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Abstract:In this paper we consider some classes of abstract dis-
continuous games, for which the games possessing essential Berge
equilibrium are the generic case. We extend the essential Berge
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1. Introduction

The concept of Berge equilibrium for a non cooperative game with a finite
number of persons goes back to the book of Berge (1957). This equilibrium
means that if each person plays an own strategy at a Berge equilibrium, then
this person obtains the maximum payoff if all the remaining players play their
strategy in the Berge equilibrium. It is worth noticing that the Berge equilibrium
is generally different from the Nash equilibrium (see Nash, 1951), since the Nash
equilibrium is stable with respect to the deviation of any unique player.

The existence of Berge equilibrium has been studied by Abalo and Kostreva
(2004, 2005), Nessah, Larbani and Tazdait (2007), and Larbani and Nessah
(2008). In their paper, Larbani and Nessah (2008) showed that a Berge equilib-
rium could also be considered as a Nash equilibrium (called Berge-Nash equi-
librium) under certain assumptions. Later, Colman et al. (2011) have proven
the existence of Berge equilibrium by establishing a correspondence with Nash
equilibrium. Recently, Musy, Pottier and Tazdait (2012) have established the
existence of Berge equilibrium without using the notion of Nash equilibrium. In
all the previously mentioned works, the authors have assumed that payoffs of
players are continuous.

The most studied solution concept in game theory is the Nash equilibrium.
The problem with the Nash equilibrium is that it cannot be applied in many
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of the real life situations. This occurs, in particular, when there are several
Nash equilibria. The selection problem can appear, which equilibrium to choose
out of the set of the admissible ones. For this purpose, several refinements are
introduced to solve this problem. For instance, the Berge’s strong equilibrium
introduced by Berge (1957) is one of these refinements. This latter equilibrium
verifies stronger stability than the Nash equilibrium (it is stable with respect to
the deviation of all players except one). For more details, see Deghdak (2011).

The Berge equilibrium concept, which is totally different from Berge’s strong
equilibrium, is particularly interesting as a complement to Nash equilibrium in
the case of prisoner’s dilemma (see Colman et al., 2011) and in chicken game
(see Musy, Pottier and Tazdait, 2012).

Among refinements, Yu (1999) has introduced the notion of essential Nash
equilibrium, which means that if two games are “close” then they possess two
Nash equilibria which are also “close”. This requiers a topological structure on
the space of games and issues. Then, because upper semicontinuity of Nash
equilibria correspondence implies lower semicontinuity on the subsets of Baire
category and essential games are by definition equivalent to lower semicontinuity,
Yu (1999) proves via upper semicontinuity that most of these games are essential
in the sense of Baire category.

However, several authors have studied the existence of the Nash equilibrium
and the essential Nash equilibrium for the case, when payoffs are not necessar-
ily continuous (discontinuous games). Let us quote, for example, Reny (1999),
Morgan and Scalso (2007), Scalso (2009, 2013), and Prokopovych (2013). Re-
markable examples of such discontinuous games are constituted by the Bertrand
oligopoly (see Bertrand, 1883) and the Hotelling’s linear city model (see Hotelling,
1929).

The present author has proven in Deghdak (2014) the existence of the Berge
equilibrium and the essential Berge equilibrium in discontinuous games. More
precisely, the paper quoted considers a particular case of general games called
abstract economies (see Borglin and Keiding, 1976); the strategies of players are
represented by the constant correspondences defined from the space of issues into
itself. The payoff functions of players are pseudocontinuous (see Morgan and
Scalso, 2007). The focus of our paper is to extend the previous results to the
context of abstract economies, in which the strategies of players are represented
by feasible correspondences.

Our proof on the existence of Berge equilibrium is similar to the proof of the
existence of Nash equilibrium. We define with slight modification the best reply
correspondence of each player, then by the Kakutani fixed point theorem we
show that the abstract economy possesses a Berge equilibrium. The proof for
the essential Berge equilibrium is inspired by Yu (1999), Deghdak (2011), and
Scalso (2009). First, we establish that the correspondence of Berge equilibria
is upper semicontinuous. Second, we deduce in our setting that most of games
(in the sense of the first class subsets of Baire category) have the essential
Berge equilibrium. The outline of the paper is as follows. In Section 2, we first
introduce the definitions of the Berge equilibrium for games in normal form and
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abstract economy. Then, we recall the existence theorem of Berge equilibrium
for abstract economy proved in Deghdak (2014) by giving a sketch of the proof,
and finally we establish the existence of the essential Berge equilibrium for the
abstract economy. We end our work by giving some concrete applications of the
Berge equilibrium. In Section 3, we give a summary on the problem considered
in our paper.

