \max \left\{\varphi_{1}(x), \varphi_{2}(x)\right\} \leq \\
& \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\}=: R . \tag{3}
\end{align*}
$$

One can easily show that

$$
\max \left\{\varphi_{1}(x), \varphi_{2}(x)\right\}=\left\{\begin{array}{ll}
\max \left\{c_{1}, d_{1}\right\} & x<u \tag{4}\\
\max \left\{c_{1}+c_{2}, d_{1}\right\} & x=u \\
\max \left\{c_{2}, d_{1}\right\} & x \in(u, w) \\
\max \left\{c_{2}, d_{1}+d_{2}\right\} & x=w \\
\max \left\{c_{2}, d_{2}\right\} & x>w
\end{array} .\right.
$$

Consider the following cases:

1. $c_{1} \leq c_{2}$ and $d_{1} \leq d_{2}$. Then $L=\max \left\{c_{1}, d_{1}\right\}$. By elementary calculations, for every $x_{1}, x_{2} \in \mathbb{R}$ and $t \in[0,1]$ we get $R \geq \max \left\{c_{1}, d_{1}\right\}=L$.
2. $c_{1}>c_{2}$ and $d_{1} \leq d_{2}$. Then $L=\max \left\{c_{2}, d_{1}\right\}$ and for every $x_{1}, x_{2} \in \mathbb{R}$ and $t \in[0,1]$ we get $R \geq \max \left\{c_{2}, d_{1}\right\}=L$.
3. $c_{1} \leq c_{2}$ and $d_{1}>d_{2}$. Then $L=\max \left\{c_{1}, d_{2}\right\}$ and for every $x_{1}, x_{2} \in \mathbb{R}$ and $t \in[0,1]$ we get $R \geq \max \left\{c_{1}, d_{2}\right\}=L$.
4. $c_{1}>c_{2}$ and $d_{1}>d_{2}$. Then $L=\max \left\{c_{2}, d_{2}\right\}$ and for every $x_{1}, x_{2} \in X$ and $t \in[0,1]$ we get $R \geq \max \left\{c_{2}, d_{2}\right\}=L$.
In this way we proved that inequality (1) holds for every $\varphi_{1}, \varphi_{2} \in \Phi, x_{1}, x_{2} \in \mathbb{R}$ and $t \in[0,1]$. From here, taking into account (4), one can easily deduce (3), which means that every $\varphi_{1}, \varphi_{2} \in \Phi$ are jointly convexlike on \mathbb{R}. Hence, Φ is jointly convexlike on \mathbb{R} and, consequently, all $f, g \in H(\Phi)$ are jointly Φ-convexlike on \mathbb{R}.

3. The Φ-intersection property

In the present section we show that any two jointly Φ-convexlike functions f, g : $X \rightarrow \mathbb{R}$ satisfy the Φ-intersection property defined below. The Φ-intersection property is used in Section 4 in the proof of our minimax theorem.

Let X be a set. For any function $f: X \rightarrow \mathbb{R}$ and $\alpha \in \mathbb{R}$ the strict lower level set of f is defined as

$$
Z_{\alpha}(f):=\{x \in X, f(x)<\alpha\}
$$

Definition 6 Let $f, g \in H(\Phi)$. We say that the Φ-intersection property holds for f and g at the level $\alpha \in \mathbb{R}$ if there exist $\varphi_{f} \in \operatorname{supp}(f), \varphi_{g} \in \operatorname{supp}(g)$, satisfying $Z_{\alpha}\left(\varphi_{f}\right) \cap Z_{\alpha}\left(\varphi_{g}\right)=\emptyset$
such that for all

$$
x_{1} \in Z_{\alpha}\left(\varphi_{g}\right), \quad x_{2} \in Z_{\alpha}\left(\varphi_{f}\right)
$$

we have

$$
\begin{equation*}
\left(\alpha-\varphi_{f}\left(x_{2}\right)\right)\left(\alpha-\varphi_{g}\left(x_{1}\right)\right) \leq\left(\alpha-\varphi_{f}\left(x_{1}\right)\right)\left(\alpha-\varphi_{g}\left(x_{2}\right)\right) . \tag{5}
\end{equation*}
$$

The terminology is motivated by the fact that condition (6) ensures that the intersection
$\left\{t \in[0,1]: t \varphi_{f}\left(x_{1}\right)+(1-t) \varphi_{f}\left(x_{2}\right) \geq \alpha\right\} \cap\left\{t \in[0,1]: t \varphi_{g}\left(x_{1}\right)+(1-t) \varphi_{g}\left(x_{2}\right) \geq \alpha\right\}$ is nonempty.

In the proposition below we show that the joint Φ-convexlikeness of f, g on X implies the Φ-intersection property.

Proposition 1 Let $f, g \in H(\Phi)$. If f, g are jointly Φ-convexlike on X, and for every $\alpha \in \mathbb{R}$ there exist $\varphi_{f} \in \operatorname{supp}(f)$ and $\varphi_{g} \in \operatorname{supp}(g)$ such that $Z_{\alpha}\left(\varphi_{f}\right) \cap$ $Z_{\alpha}\left(\varphi_{g}\right)=\emptyset$, then f, g satisfy the Φ-intersection property at any level $\alpha \in \mathbb{R}$.

Proof We proceed by contradiction. Suppose that the Φ-intersection property does not hold for $f, g \in H(\Phi)$ at a certain level $\alpha \in \mathbb{R}$. Without loss of generality we can assume that $\alpha=0$.

For every $\varphi_{f} \in \operatorname{supp}(f), \varphi_{g} \in \operatorname{supp}(g), Z_{0}\left(\varphi_{f}\right) \neq \emptyset, Z_{0}\left(\varphi_{g}\right) \neq \emptyset, Z_{0}\left(\varphi_{f}\right) \cap$ $Z_{0}\left(\varphi_{g}\right)=\emptyset$, there exist $x_{1} \in Z_{0}\left(\varphi_{g}\right), x_{2} \in Z_{0}\left(\varphi_{f}\right)$ such that

$$
\begin{equation*}
\varphi_{f}\left(x_{2}\right) \varphi_{g}\left(x_{1}\right)>\varphi_{f}\left(x_{1}\right) \varphi_{g}\left(x_{2}\right) \tag{6}
\end{equation*}
$$

We show that the joint Φ-convexlikeness of f, g on X together with inequality (6) leads to a contradiction with the fact that $Z_{0}\left(\varphi_{f}\right) \cap Z_{0}\left(\varphi_{g}\right)=\emptyset$.

