
Control and Cybernetics

vol. 43 (2014) No. 3

New evaluations of ant colony optimization start nodes∗

by

Stefka Fidanova1, Pencho Marinov1 and Krassimir Atanassov2

1Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences

Acad. G. Bonchev St. bl. 25A, 1113 Sofia, Bulgaria
stefka@parallel.bas.bg, pencho@parallel.bas.bg

2Institute of Biophysics and BioMedical Engineering,
Bulgarian Academy of Sciences

Acad. G. Bonchev St. bl. 105, 1113 Sofia, Bulgaria
krat@bas.bg

Abstract: Ant Colony Optimization (ACO) is a stochastic search
method that mimics the social behavior of real ant colonies, manag-
ing to establish the shortest route to the feeding sources and back.
Such algorithms have been developed to arrive at near-optimal so-
lutions to large-scale optimization problems, for which traditional
mathematical techniques may fail. In this paper, the semi-random
start procedure is applied. A new kind of evaluation of start nodes
of the ants is developed and several starting strategies are prepared
and combined. The idea of semi-random start is related to a better
management of the ants. This new technique is tested on the Multi-
ple Knapsack Problem (MKP). A Comparison among the strategies
applied is presented in terms of quality of the results. A compari-
son is also carried out between the new evaluation and the existing
one. Based on this comparative analysis, the performance of the
algorithm is discussed. The study presents the idea that should be
beneficial to both practitioners and researchers involved in solving
optimization problems.

Keywords: combinatorial optimization, ant algorithms, start
nodes evaluation, semi random start

1. Introduction

Many combinatorial optimization problems are fundamentally hard. This is
the most typical scenario when it comes to realistic and relevant problems in
industry and science. Examples of optimization problems are Traveling Sales-
man Problem (Stutzle and Dorigo, 1999), Vehicle Routing (Zhang et al., 2006),
Minimum Spanning Tree (Reiman and Laumanns, 2004), Multiple Knapsack

∗Submitted: January 2011; Accepted: September 2014

472 S. Fidanova, P. Marinov and K. Atanassov

Problem (Fidanova, 2002), etc. They are NP-hard problems and it is unpracti-
cal to apply exact or traditional numerical methods to them, because they need
huge amounts of computational resources. In order to obtain solutions close to
the optimal ones in reasonable time, metaheuristic methods are used. One of
them is Ant Colony Optimization (ACO) (Dorigo and Gambardella, 1997).

ACO algorithms have been inspired by the real ant behavior. In nature,
ants usually wander randomly, and upon finding food, they return to their nest
while laying down pheromone trails. If other ants find such a path, they are
likely not to keep traveling at random, but to instead follow the trail, returning
and reinforcing it, if they eventually find food. However, as time passes, the
pheromone starts to evaporate. The more time it takes for an ant to travel
down the path and back again, the more time the pheromone has to evaporate
and the path to become less prominent. A shorter path, relative to the others,
will be visited by more ants and thus the pheromone density remains high for
a longer time.

ACO is implemented as a team of intelligent agents, which simulate the
behavior of the ants, walking around the graph representing the problem to
solve, using mechanisms of cooperation and adaptation. ACO algorithm requires
having following definitions (Bonabeau, Dorigo and Theraulaz, 1999; Dorigo and
Stutzle 2004):

• The appropriate representation of the problem, so as to allow the ants to
incrementally update the solutions through the use of probabilistic tran-
sition rules, based on the amount of pheromone in the trail and other
problem specific knowledge. It is also important to enforce a strategy to
construct only valid solutions corresponding to the problem definition;
• A problem-dependent heuristic function, which measures the quality of
components that can be added to the current partial solution;
• A set of rules for pheromone updating, which specifies how to modify the
pheromone value;
• A probabilistic transition rule, based on the value of the heuristic function
and the pheromone value, that is used to iteratively construct a solution.

The problem is represented by a graph and the solutions are represented
by paths in a graph. The method is constructive and does not need the initial
solutions. In every iteration ants begin to create their solutions starting from
random nodes of the graph. Random start is a kind of diversification of the
search. Then, the subsequent nodes are included in the solution by applying
the probabilistic rule called transition probability. At the end of every iteration
the quantity of the pheromone is updated. The main rule is that the elements
of better solutions should receive more pheromone than others and thus become
more desirable in the next iteration. It is a kind of intensification of the search
around good solutions. The pheromone can be deposited on the nodes of the
graph or on the arcs of the graph. The choice between the two is problem
dependent.