2. Formulation of the problem

Let us consider the following game in normal form:

G = (I, (Xi, ui)i∈I) (1)

where I = {1, ..., n} is a finite set of players, Xi is a set of strategies of player
i, X =

∏n

i=1 Xi is the set of issues of the game G, and ui: X → R is a payoff
function of player i.

For each player i, we let I\{i} = {1, ..., i− 1, i + 1, ..., n} and we denote by
X−i =

∏

j 6=i Xj. For each x ∈ X , we denote by x−i the element in X−i.
In choosing a strategy, xi ∈ Xi, the aim of each player in the game G is to

maximize this player’s payoff function. Recall thatz ∈ X is a Nash equilibrium
of the game G if for every i ∈ I, for all xi ∈ Xi, ui(z) > ui(xi, z−i). The
following definition is due to Berge (1957).

2.1. Berge equilibrium of a noncooperative game

Definition 1 A Berge equilibrium of the game G is an n-tuple of strategies
z ∈ X such that ∀i ∈ I, ∀y−i ∈ X−i : ui(z) > ui(zi, y−i).

2.2. Berge equilibrium of an abstract economy

We now consider the following generalized game that we call abstract economy
(see Borglin, 1976).

Definition 2 An abstract economy H is described by:

H = (I, (Xi, Fi, ui)i∈I) (2)

where I = { 1, ..., n } is a finite set of players, Xi is a set of strategies of
player i, and if X =

∏n

i=1 Xi, then ui: X → R is a payoff function of player
i, while Fi: X → Xi denotes a feasibility correspondence for the player i, given
the strategies of the other agents. Now, we give an extended version of the
Definition 1 for an abstract game H.

Definition 3 A Berge equilibrium of H is an n-tuple of strategies z such that:

∀i ∈ I, zi ∈ Fi(z) (3)

and

∀i ∈ I, ∀y−i ∈
∏

j∈I\{i}
Fi(z), ui(z) > ui(zi, y−i). (4)
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Condition (3) stipulates that z belong to the set of feasible strategies.

2.3. Best reply correspondence and fixed point of correspondences

Definition 4 We call best reply correspondence for the player i in the game
G, the correspondence Γi: X → X, defined by:

Γi(x) = {y ∈ X : ui(xi, y−i) > ui(xi, t−i) ∀ t−I ∈ X−i} (5)

According to Definition 4 above, if we set for each x ∈ X :

Γ(x) = ∩i∈IΓi(x) (6)

then, using Definition 3, a Berge equilibrium of the game G is a fixed point of
the correspondence Γ, that is, an n-tuple x ∈ Γ(x).

Remark 1. The following definition of the best reply correspondence of player
i for the abstract game H is similar to Definition 4.

Definition 5 We call best reply correspondence for the player i in the game
H, the correspondence Γi: X → X, defined by:

Γi(x) = {y ∈ X : y−i ∈
∏

j∈I\{i}
Fj(x), ui(xi, y−i) >

ui(xi, t−i), ∀y−I ∈
∏

j∈I\{i}
Fj(x)}. (7)

Then the Berge equilibrium of the abstract economy H is a fixed point of the
correspondence Γ(x) = ∩i∈IΓi(x).

2.4. Existence of Berge equilibrium in discontinuous games

In this subsection we prove the existence of Berge equilibrium in the case where
the payoff of each player i is not continuous. More precisely, we consider the class
of pseudocontinuous payoffs (see Morgan and Scalso, 2007). In the following
definitions, we introduce the notion of pseudocontinuity of functions.

Definition 6 Let f be a real valued function defined on a topological vector
space E. The function f is said to be upper pseudocontinuous at x0 if for all
x ∈ E such that f(x0) <f(x) it follows that:

lim
y→x0

sup f(y) < f(x). (8)

The function f is said to be upper pseudocontinuous on E if it is upper pseudo-
continuous at all x0 ∈ E.