Note that for $x_{2} \in Z_{0}\left(\varphi_{f}\right)$ we have $\varphi_{f}\left(x_{2}\right)<0$ and $\varphi_{g}\left(x_{2}\right) \geq 0$. Analogously, for $x_{1} \in Z_{0}\left(\varphi_{g}\right)$ we have $\varphi_{g}\left(x_{1}\right)<0$ and $\varphi_{f}\left(x_{1}\right) \geq 0$. Hence, inequality (6) is equivalent to

$$
\begin{equation*}
\frac{\varphi_{f}\left(x_{1}\right)}{\varphi_{f}\left(x_{1}\right)-\varphi_{f}\left(x_{2}\right)}<\frac{\varphi_{g}\left(x_{1}\right)}{\varphi_{g}\left(x_{1}\right)-\varphi_{g}\left(x_{2}\right)} \tag{7}
\end{equation*}
$$

So, there exists $t_{0} \in\left(\frac{\varphi_{f}\left(x_{1}\right)}{\varphi_{f}\left(x_{1}\right)-\varphi_{f}\left(x_{2}\right)}, \frac{\varphi_{g}\left(x_{1}\right)}{\varphi_{g}\left(x_{1}\right)-\varphi_{g}\left(x_{2}\right)}\right)$. Then, (7) implies that

$$
t_{0} \varphi_{f}\left(x_{2}\right)+\left(1-t_{0}\right) \varphi_{f}\left(x_{1}\right)<0
$$

and

$$
t_{0} \varphi_{g}\left(x_{2}\right)+\left(1-t_{0}\right) \varphi_{g}\left(x_{1}\right)<0
$$

From the assumption that f, g are jointly Φ-convexlike on X, we infer that there exists $x_{0} \in X$ such that

$$
\begin{aligned}
& \max \left\{\varphi_{f}\left(x_{0}\right), \varphi_{g}\left(x_{0}\right)\right\} \leq \\
& \max \left\{t_{0} \varphi_{f}\left(x_{2}\right)+\left(1-t_{0}\right) \varphi_{f}\left(x_{1}\right), t_{0} \varphi_{g}\left(x_{2}\right)+\left(1-t_{0}\right) \varphi_{g}\left(x_{1}\right)\right\}<0
\end{aligned}
$$

Hence,

$$
\max \left\{\varphi_{f}\left(x_{0}\right), \varphi_{g}\left(x_{0}\right)\right\}<0
$$

which means that $\varphi_{f}\left(x_{0}\right)<0$ and $\varphi_{g}\left(x_{0}\right)<0$. Hence, $x_{0} \in Z_{0}\left(\varphi_{f}\right) \cap Z_{0}\left(\varphi_{g}\right)$ which is in contradiction to our assumption that $Z_{0}\left(\varphi_{f}\right) \cap Z_{0}\left(\varphi_{g}\right)=\emptyset$.
Proposition 2 If class Φ consists of convex functions, and for every $\alpha \in \mathbb{R}$ there exist $\varphi_{f} \in \operatorname{supp}(f)$ and $\varphi_{g} \in \operatorname{supp}(g)$ such that $Z_{\alpha}\left(\varphi_{f}\right) \cap Z_{\alpha}\left(\varphi_{g}\right)=\emptyset$ then any $f, g \in H(\Phi)$ satisfy the Φ-intersection property at any level $\alpha \in \mathbb{R}$.

Proof We noted above that if the class Φ consists of convex functions, then any Φ-convex f, g are jointly Φ-convexlike on X. Hence, by Proposition 1 we get the conclusion.

4. Main results

Let X and Y be given sets and let $a: Y \times X \rightarrow \mathbb{R}$ be a function.
We use the following notation:

$$
a_{*}:=\sup _{y \in Y} \inf _{x \in X} a(y, x), \quad a^{*}:=\inf _{x \in X} \sup _{y \in Y} a(y, x),
$$

for every subset $C \subset Y$ and for every $x \in X$ and $y \in Y$ we write

$$
\begin{aligned}
X_{\alpha}(y):= & \{x \in X: a(y, x) \leq \alpha\}, \quad Y_{\alpha}^{C}(x):=\{y \in C: a(y, x) \geq \alpha\} \\
& Y_{\alpha}^{C}(B):=\bigcap\left\{Y_{\alpha}^{C}(x): x \in B\right\}, \quad \emptyset \neq B \subset X,
\end{aligned}
$$

for any $y_{1}, y_{2} \in Y$ we write

$$
\operatorname{supp}_{1}:=\operatorname{supp}\left(a\left(y_{1}, \cdot\right)\right), \quad \operatorname{supp}_{2}:=\operatorname{supp}\left(a\left(y_{2}, \cdot\right)\right), \quad Z_{0}(\varphi):=Z(\varphi)
$$

for any $x \in X$ we write $Y_{0}^{C}(x):=Y^{C}(x)$. When $C=Y$ we write $Y_{\alpha}^{C}(x):=$ $Y_{\alpha}(x)$.

The proof of our minimax theorem (Theorem 1) is based on the immediate observation that $a_{*}=a^{*}$ if and only if for every $\alpha \in \mathbb{R}$ such that $\alpha<a^{*}$ the set $Y_{\alpha}(X)$ is nonempty.