The structure of the ACO algorithm is shown by the pseudo-code given in
Fig. 1. The transition probability pi,j , i.e. the one of choosing the node j

New evaluations of ant colony optimization start nodes 473

when the current node is i, is based on the heuristic information ηi,j and the
pheromone trail level τi,j of the move, where i, j = 1, , n:

pi,j =
τai,jη

b
i,j

∑

k∈allowed

τai,kη
b
i,k

. (1)

The higher the value of the pheromone and the heuristic information, the
more profitable it is to select the given move and resume the search. In the
beginning, the initial pheromone level is set to a small positive constant value
τ0; later, the ants update this value after completing the construction stage.
ACO algorithms adapt different criteria to update the pheromone level.

Ant Colony Optimization
Initialize the number of ants;
Initialize the ACO parameters;
while not end-condition do

for k=0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Figure 1. Pseudocode for ACO

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (2)

where ρ models the rate of evaporation of the pheromone, while ∆τi,j is the
newly added pheromone, which is proportional to the quality of the solution.
There exist several variants of ACO algorithms, which differ with respect to
pheromone updating.

In the ACO algorithms, in every iteration the ants start to create their
solutions from a random node of the graph of the problem. It is a kind of
diversification of the search. Our research is focused on semi random start and
its influence on algorithm performance, regardless of the variant of ant algorithm
that is used. With the semi random start we keep the diversification and, on
the other hand, we try to avoid bad starting nodes.

Our novelty is to use the evaluations of start nodes with respect to the quality
of the solution and thus to better manage the search process. On the basis of
the evaluations we offer several starting strategies and their combinations. The
benchmark problem that we use is the Multiple Knapsack Problem (MKP)

474 S. Fidanova, P. Marinov and K. Atanassov

because a lot of real world problems can be represented by it and MKP arises
as a subproblem in many optimization problems.

The rest of the paper is organized as follows: in Section 2 several starting
strategies are proposed. In Section 3 the MKP is introduced. In Section 4
the strategies are applied to MKP and the achieved results are compared and
strategies are classified. At the end some conclusions and directions for future
work are presented.

2. The starting strategies

The known ACO algorithms create a solution starting from a random node.
But for some problems, especially subset problems, it is important, from which
node the search process starts. For example, if an ant starts from a node,
which does not belong to the optimal solution, the probability of constructing
the optimal solution is zero. On the other hand, the random start is a kind
of diversification of the search process, implying that we might need less ants,
which means less computational resources. Therefore, we offer several starting
strategies, by which we keep the random start in some sense, and at the same
time we force the ants to partially avoid bad solutions.

Let the graph of the problem have m nodes. We divide the set of nodes
into N subsets. There are different ways for performing this division. Normally,
the nodes of the graph are randomly enumerated. An example for creating the
node subsets, without loss of generality, is: the node number one is in the first
subset, the node number two is in the second subset, etc. the node number N
is in the N th subset, the node number N + 1 is in the first subset, etc. Thus,
the numbers of nodes in the subsets are almost equal. We introduce evaluation
Dj(i) and Ej(i) of the node subsets, where i ≥ 2 is the number of the current
iteration. Dj(i) shows how good is the jth subset and Ej(i) shows how bad is
the jth subset. Dj(i) and Ej(i) are weight coefficients of the jth node subset
(1 ≤ j ≤ N), which we calculate by the following formulas:

Dj(i) = φ×Dj(i− 1) + (1 − φ)× Fj(i), (3)

Ej(i) = φ× Ej(i− 1) + (1− φ)×Gj(i), (4)

where i ≥ 2 is the current process iteration and for each j (1 ≤ j ≤ N):

Fj(i) =

fj,A
nj

if nj 6= 0

Fj(i− 1) otherwise

, (5)

Gj(i) =

gj,B
nj

if nj 6= 0

Gj(i − 1) otherwise
, (6)

New evaluations of ant colony optimization start nodes 475

fj,A is the number of the solutions among the best A%, gj,B is the number of
the solutions among the worst B%, where A+B ≤ 100, i ≥ 2 and