Definition 7 Let f be a real valued function defined on a topological vector
space E. The function f is said to be lower pseudocontinuous at x0 if -f is upper
pseudocontinuous at x0 and the function f is said to be lower pseudocontinuous
on E if it is lower pseudocontinuous at all x0 ∈ E.
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Definition 8 Let f be a real valued function defined on a topological vector
space E. The function f is said to be pseudocontinuous on E if it is both upper
and lower pseudocontinuous on E.

Remark 2. Any upper (respectively: lower) semicontinuous function f is upper
(respectively: lower) pseudocontinuous but the converse is not true (see Exam-
ple 4.1, Morgan and Scalso, 2007). Moreover, any pseudocontinuous function
verifies the following better reply secure assumption given in Reny (1999) by
the following definition (see Proposition 4.1, Morgan and Scalso, 2007).

Definition 9 A game G = (I, (Xi, ui)i∈I is better reply secure if for every non
Nash equilibrium x of G and for every vector v such that (x,v) belongs to the
closure of the graph of the vector u = (u1,. . . ,un), there exists a player i with
strategy zi such that ui(zi,y−i) >vi + ε for all yi with a suitable ε > 0.

Pseudocontinuity on payoffs is a sufficient condition, explicit on any data, for
the better reply secure assumption, and it is independent of payoff security
and reciprocal upper semi continuity given in Reny (1999), see Example 4.1 of
Morgan and Scalso (2007).

The following theorem on the existence of the Berge equilibrium in abstract
economy H has been proved in details in Deghdak (2014). For completeness,
we give here a sketch of the proof.

Theorem 1 Assume the following assumptions on the game H:

1. ∀i ∈ I, Xi, is a nonempty, convex and compact subset of a locally convex
topological vector space Ei;

2. ∀i ∈ I, ∀xi ∈ Xi , the function y−i → ui(xi,y−i) is quasi concave on X−i;
3. ∀i ∈ I, the function ui is pseudocontinuous on X;
4. ∀i ∈ I, the correspondence Fi: X → Xi is continuous with nonempty,

convex and compact values;
5. ∀x ∈ X, ∩i∈IΓi(x) 6= ∅.

Then the game H has a Berge equilibrium.

Proof. We prove that the correspondence Γ(x) = ∩i∈IΓi(x) verifies the Kaku-
tani fixed point theorem (see Florenzano, 2003). Indeed, an easy adaptation
of the Berge maximum theorem (see Theorem 3.1, Morgan and Scalso, 2007)
shows that each correspondence Γi has a closed graph. Then, Γ(x) = ∩i∈IΓi(x)
is a correspondence with nonempty, convex values and is upper semicontinuous
(intersection of the correspondences Γi).

2.5. Essential Berge equilibrium in an abstract economy

In this subsection, we assume that each strategy space Ei is a normed space. Let
us consider the games (I, (Fi)

n
i=1,(ui)

n
i=1) parameterized by the payoff profiles

and feasibility strategies correspondences, which satisfy Theorem 1. Let denote
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by V the set of vectors of such games (see Deghdak, 2011) endowed with the
metric ρ : V → R̄:

ρ(v1, v2) =
n
∑

i=1

sup
x∈X

∣

∣u1
i (x)− u2

i (x )|+
n
∑

i=1

sup
x∈X

Hi(F
1
i (x), F

2
i (x))

+

n
∑

i=1

sup
x∈X

Ti(F
1
−i(x), F

2
−i(x)) (9)

where Hi is the Hausdorff distance on the set of subsets of the normed space Ei

and Ti is the Hausdorff distance on the set of the subsets of the normed space
Ei =

∏

j 6=i Ej . Suppose that ρ takes on finite values, then V is a complete
metric space. Now, we define the Berge equilibria correspondence J : V → X ,
where for each v ∈ V , J ⊆ X is the set of Berge equilibria of the game H . Then,
we have the following theorem.

Theorem 2 The Berge equilibria correspondence J is upper semicontiunous
with nonempty and compact values.