We start with the following lemma.
Lemma 1 Let X be a set and C be a convex subset of a vector space. Let Φ be a family of functions $\varphi: X \rightarrow \mathbb{R}$. Let $a: C \times X \rightarrow \mathbb{R}, \alpha \in \mathbb{R}$ and $x_{1}, x_{2} \in X$. If
(i) for any $y \in C$ the function $a(y, \cdot): X \rightarrow \mathbb{R}$ is Φ-convex on X,
(ii) for any $y_{1}, y_{2} \in C$ the functions a $\left(y_{1}, \cdot\right)$ and $a\left(y_{2}, \cdot\right)$ have the Φ-intersection property at level $\alpha \in \mathbb{R}$,
(iii) $Y_{\alpha}^{C}\left(x_{1}\right) \neq \emptyset$ and $Y_{\alpha}^{C}\left(x_{2}\right) \neq \emptyset$,
(iv) for any $x \in X$ the function $a(\cdot, x): C \rightarrow \mathbb{R}$ is concave on C,
then $Y_{\alpha}^{C}\left(\left\{x_{1}, x_{2}\right\}\right)$ is nonempty.
Proof Let us recall that the class Φ is assumed to be closed under addition of constants, i.e. function $a(y, \cdot)-\alpha$ is Φ-convex on X for every $y \in Y$. Hence, without loss of generality we can assume that $\alpha=0$ (by replacing $a(y, x)$ with $a(y, x)-\alpha$ if necessary).

By contradiction, suppose that

$$
\begin{equation*}
Y^{C}\left(x_{1}\right) \cap Y^{C}\left(x_{2}\right)=\emptyset . \tag{8}
\end{equation*}
$$

From (iii), there exist $y_{1}, y_{2} \in C, y_{1} \in Y^{C}\left(x_{1}\right)$ and $y_{2} \in Y^{C}\left(x_{2}\right)$. By (8), $y_{1} \notin Y^{C}\left(x_{2}\right)$ which means that $a\left(y_{1}, x_{2}\right)<0$. Then

$$
\begin{equation*}
\forall \varphi_{1} \in \operatorname{supp}_{1} \quad \varphi_{1}\left(x_{2}\right)<0 \tag{9}
\end{equation*}
$$

Again, by (8), $y_{2} \notin Y^{C}\left(x_{1}\right)$ which means that $a\left(y_{2}, x_{1}\right)<0$, and then

$$
\begin{equation*}
\forall \varphi_{2} \in \operatorname{supp}_{2} \quad \varphi_{2}\left(x_{1}\right)<0 \tag{10}
\end{equation*}
$$

Consequently, by (9), $x_{2} \in Z\left(\varphi_{1}\right)$ for any $\varphi_{1} \in \operatorname{supp}_{1}$ and, by (10), $x_{1} \in Z\left(\varphi_{2}\right)$ for any $\varphi_{2} \in \operatorname{supp}_{2}$.

By (ii), the functions $a\left(y_{1}, \cdot\right)$ and $a\left(y_{2}, \cdot\right)$ have the Φ-intersection property. This means that there exist $\varphi_{1} \in \operatorname{supp}_{1}, \varphi_{2} \in \operatorname{supp}_{2}, Z\left(\varphi_{1}\right) \neq \emptyset, Z\left(\varphi_{2}\right) \neq \emptyset$, satisfying

$$
\begin{equation*}
Z\left(\varphi_{1}\right) \cap Z\left(\varphi_{2}\right)=\emptyset \tag{11}
\end{equation*}
$$

such that

$$
\begin{equation*}
x_{1} \in Z\left(\varphi_{2}\right) \wedge x_{2} \in Z\left(\varphi_{1}\right) \Rightarrow \varphi_{1}\left(x_{2}\right) \varphi_{2}\left(x_{1}\right) \leq \varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) \tag{12}
\end{equation*}
$$

From (11), $x_{2} \notin Z\left(\varphi_{2}\right)$ and $x_{1} \notin Z\left(\varphi_{1}\right)$. So, we have the following situation

$$
\begin{align*}
& \varphi_{1}\left(x_{1}\right) \geq 0, \quad \varphi_{1}\left(x_{2}\right)<0 \tag{13}\\
& \text { and } \\
& \varphi_{2}\left(x_{1}\right)<0, \quad \varphi_{2}\left(x_{2}\right) \geq 0
\end{align*}
$$

Now, we show that there exists $\theta_{0} \in[0,1]$ such that

$$
\begin{equation*}
\left(1-\theta_{0}\right) \varphi_{1}\left(x_{1}\right)+\theta_{0} \varphi_{2}\left(x_{1}\right) \geq 0 \text { and }\left(1-\theta_{0}\right) \varphi_{1}\left(x_{2}\right)+\theta_{0} \varphi_{2}\left(x_{2}\right) \geq 0 \tag{14}
\end{equation*}
$$

We start by noting that by (13), there exist $\theta_{1}, \theta_{2} \in[0,1]$ such that

$$
\begin{align*}
& (1-\theta) \varphi_{1}\left(x_{1}\right)+\theta \varphi_{2}\left(x_{1}\right) \geq 0 \text { for } \theta \in\left[0, \theta_{1}\right] \tag{15}\\
& (1-\theta) \varphi_{1}\left(x_{2}\right)+\theta \varphi_{2}\left(x_{2}\right) \geq 0 \text { for } \theta \in\left[\theta_{2}, 1\right] . \tag{16}
\end{align*}
$$

Hence, $\varphi_{1}\left(x_{1}\right)+\theta\left(\varphi_{2}\left(x_{1}\right)-\varphi_{1}\left(x_{1}\right)\right) \geq 0$ and

$$
\begin{equation*}
0 \leq \theta \leq \frac{\varphi_{1}\left(x_{1}\right)}{\varphi_{1}\left(x_{1}\right)-\varphi_{2}\left(x_{1}\right)}=\theta_{1} \leq 1 \tag{17}
\end{equation*}
$$

Moreover, $\varphi_{1}\left(x_{2}\right)+\theta\left(\varphi_{2}\left(x_{2}\right)-\varphi_{1}\left(x_{2}\right)\right) \geq 0$ and

$$
\begin{equation*}
1 \geq \theta \geq \frac{-\varphi_{1}\left(x_{2}\right)}{\varphi_{2}\left(x_{2}\right)-\varphi_{1}\left(x_{2}\right)}=\theta_{2} \geq 0 \tag{18}
\end{equation*}
$$