N
∑

j=1

nj = n, (7)

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants, starting
from the node subset j, n being the total number of ants. Initial values of
the weight coefficients are: Dj(1) = 1 and Ej(1) = 0 (1 ≤ j ≤ N). The
parameter φ, 0 ≤ φ ≤ 1, shows the weight of the information from the previous
iterations and from the last iteration. When φ = 0, only the information from
the last iteration is taken into account. If φ = 0.5, the influence of the previous
iteration is equal to that of the last one. When φ = 1, only the information
from the previous iterations is taken in to account. When φ = 0.25, the weight
of the information from the previous iterations is three times less than the one
from the last iteration. When φ = 0.75, the weight of the information from
previous iterations is three times bigger than the one from the last iteration.
The balance between the weights of the information from previous iterations
and from the last one is important. At the beginning, when the current best
solution is far from the optimal one, some of the node subsets can be evaluated
as good. Therefore, if the value of the parameter φ is too high, the evaluation
can be distorted. If the weight of the last iteration is too high, then information
concerning good and bad solutions from previous iterations is ignored, which
can distort evaluation, too.

We try to use the experience of the ants from previous iterations to choose the
better starting node. Other authors use this experience only by the pheromone,
when the ants construct the solutions (Dorigo and Stutzle, 2004). Let us fix
the threshold E for Ej(i) and D for Dj(i), then we construct several strategies
for choosing the start node for every ant. The threshold E increases at every
iteration with 1/i, where i is the number of the current iteration. We propose
the following starting strategies:

1 If Ej(i)/Dj(i) > E, then the subset j is forbidden for current iteration
and we choose the starting node randomly from {j |j is not forbidden};

2 If Ej(i)/Dj(i) > E, then the subset j is forbidden for current simulation
(for all follow-up iterations) and we choose the starting node randomly
from {j |j is not forbidden};

3 If Ej(i)/Dj(i) > E, then the subset j is forbidden for K1 consecutive
iterations and we choose the starting node randomly from {j |j is not
forbidden};

4 Let r1 ∈ [0.5, 1) be a random number. Let r2 ∈ [0, 1] also be a ran-
dom number. If r2 > r1, we randomly choose a node from the subset
{j |Dj(i) > D}, otherwise we randomly choose a node from the not for-
bidden subsets, where r1 is chosen and fixed at the beginning;

5 Let r1 ∈ [0.5, 1) be a random number. Let r2 ∈ [0, 1] also be a ran-
dom number. If r2 > r1, we randomly choose a node from the subset

476 S. Fidanova, P. Marinov and K. Atanassov

{j |Dj(i) > D}, otherwise we randomly choose a node from the not for-
bidden subsets, where r1 is chosen at the beginning and increases with r3
every iteration.

K1 is a parameter (0 ≤ K1 ≤”number of iterations”). If K1 = 0, then
strategy 3 is equal to the random choice of the start node. If K1 = 1, then
strategy 3 is equal to strategy 1. If K1 =”maximal number of iterations”, then
strategy 3 is equal to strategy 2.

We can use more than one strategy for choosing the start node, but there are
strategies, which can not be combined. We divide the strategies into two sets:
St1 = {strategy1, strategy2, strategy3} and St2 = {strategy4, strategy5}.
The strategies from the set St1 are prohibitive strategies and the strategies from
the set St2 are incentive strategies. The strategies from the same set can not
be used simultaneously. Thus, we can use a strategy from one set or combine
it with a strategy from the other set. Exemplary combinations are (strategy1),
(strategy2; strategy4), (strategy3; strategy5). When we combine strategies
from St1 and St2, we first apply the strategy from St1 and, according to it,
some of the regions (node subsets) become forbidden, and after that we choose
the starting node from the not forbidden subsets, according the strategy from
St2.

3. The Multiple Knapsack Problem

We test the idea for the controlled start on MKP. MKP is a real world prob-
lem and is a representative of the class of subset problems. The MKP has
numerous applications in theory, as well as in practice. It also arises as a sub-
problem in several algorithms for more complex problems and these algorithms
will benefit from any improvement in the field of MKP. The following major
applications can be mentioned: problems in cargo loading; cutting stock; bin-
packing; budget control, and financial management. Sinha and Zoltner (1979)
proposed to use the MKP in fault tolerance problem, and in Diffie and Hellman
(1976) a public cryptography scheme is designed, whose security is funded on
the difficulty of solving the MKP. Martello and Toth (1984) mention that the
two-processor scheduling problem may be solved as an MKP. Other applications
are industrial management, naval and aerospace problems, and computational
complexity theory.