Proof. The correspondence J has nonempty values by virtue of Theorem 1.
We prove that the correspondence J is closed. Let (vn, xn) be a sequence of
the graph of J such that (vn, xn) → (v, x) ∈ V ×X . We have limnv

n = v and
limnx

n = x. Proceeding as in Theorem 4 from Deghdak (2011) , we obtain that
∀i ∈ I, xi ∈ Fi(x).

Suppose that x /∈ J(v), then there exists i0 such that:

ui0(xi0 , x−i0) < ui0(xi0 , u
0
−i0

) (10)

where

u0
−i0

∈ F−i0(x). (11)

Since the function ui0 is pseudocontinuous and the subset
∏n

i=1 Fi(x) is con-
nected (as a product of convex sets), then there exist x0, x1 (see Proposition
2.2 in Scalso, 2009) such that:

ui0(xi0 , x−i0) < ui0(x
0
i0
, x0

−i0
) < ui0(x

1
i0
, x1

−i0
) < ui0(xi0 , u

0
−i0

). (12)

Using the pseudocontinuity of ui at the point (xi0 , x−i0) we obtain:

ui0(zi0 , z−i0) < ui0(x
0
i0
, x0

−i0
) < ui0(x

1
i0
, x1

−i0
) < ui0(xi0 , u

0
−i0

) (13)

for all (zi0 , z−i0) in the neighbourhood V (xi0)×V (x−i0) of the point (xi0 , x−i0).

Let V (u0
−i0

) be an open subset of X−i0 such that u0
−i0

∈ F−i0 (x).
Since

V (u0
−i0

) ∩ F−i0(x) 6= ∅ (14)
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and ρ(vn,v) converges to zero, it follows from Theorem 4 in Deghdak (2011)
that:

V (u0
−i0

) ∩ Fn
−i0

(xn) 6= ∅ (15)

and

xn ∈ V (xi0)× V (x−i0 ). (16)

Pick

un
−i0

∈ V (u0
−i0

) ∩ Fn
−i0

(xn). (17)

It is obvious that:

ui0(zi0 , z−i0) + ρ(vn, v) < ui0(x
1
i0
, x1

−i0
) < ui0(xi0 , u

0
−i0

). (18)

Then

un
i0
(xn

i0
, xn

−i0
) < ui0(x

1
i0
, x1

−i0
) < ui0(xi0 , u

0
−i0

). (19)

Once again, from the pseudocontinuity of ui0 at the point (xi0 , u
0
−i0

) and the
Proposition 3.1, given in Scalso (2009), we deduce that:

un
i0
(xn

i0
, xn

−i0
) < un

i0
(xn

i0
, un

−i0
). (20)

The inequality (20) contradicts the fact that xn constitute a sequence of Berge
equilibria.

Since X is compact and J is closed, then J is upper semicontiunous with
compact values.

In the following definition we introduce the notion of the essential equilibrium
(see Yu, 1999).

Definition 10 Let M be a nonempty and closed subset of V and y ∈ M . An
equilibrium x ∈ J(y) is called essential for the game y with respect to M if for
any O ∈ V (x) there exists W ∈ V (y) such that for each y1 ∈ M ∩ W , there
exists x1 ∈ J(y1).

This definition means that if two games are “close”, then they possess, respec-
tively, two equilibria which are also “close” and this fact is equivalent to the
lower semicontinuity of the correspondence J (see Theorem 4.1 in Yu, 1999).

In the following theorem, we establish that most of games (in the sense of
the Baire category) in V possess essential equilibria.

Theorem 3 Let V be the space of games defined in Subsection 2.5, then most
of games in V possess the essential equilibria.

Proof. The proof is similar to those in Deghdak (2011) and Yu (1999). Since
the correspondence J is upper semicontinuous (see Theorem 2), it follows from
Lemma 2.1 in Yu (1999) that J is lower semicontinuous on the first class subsets
of the Baire category. Since the correspondence J is lower semicontinuous, we
deduce that most of games in V are essential in the sense of the Baire category.
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2.6. Applications

In this subsection we present some applications of our results, which illustrate
the potential application of the Berge equilibrium. First, we show by an example
that the Nash and Berge equilibria are perfectly complementary. The Nash
equilibrium reflects the behaviour of players, who act in their own interest, while
the Berge equilibrium reflects the behaviour of players, who act in a mutually
supportive way. Then we consider an application of our results to the oligopoly
markets, as given in Example 4.2 of Nessah and Larbani (2014).