By (12),

$$
\begin{equation*}
\varphi_{1}\left(x_{2}\right) \varphi_{2}\left(x_{1}\right) \leq \varphi_{1}\left(x_{1}\right) \varphi_{2}\left(x_{2}\right) \tag{19}
\end{equation*}
$$

Equivalently,

$$
\left(-\varphi_{1}\left(x_{2}\right)\right)\left(\varphi_{1}\left(x_{1}\right)-\varphi_{2}\left(x_{1}\right)\right) \leq \varphi_{1}\left(x_{1}\right)\left(\varphi_{2}\left(x_{2}\right)-\varphi_{1}\left(x_{2}\right)\right)
$$

and

$$
\theta_{2}=\frac{-\varphi_{1}\left(x_{2}\right)}{\varphi_{2}\left(x_{2}\right)-\varphi_{1}\left(x_{2}\right)} \leq \frac{\varphi_{1}\left(x_{1}\right)}{\varphi_{1}\left(x_{1}\right)-\varphi_{2}\left(x_{1}\right)}=\theta_{1}
$$

Hence, there exists $0 \leq \theta_{0} \leq 1$ such that (14) holds, which is the required conclusion.

In view of (14) we have

$$
\left(1-\theta_{0}\right) a\left(y_{1}, x_{1}\right)+\theta_{0} a\left(y_{2}, x_{1}\right) \geq 0 \text { and }\left(1-\theta_{0}\right) a\left(y_{1}, x_{2}\right)+\theta_{0} a\left(y_{2}, x_{2}\right) \geq 0
$$

By the concavity of $a(\cdot, x)$, for any $x \in X$ we have

$$
a\left(\left(1-\theta_{0}\right) y_{1}+\theta_{0} y_{2}, x_{1}\right) \geq 0 \text { and } a\left(\left(1-\theta_{0}\right) y_{1}+\theta_{0} y_{2}, x_{2}\right) \geq 0
$$

This shows that $\left(1-\theta_{0}\right) y_{1}+\theta_{0} y_{2} \in Y^{C}\left(x_{1}\right) \cap Y^{C}\left(x_{2}\right)$ contradictory to our assumption that $Y^{C}\left(x_{1}\right) \cap Y^{C}\left(x_{2}\right)=\emptyset$. Hence, for $x_{1}, x_{2} \in X$ we get $Y^{C}\left(x_{1}\right) \cap$ $Y^{C}\left(x_{2}\right) \neq \emptyset$.

Let us recall that a function $f: X \rightarrow \mathbb{R}$ is upper semicontinuous (u.s.c.) at $x_{0} \in X$ if for every $\varepsilon>0$ there exists a neighbourhood U_{0} of x_{0} such that

$$
f(x)<f\left(x_{0}\right)+\varepsilon \text { for } x \in U_{0}
$$

A function f is upper semicontinuous on X if f is upper semicontinuous at each $x_{0} \in X$. Let us recall that for any $\beta \in \mathbb{R}$ the upper level sets of an upper semicontinuous function f,

$$
L_{\beta}:=\{x \in X \mid f(x) \geq \beta\}
$$

are closed in X (see Proposition 1.4, p. 12, Aubin, 1998).
Now, we can present our minimax theorem.
Theorem 1 Let X be a set and Y be a compact and convex subset of a topological vector space. Let Φ be a family of functions $\varphi: X \rightarrow \mathbb{R}$ and $a: Y \times X \rightarrow \mathbb{R}$. If
(i) for any $y \in Y$ the function $a(y, \cdot): X \rightarrow \mathbb{R}$ is Φ-convex on X,
(ii) for any $y_{1}, y_{2} \in Y$ the functions $a\left(y_{1}, \cdot\right)$ and $a\left(y_{2}, \cdot\right)$ have the $\Phi-$ intersection property at any level $\alpha<a^{*}, \alpha \in \mathbb{R}$,
(iii) for any $x \in X$ the function $a(\cdot, x): Y \rightarrow \mathbb{R}$ is concave and upper semicontinuous on Y,
then $a_{*}=a^{*}$.
Proof The proof consists of two steps.
Step 1. We show that for all $k \in \mathbb{N}$ we have
(k) $Y_{\alpha}(B) \neq \emptyset$ for every subset $B \subset X$, where the cardinality $|B|$ of B is k, i.e. $|B|=k$.
The proof proceeds by induction on k. Let $k=1, B=\{x\}, x \in X$, and $\alpha<a^{*}$. Then for every $x \in X$ there exists $y \in Y$ such that $a(y, x)>\alpha$ and $Y_{\alpha}(x)=Y_{\alpha}(B) \neq \emptyset$. Let $k=2$ and $B=\left\{x_{1}, x_{2}\right\}, x_{1}, x_{2} \in X$. From Lemma 1 we have $Y_{\alpha}(B) \neq \emptyset$.

Suppose that (k) holds for some $k \geq 2$. We show that (k) holds for $k+1$. Take any subset $D \subset X$ with $|D|=k+1$ and a subset $E \subset D$ such that $|D-E|=2$. From the inductive assumption we have $Y_{\alpha}(E) \cap Y_{\alpha}(x)=Y_{\alpha}^{C}(x) \neq \emptyset$ for $x \in X$, where $C:=Y_{\alpha}(E)$. Hence, $Y_{\alpha}(D)=Y_{\alpha}(E) \cap Y_{\alpha}(D-E)=Y_{\alpha}^{C}(D-E)$ and, by Lemma 1, we have $Y_{\alpha}(D) \neq \emptyset$.

Step 2. In Step 1 we have shown that the family $\left\{Y_{\alpha}(x), x \in X\right\}$ has the finite intersection property, i.e for every finite set B we have $Y_{\alpha}(B) \neq \emptyset$. By the upper semicontinuity of $a(\cdot, x)$, the sets $Y_{\alpha}(x)$ are closed for every $x \in X$ and $\alpha \in \mathbb{R}$. Since in a compact set every family of closed subsets with the finite intersection property has nonempty intersection (see Theorem III.5, p. 98, Nagata, 1985) we obtain $\bigcap_{x \in X} Y_{\alpha}(x) \neq \emptyset$. Then $a_{*}=a^{*}$.