The MKP can be thought of as a resource allocation problem, where there
are m resources (the knapsacks) and n objects, and every object j has a profit
assigned pj . Each resource has its own budget ci (knapsack capacity) and
consumption rij of resource i by object j. The aim is to maximize the sum
of the profits, while working with a limited budget.

New evaluations of ant colony optimization start nodes 477

The MKP can be formulated as follows:

max
∑n

j=1 pjxj

subject to

n
∑

j=1

rijxj ≤ ci i = 1, . . . ,m

xj ∈ {0, 1} j = 1, . . . , n

(8)

xj is 1 if the object j is chosen and 0 otherwise.
This problem hasm constraints, and so MKP is also called them-dimensional

knapsack problem. Let I = {1, . . . ,m} and J = {1, . . . , n}, with ci ≥ 0 for all
i ∈ I. A well-stated MKP assumes that pj > 0 and rij ≤ ci ≤

∑n
k=1 rik for all

i ∈ I and j ∈ J . Note that the [rij]m×n matrix and the [ci]m vector are both
non-negative.

In the MKP one is not interested in solutions giving a particular order.
Therefore, the partial solution is represented by S = {i1, i2, . . . , ij} and the
most recent element incorporated in S, ij , need not be involved in the process
for selecting the next element. Moreover, solutions for ordering problems have a
fixed length as one searches for a permutation of a known number of elements.
Solutions for MKP, however, do not have a fixed length. The graph of the
problem is defined as follows: the nodes correspond to the items; the arcs fully
connect nodes. The fully connected graph means that after object i one can
choose any object j, if there are enough resources and the object j has not been
chosen yet.

Leguizamon and Michalewicz (1999) solve the MKP by applying the ACO al-
gorithm with dynamic heuristic information. Fidanova (2008) compared several
kinds of heuristic information, including dynamic, and found that the ACO al-
gorithm with some of the static heuristic information performs better, than with
the dynamic one. Min Kong (1999) proposed various pheromone intensification
strategies and compared the algorithm performance. All of these algorithms use
random start of the ants in every iteration. Our research is focused on semi ran-
dom start and its influence on algorithm performance, regardless of the variant
of the ant algorithm that is used.

4. Computational results

The computational experience with the ACO algorithm is shown using 10 MKP
instances from the “OR-Library” available at http://people.brunel. ac.uk/
mastjjb/jeb/orlib/, with 100 objects and 10 constraints. To provide a fair
comparison for the here constrained ACO algorithm, a predefined number of
iterations, k = 100, is fixed for all the runs. Thus, we can observe, which
strategy reaches good solutions faster. If the value of k (number of iterations)
is too high, the obtained results will be very close to the optimal solution and
it will be difficult to appreciate the difference between the strategies. We apply

478 S. Fidanova, P. Marinov and K. Atanassov

strategies proposed on MMAS (Stutzle and Hoos, 2000), because it is one of
the best among the ACO approaches. The developed technique has been coded
in C++ language and implemented on a Pentium 4 (2.8 GHz). The ACO
parameters are fixed as follows: ρ = 0.5, a = 1, b = 1, the number of used
ants is 20, A = 30, B = 30, D = 1.5, E = 0.5, K1 = 5, r3 = 0.01. The
values of ACO parameters (ρ, a, b) are from Fidanova (2006) and it was found
experimentally that they are best for MKP. The tests are run with 1, 2, 4, 5
and 10 nodes in the node subsets and values for φ are 0, 0.25, 0.5 and 0.75. For
every experiment, the results are obtained by performing 30 independent runs,
then averaging the fitness values. The computational time, taken by the start
strategies, is negligible with respect to the computational time, which is taken
by solution construction.