Example 1. In this example, we consider a finite economic game given in
Example 4.2 of Nessah and Larbani (2014), where two firms A and B are consid-
ered, which sell the same product. They have the same strategies, the regular
price (RP) or the cut down price (CP). The payoff function of each firm is given
by the Table 1.

Table 1. Payoffs for the companies from Example 1. RP - regular price, CP -
cut down price.

RP CP
RP (11,11) (7,8)
CP (12,7) (8,8)

In this payoff table firm A is the row player and firm B is the column player.
It is easy to check that the strategies (RP,RP) and (CP,CP) are, respectively,
the Berge and Nash equilibria. It is clear that (RP,RP) is better than (CP,CP),
therefore both firms would do better by moving away from the (CP,CP) strategy.
Numerous examples in this context may be found in the existing literature, as
pointed out in the introduction.

Example 2. Let us consider Example 4.2 of Nessah and Larbani (2014) for
the oligopoly markets (Cournot model) given in the abstract form. First, we
recall the basic model. A single good is produced by n firms, and [0, c] is the
production set of each firm. The cost of the firm i to produce xi units of the
good is denoted by the values of the function ci(xi). All the output is sold at
the single price P determined by the demand and the total output of the firms.
Since

n
∑

i=1

xi and P (
n
∑

i=1

xi)

are, respectively, the total output and the market price, then, the revenue of
each of the firms i is

xiP (
n
∑

i=1

xi)

The payoff of each firm is defined by:

ui(x1, ..., xn) = xiP (

n
∑

i=1

xi)− ci(xi) (21)
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In Nessah and Larbani (2014), the market price is called the inverse demand
function and is denoted by F . The function Fand the cost function ci(xi) are
twice differentiable with, respectively, negative and positive second derivatives.
For this continuous game model, the necessary and sufficient conditions are
given for the existence of Berge equilibrium (see Proposition 4.3 in the reference
quoted).

In order to adapt this application to our context of Berge equilibrium in
discontinuous games, we need some necessary modifications regarding this ex-
ample in order to verify conditions (1)-(5) in Theorem 1 of Subsection 2.4. For
simplicity, we may take n = 2, and identically null cost functions ci(xi) . The
payoff functions of the two players are defined as follows:

ui(xi, x−i) =







li(xi) if xi < x−i

φi(xi) if xi = x−i

mi(xi) if xi > x−i

, (22)

where li(xi) = αxif(xi), φi(xi) = βxif(xi), and mi(xi) = γxif(xi), for i = 1, 2,
such that α, β, γ ∈ R, and f(.) is a function defined to map R into itself.
Because the strategy space is R

2 and the strategy subsets of each player are
[0,c], then condition (1) of Theorem 1 is satisfied. Condition (4) is also verified,
since the game is in normal form. We can impose some conditions on α, β, γ
and f(.) such that conditions (2), (3) and (5) from Theorem 1 are satisfied. For
instance, the function li(x) is positive nondecreasing, and the function φi(x) ∈
co{li(x),mi(x)}, where co{,} denotes the convex hull. Quasi-concavity is then
verified, which implies satisfaction of the condition (2) in Theorem 1. It is
possible to choose accordingly the functions li(xi), φi(xi) and mi(xi) in such a
way as to have the assumptions (3) and (5) also satisfied.

3. Summary

In this paper, we have proved that abstract games having essential Berge equi-
libria are the generic case in the space of discontinuous games. We have used the
weakening of continuity called pseudocontinuity in Morgan and Scalso (2007).
In the setting of games in normal form, Deghdak (2014) has shown that this
hypothesis could be weakened by the better reply assumption from Reny (1999).
However, in the present paper, this assumption could not be relaxed by better
reply in the case of abstract economy (see Theorems 1 and 2). The maximum
theorem of Berge in Morgan and Scalso (2007), the fixed point theorem of Kaku-
tani and the Baire theorem have played the central role in the main results of
the present paper.
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