Theorem 2 Let X, Y and Φ be as in Theorem 1. Let $a: Y \times X \rightarrow \mathbb{R}$. If (i) for any $y \in Y$ the function $a(y, \cdot): X \rightarrow \mathbb{R}$ is Φ-convex on X,
(ii) for any $y_{1}, y_{2} \in Y$ the functions $a\left(y_{1}, \cdot\right)$ and $a\left(y_{2}, \cdot\right)$ are jointly Φ-convexlike on X, and for every $\alpha<\alpha *$ there exist $\varphi_{1} \in$ supp $_{1}$ and $\varphi_{2} \in$ supp $_{2}$ such that $Z_{\alpha}\left(\varphi_{1}\right) \cap Z_{\alpha}\left(\varphi_{2}\right)=\emptyset$,
(iii) for any $x \in X$ the function $a(\cdot, x): Y \rightarrow \mathbb{R}$ is concave and upper semicontinuous on Y,
then $a_{*}=a^{*}$.
Proof Conclusion follows from Proposition 1 and Theorem 1.
With the help of Theorem 2 we recover a classical minimax theorem.
Corollary 1 Let X be a convex subset of a topological vector space and Y be a compact and convex subset of a topological vector space. Let $a: Y \times X \rightarrow \mathbb{R}$. If
(i) for any $y \in Y$ the function $a(y, \cdot): X \rightarrow \mathbb{R}$ is convex and lower semicontinuous on X,
(ii) for any $x \in X$ the function $a(\cdot, x): Y \rightarrow \mathbb{R}$ is concave and upper semicontinuous on Y,
then $a_{*}=a^{*}$.
Proof By Proposition 3.1 of Ekeland and Temam (1976) under our assumption, functions $a(y, \cdot)$ are Φ-convex with the class Φ of all affine functions defined on X. The conclusion follows from Proposition 2 and Theorem 1.

5. Example

In the existing minimax theorems the connectedness of the level sets of the functions $a(\cdot, x), x \in X$ is a crucial assumption (see Kindler and Trost, 1989; Ricceri, 1993, 2008).

Below, we give an example of a class Φ and a function $a(\cdot, \cdot)$, for which Theorem 2 holds and whose level sets are disconnected.

To present our example we introduce the following definition.
Definition 7 A function $f: X \rightarrow \mathbb{R}$ is minored by the set Φ if there exists $\tilde{\varphi} \in \Phi$ such that

$$
\begin{equation*}
f>\tilde{\varphi} \text { i.e. } f(x)>\tilde{\varphi}(x) \text { for all } x \in X \tag{20}
\end{equation*}
$$

A set Φ is a supremal generator of the set Q of functions if every $f \in Q$ is Φ-convex.

Let X be a Hilbert space with the inner product $\langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{R}$. Consider $\Phi_{q}=\left\{\varphi: X \rightarrow \mathbb{R}: \varphi(x)=-a\|x\|^{2}+\langle l, x\rangle-c: x \in X, l \in X, a \geq 0, c \in \mathbb{R}\right\}$.

Proposition 3 (Rubinov, 2000, Proposition 6.3) Let X be a Hilbert space. The set Φ_{q} is a supremal generator of the set of all lower semicontinuous functions, defined on X, minored by Φ_{q}.

Proposition 4 The class Φ_{q} is jointly convexlike on X.
Proof Let $\varphi_{1}, \varphi_{2} \in \Phi_{q}$, i.e.

$$
\varphi_{1}(x)=-a_{1}\|x\|^{2}+\left\langle l_{1}, x\right\rangle-c_{1} \text { and } \varphi_{2}(x)=-a_{2}\|x\|^{2}+\left\langle l_{2}, x\right\rangle-c_{2}
$$

According to Definition 3 we show that for every $x_{1}, x_{2} \in X$ and $t \in[0,1]$ there exists $x_{0} \in X$ such that

$$
\begin{align*}
& \max \left\{\varphi_{1}\left(x_{0}\right), \varphi_{2}\left(x_{0}\right)\right\} \leq \\
& \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\} \tag{21}
\end{align*}
$$

Let $x_{1}, x_{2} \in X$ and $t \in[0,1]$. If $a_{1}=0$ and $a_{2}=0$, it is enough to take $x_{0}=t x_{1}+(1-t) x_{2}$.

Suppose now that $a_{1}>0$. Then, $\lim _{\|x\| \rightarrow+\infty} \varphi_{1}(x)=-\infty$. Consequently, there exists $\delta>0$ such that for every $x \in X$ such that $\|x\|>\delta$ we have

$$
\varphi_{1}(x) \leq \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\} .
$$

Take any $x \in X$ such that $\|x\|>\delta$. The following situations may occur:
(i) $\varphi_{2}(x) \leq \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\}$,
(ii) $\varphi_{2}(x)>\max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\}$.

If (i) holds, then $x_{0}=x$, and the proof is completed. Suppose now that (ii) holds. If $a_{2}>0$, there exists $\delta^{\prime}>0$ such that for all $x \in X$ such that $\|x\|>\delta^{\prime}$ we have

$$
\varphi_{2}(x) \leq \max \left\{t \varphi_{1}\left(x_{1}\right)+(1-t) \varphi_{1}\left(x_{2}\right), t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)\right\} .
$$

Consequently, by taking $x^{\prime} \in X$ such that

$$
\left\|x^{\prime}\right\|>\max \left\{\delta^{\prime}, \delta\right\}
$$

we get the conclusion.
Suppose now that $a_{2}=0$. Since the function φ_{2} is affine, then in the set of all $x^{\prime} \in X$ such that

$$
\varphi_{2}\left(x^{\prime}\right)<t \varphi_{2}\left(x_{1}\right)+(1-t) \varphi_{2}\left(x_{2}\right)
$$

we can find x^{\prime} such that $\left\|x^{\prime}\right\|>\|x\|$. Hence, (21) is satisfied with $x_{0}=x^{\prime}$.

In view of Proposition 4, Theorem 2 for the class Φ_{q} takes the following form:

Theorem 3 Let X be a Hilbert space and Y be a compact and convex subset of a topological vector space. Let $a: Y \times X \rightarrow \mathbb{R}$. If
(i) for any $y \in Y$ the function $a(y, \cdot): X \rightarrow \mathbb{R}$ is lower semicontinuous on X and minored by Φ_{q}, and for any $y_{1}, y_{2} \in Y$ and $\alpha<\alpha *$ there exist $\varphi_{1} \in$ supp $_{1}$ and $\varphi_{2} \in$ supp $_{2}$ such that $Z_{\alpha}\left(\varphi_{1}\right) \cap Z_{\alpha}\left(\varphi_{2}\right)=\emptyset$,
(ii) for any $x \in X$ the function $a(\cdot, x): Y \rightarrow \mathbb{R}$ is concave and upper semicontinuous on Y,
then $a_{*}=a^{*}$.

Proof By Proposition 3, for each $y \in Y$ the function $a(y, \cdot)$ is Φ_{q}-convex. By Proposition 4, for every $y_{1}, y_{2} \in Y$ the functions $a\left(y_{1}, \cdot\right)$ and $a\left(y_{2}, \cdot\right)$ are jointly Φ_{q}-convexlike on X. By Theorem 2, the conclusion follows.

Based on the above discussion we give an example of the function a such that the Theorem 3 holds but there exists $\alpha \in \mathbb{R}$ and $y \in Y$ such that the set $X_{\alpha}(y)$ is not connected.

Example 2 Let $X=\mathbb{R}$ and $Y=[0,2]$, let

$$
\Phi_{q}=\left\{\varphi: X \rightarrow \mathbb{R}: \varphi(x)=-a x^{2}+l x-c: \quad x \in \mathbb{R}, l \in \mathbb{R}, a \geq 0, c \in \mathbb{R}\right\}
$$

Let $a:[0,2] \times \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
a(y, x):=f(x)-y^{2},
$$

where

$$
f(x):=\left\{\begin{array}{cc}
x^{2} & x \leq 1 \\
(x-3)^{2} & x>1
\end{array}\right.
$$

In view of Proposition 4 all the assumptions of Theorem 3 are satisfied, since for all $y \in[0,2]$ the function $a(y, \cdot)$ is lower semicontinuous on \mathbb{R} and

$$
a(y, x)>-x^{2}-5=: \tilde{\varphi}(x) \text { for all } x \in X
$$

where $\tilde{\varphi} \in \Phi_{q}$. Moreover, for all $x \in \mathbb{R}$ the function $a(\cdot, x):[0,2] \rightarrow \mathbb{R}$ is concave and continuous on $[0,2]$. By Theorem 3, $a_{*}=a^{*}$. For $y \in[0,2]$ take any $\alpha \in\left[-y^{2}, 1-y^{2}\right]$. The sets

$$
\begin{aligned}
& X_{\alpha}(y)=\{x \in X: a(y, x) \leq \alpha\}= \\
& {\left[-\sqrt{\alpha+y^{2}} ; \sqrt{\alpha+y^{2}}\right] \cup\left[-\sqrt{\alpha+y^{2}}+3 ; \sqrt{\alpha+y^{2}}+3\right]}
\end{aligned}
$$

are disconnected.

6. Φ-conjugate of pointwise maximum of two functions

Many important facts from convex and nonsmooth analysis were investigated for Φ-convex functions, see e.g., Burachik and Jeyakumar (2005), Burachik and Rubinov (2008), Jeyakumar, Rubinov and Wu (2007).

In the present section we apply Theorem 2 to derive a formula for the Φ-conjugate of a pointwise maximum of two Φ-convex functions. Conjugates of pointwise maxima for proper convex lower semicontinuous functions in normed spaces were investigated e.g. in Bot and Wanka (2008); Fitzpatrick and Simons (2000). We start by recalling the definition of Φ-conjugate function.

Let X be a set. Let $f \in H(\Phi)$.
Definition 8 The function $f^{*}: \Phi \rightarrow \mathbb{R}$, defined as

$$
f^{*}(\varphi):=\sup _{x \in X}\{\varphi(x)-f(x)\},
$$

is called the Fenchel-Moreau Φ-conjugate of f.
The Φ-conjugate has the following properties (see, for example, Proposition 1.2.2 in Rubinov, 2000)
(i) $f^{*}(\varphi) \geq g^{*}(\varphi)$ if and only if $f \leq g$,
(ii) $f^{*}(\varphi+c)=f^{*}(\varphi)+c$ for all $c \in \mathbb{R}$,
(iii) $\left(f^{*}+c\right)(\varphi)=f^{*}(\varphi)-c$ for all $c \in \mathbb{R}$,
(iv) $f(x)+f^{*}(\varphi) \geq \varphi(x)$ (Fenchel-Moreau inequality),
(v) if the class Φ is homogeneous, i.e $\alpha \varphi \in \Phi$ for all $\varphi \in \Phi$ and $\alpha \in \mathbb{R}$, then

$$
(\alpha f)^{*}(\varphi)=\alpha f^{*}\left(\frac{\varphi}{\alpha}\right)
$$

As stated in Proposition 2.2 of Jeyakumar, Rubinov and Wu (2007), if the set Φ is additive, then the set $H(\Phi)$ is additive, and if the set Φ is conic, then the set $H(\Phi)$ is also conic.

Consider the set-valued mapping Supp : $H(\Phi) \rightrightarrows \Phi$, defined as

$$
\operatorname{Supp}(f):=\operatorname{supp}(f, \Phi) \text { for } f \in H(\Phi)
$$

As observed in Proposition 2.3 of Jeyakumar, Rubinov and Wu (2007), if Φ is additive, then the mapping Supp is superadditive, i.e. for any $f, g \in H(\Phi)$ we have

$$
\begin{equation*}
\operatorname{Supp}(f+g) \supset \operatorname{Supp}(f)+\operatorname{Supp}(g), \tag{22}
\end{equation*}
$$

where, for any sets A and $B, A+B$ is the Minkowski sum of A and B. Moreover, if Φ is conic, then $\operatorname{Supp}(\lambda f)=\lambda \operatorname{Supp}(f)$ for $\lambda>0$.

We say that the mapping Supp is additive in $f, g \in H(\Phi)$ if

$$
\operatorname{Supp}(f+g)=\operatorname{Supp}(f)+\operatorname{Supp}(g) .
$$

We say that the mapping Supp is additive if it is additive for every $f, g \in$ $H(\Phi)$. Conditions ensuring that Supp is additive in $f, g \in H(\Phi)$ are discussed in Jeyakumar, Rubinov and Wu (2007).

Definition 9 Let $h, j: \Phi \rightarrow \mathbb{R}$. The infimal convolution $h \oplus j: \Phi \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ of h and j is defined as

$$
h \oplus j(\varphi):=\inf _{\varphi=\varphi_{1}+\varphi_{2}, \varphi_{1}, \varphi_{2} \in \Phi}\left\{h\left(\varphi_{1}\right)+j\left(\varphi_{2}\right)\right\}, \quad \varphi \in \Phi
$$

where the equality $\varphi=\varphi_{1}+\varphi_{2}$ means that $\varphi(x)=\varphi_{1}(x)+\varphi_{2}(x), x \in X$. The infimal convolution is exact provided the infimum is achieved for any $\varphi \in \Phi$.

Theorem 4 (Jeyakumar, Rubinov and Wu, 2007, Theorem 5.1) Let X be a set and let Φ be an additive set of functions $\varphi: X \rightarrow \mathbb{R}$ and let $f, g: X \rightarrow \mathbb{R}$ be Φ-convex functions. Then the following are equivalent:
(i) the set-valued mapping Supp (\cdot) is additive in f, g,
(ii) $(f+g)^{*}(\varphi)=f^{*} \oplus g^{*}(\varphi)$, where the infimal convolution is exact.

We introduce the notation

$$
f \vee g:=\max \{f, g\},
$$

where $\max \{f, g\}(x):=\max \{f(x), g(x)\}$.
Now we are in a position to prove the formula for Φ-conjugate function of a maximum of two Φ-convex functions.

Theorem 5 Let X be a set and let Φ be a convex set of functions $\varphi: X \rightarrow \mathbb{R}$ such that $-\varphi \in \Phi$ if $\varphi \in \Phi$. Let Φ be jointly convexlike (according to Definition 4) and $f, g \in H(\Phi)$. If
(i) the mapping $\operatorname{Supp}(\cdot)$ is additive in f, g,
then

$$
(f \vee g)^{*}(\varphi)=\min _{0 \leq \lambda \leq 1}\left\{(\lambda f)^{*} \oplus((1-\lambda) g)^{*}(\varphi)\right\}
$$

where the infimal convolution is exact.
Proof For any $x \in X$ we have

$$
f \vee g(x)=\max _{0 \leq \lambda \leq 1}\{\lambda f(x)+(1-\lambda) g(x)\}
$$

and consequently

$$
\begin{align*}
(f \vee g)_{L}^{*}(\varphi) & =\sup _{x \in X}\{\varphi(x)-(f \vee g)(x)\} \tag{23}\\
& =\sup _{x \in X}\left\{\varphi(x)-\max _{0 \leq \lambda \leq 1}\{\lambda f(x)+(1-\lambda) g(x)\}\right\} \\
& =\sup _{x \in X} \min _{0 \leq \lambda \leq 1}\{\varphi(x)-\lambda f(x)-(1-\lambda) g(x)\} .
\end{align*}
$$

Let $a(\lambda, x):=\lambda \tilde{f}(x)+(1-\lambda) \tilde{g}(x)$ where $\tilde{f}=f-\varphi$ and $\tilde{g}=g-\varphi$. For the function $a:[0,1] \times X \rightarrow \mathbb{R}$ all the assumptions of Theorem 2 hold. It follows
from the assumptions that the functions $a(\lambda, \cdot)$ are Φ-convex for all $\lambda \in[0,1]$ and $a\left(\lambda_{1}, x\right)$ and $a\left(\lambda_{2}, x\right)$ are jointly Φ-convexlike on X for every $\lambda_{1}, \lambda_{2} \in[0,1]$. The functions $a(\cdot, x)$ are linear and continuous on Y. Therefore, by Theorem 2, the formula (23) takes the form

$$
\begin{align*}
(f \vee g)^{*}(\varphi) & =\sup _{x \in X} \min _{0 \leq \lambda \leq 1}\{\varphi(x)-\lambda f(x)-(1-\lambda) g(x)\} \tag{24}\\
& =-\inf _{x \in X} \max _{0 \leq \lambda \leq 1} a(\lambda, x) \\
& =-\max _{0 \leq \lambda \leq 1} \inf _{x \in X} a(\lambda, x) \\
& =\min _{0 \leq \lambda \leq 1} \sup _{x \in X}\{\varphi(x)-\lambda f(x)-(1-\lambda) g(x)\} \\
& =\min _{0 \leq \lambda \leq 1}(\lambda f+(1-\lambda) g)^{*}(\varphi) .
\end{align*}
$$

By Theorem 4,

$$
(f \vee g)^{*}(\varphi)=\min _{0 \leq \lambda \leq 1}\left\{(\lambda f)^{*} \oplus((1-\lambda) g)^{*}(\varphi)\right\}
$$

were the infimal convolution is exact.

7. Final remarks

Let us note that the proof of Theorem 5 is based on Theorem 2 applied to X being an arbitrary set, $Y:=[0,1]$ and

$$
\tilde{a}(\lambda, x):=\lambda \tilde{f}(x)+(1-\lambda) \tilde{g}(x),
$$

where $\lambda \in[0,1], x \in X, \tilde{f}:=f-\varphi, \tilde{f}:=f-\varphi, f, g: X \rightarrow \mathbb{R}, \varphi \in \Phi$, and $f, g: X \rightarrow \mathbb{R}$ are given Φ-convex functions.

In this case Theorem 1 of Ricceri (1993) takes the following form:
Theorem 6 (Ricceri, 1993) Let X be a topological space. Assume that (h0) for each $\rho \in \mathbb{R}, \lambda \in[0,1]$ the sets

$$
\{x \in X: \tilde{a}(\lambda, x) \leq \rho\}
$$

are connected,
(h1) $\tilde{a}(\lambda, \cdot)$ is lower semicontinuous in X for each $\lambda \in[0,1]$. Then

$$
\sup _{\lambda \in[0,1]} \inf _{x \in X} \tilde{a}(\lambda, x)=\inf _{x \in X} \sup _{\lambda \in[0,1]} \tilde{a}(\lambda, x) .
$$

Consider the family of sets

$$
\mathcal{O}=\{\{x \in X: \lambda \tilde{f}(x)+(1-\lambda) \tilde{g}(x)>\rho\}: \rho \in \mathbb{R}, \lambda \in[0,1]\}
$$

and the topology $\tau_{\mathcal{O}}$ generated by the family \mathcal{O}. Clearly, the topology $\tau_{\mathcal{O}}$ is the weakest topology in which all the sets of the form

$$
\{x \in X: \tilde{a}(\lambda, x) \leq \rho\}, \quad \rho \in \mathbb{R}, \lambda \in[0,1]
$$

are closed. Hence, for each λ the function $\tilde{a}(\lambda, \cdot)$ is lower semicontinuous in the topology $\tau_{\mathcal{O}}$.

In this context the question arises whether the sets

$$
\{x \in X: \tilde{a}(\lambda, x) \leq \rho\}, \quad \rho \in \mathbb{R}, \lambda \in[0,1]
$$

are connected in the topology $\tau_{\mathcal{O}}$. At the moment the question remains open.

References

AUBIN, J.P. (1998) Optima and Equilibria. Springer, New York-BerlinHeidelberg.
BOT_{c}, R.I. and WANKA, G. (2008) The conjugate of the pointwise maximum of two convex functions revisited. J. Glob. Optim. 41, 625-632.
BURACHIK, R.S. and JEYAKUMAR, V. (2005) A new geometric condition for Fenchel's duality in infinite dimensions. Math. Program. 104B, 229-233.
BURACHIK, R. S. and RUBINOV, A. (2008) On abstract convexity and set valued analysis. J. Nonlinear and Convex Analysis 9, 105-123.
DOLECKI, S. and KURCYUSZ, S. (1978) On Φ-convexity in extremal problems. SIAM J. Control and Optimization 16, 277-300.
EKELAND, I. and TEMAM, R. (1976) Convex Analysis and Variational Problems. North-Holland, Amsterdam.
FAN, K. (1953) Minimax theorems. Proc. Nat. Acad. Sci. 39, 42-47.
FITZPATRICK, S.P. and SIMONS, S. (2000) On the pointwise maximum of convex functions. Proc. Am. Math. Soc. 128, 3553-3561.
KINDLER, J. (1990) On a minimax theorem of Terkelsen's. Arch. Math. 55, 573-583.
KINDLER, J. and TROST, R. (1989) Minimax theorems for interval spaces. Act. Mat. Hung. 54, 39-49.
JEYAKUMAR, V., RUBINOV, A.M. and WU, Z.Y. (2007) Generalized Fenchel's conjugation formulas and duality for abstract convex functions. J. Optim. Theory Appl. 132, 441-458.
NAGATA, J.I. (1985) Modern General Topology. North-Holland, Amsterdam.
VON NEUMANN, J. (1928) Zur Theorie der Gesellschaftspiele. Math. Ann. 100, 295-320. For an English translation see: On the theory of games of strategy. Contributions to the theory of games 4, Princeton. Univ. Press (1959), 13-42.
PALLASCHKE, D. and ROLEWICZ, S. (1997) Foundations of Mathematical Optimization. Kluwer Academic, Dordecht.
RICCERI, B. (1993) Some topological mini-max theorems via an alternative principle for multifunctions. Arch. Math. 60, 367-377.
RICCERI, B. (2008) Recent Advances in Minimax Theory and Applications. Pareto Optimality, Game Theory And Equilibria. Springer Optimization and Its Applications 17, 23-52.
ROLEWICZ, S. (2003) Φ-convex functions defined on a metric spaces. J. Math. Sci. 115, 2631-2652.
RUBINOV, A.M. (2000) Abstract Convexity and Global Optimization. Kluwer Academic, Dordrecht.
SIMONS, S. (1972) Maximinimax, minimax and antiminimax theorems and a result of R.C. James. Pacific Journal of Mathematics 40 (3), 709-718.
SIMONS, S. (1990) On Terkelson's minimax theorem. Bull. Inst. Math. Acad. Sinica 18, 35-39.
SIMONS, S. (1994) A flexible minimax theorem. Acta Math. Hungar. 63, 119132.

SIMONS, S. (1995) Minimax theorems and their proofs. In: D.-Z. Du and P. M. Pardalos, eds., Minimax and Applications. Kluwer Academic Publishers, 1-23.
SION, M. (1958) On general minimax theorems. Pac. J. Math. 8, 171-176.
SINGER, I. (1997) Abstract Convex Analysis. Wiley-Interscience, New York.
SOLTAN, V.P. (1984) Introduction to Axiomatic Theory of Convexity (in Russian). Śtiinca, Kishiniev.
STEFANESCU, A. (1985) A general min-max theorem. Optimization 16, 405413.

STEFANESCU, A. (2007) The minimax equality; sufficient and necessary conditions. Acta Math. Sinica, English Series 23, 677-684.
TERKELSEN, F. (1972) Some Minimax Theorems. Math. Scand. 31, 405-413.
TUY, I. (1974) On a general minimax theorem. Soviet Math. Dokl. 15, 16891693.

WU, W.-T. (1959) A remark on the fundamental theorem in the theory of games. Sci. Rec. New Set. 3, 229-233.

[^0]: *Submitted: December 2013; Accepted: August 2014