Tests with all possible combinations of strategies and with random start (12
combinations), four values for φ and five kinds of node subsets, are run, and
every test is run 30 times. Thus, the total number of runs is 72 000. One can
observe that sometimes all the node subsets become forbidden and the algo-
rithm stops before performing all iterations (strategies 1, 2, 3 and combinations
involving them). So, if all node subsets become forbidden, the algorithm per-
forms several iterations without any strategy, with random start, till some of
the subsets become not forbidden. Then, the algorithm continues by applying
the chosen strategy.

The problem, which arises, is how to compare the solutions obtained with
the use of different strategies and different node-divisions. For this purpose, the
difference (interval) d between the worst and best average result for every prob-
lem is divided into 10 equal segments. If the average result for some strategy,
node division and φ is in the first interval, with borders being the worst average
result and the worst average plus d/10, it gets the score equal to 1. If it is in the
second interval, with borders being the worst average plus d/10 and worst aver-
age plus 2d/10, it gets the score equal to 2 and so on. If it is in the 10th interval,
with borders being the best average minus d/10 and the best average result, it
gets the score equal to 10. Thus, for a test problem, the obtained results for
every strategy, every node division and every φ get the score ranging from 1 to
10. After that, the scores of all the test problems for every strategy, every node
division and φ is summed. So, the score for the strategy/node-division/φ takes
the value between 10 and 100, because there are 10 benchmark problems.

Table 1 shows the scores for the strategies/node-divisions when parameter
φ = 0, which means that only the results from the last iteration are taken
into account in the node-subsets evaluation. The best score is being shown in
bold. We observe that the scores of the ACO algorithm with starting strategies
imply that it outperforms the traditional ACO with completely random start.
Comparing the strategies, we see that the worst scores characterize strategy 2
and its combinations with strategies 4 and 5. In strategy 2, the node-subsets
with high value of evaluation Ej(i) become forbidden for the current simulation.
At the initial iterations of the algorithm only bad solutions start from some
node-subset, and the subset gets forbidden, even though it will still be possible

New evaluations of ant colony optimization start nodes 479

Table 1. Evaluation of strategies and node divisions for φ = 0

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 84 84 87 83 83
strategy 2 33 31 36 53 74
strategy 3 79 86 86 88 86
strategy 4 86 86 86 86 86
strategy 5 86 86 86 86 86
strategy 1-4 83 89 84 81 89
strategy 1-5 83 89 84 81 89
strategy 2-4 33 36 35 53 82
strategy 2-5 33 36 35 63 82
strategy 3-4 69 89 88 87 90
strategy 3-5 69 89 88 87 90

to start good solutions from this node-subset. The best scores characterize the
combinations of strategies 1 and 3 with strategies 4 and 5. This means that it
is better for the node subsets, which are evaluated as bad, to be forbidden for
a fixed number of iterations in order to stimulate ants to start from the other
ones, which seem to be good. The worst scores, with respect of node division,
are obtained when there are 10 nodes in the node-subsets. When there are
too many nodes in the node subset, then it is possible to start good and bad
solutions from this subset and it is difficult to appreciate this subset. The best
score, with respect to the node division, are obtained when there is only one
node in the node subsets.

In Tables 2, 3 and 4 the scores of the strategies/node-divisions for the values
of the parameter φ = 0.25, 0.5 and 0.75 are displayed. We can forward a con-
clusion similar to those formulated for φ = 0. For all values of the parameter
φ the best scores regarding the node division are obtained when there is only
one node in the node-subsets. So, we put in Table 5 the scores of the starting
strategies when the node subsets contain one node, the best score being again
shown in bold.

In Table 5 we observe that the worst scores, regarding the value of the
parameter φ, are obtained when we take into account only the solutions derived
from the last iteration (φ = 0). The scores of the strategies for φ = 0.75 are
slightly better than the scores for φ = 0.25 and φ = 0.5 (with, however, the
scores for φ = 0, 25 being, interestingly, almost equivalent to those for φ =
0, 75). So, we can conclude that the balance between information from previous
iterations and from the last iteration is very important. When comparing the

480 S. Fidanova, P. Marinov and K. Atanassov

Table 2. Evaluation of strategies and node divisions for φ = 0.25

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 83 88 86 90 90
strategy 2 32 31 36 61 81
strategy 3 62 86 84 84 96
strategy 4 86 86 86 86 86
strategy 5 86 86 86 86 86
strategy 1-4 84 91 87 92 96
strategy 1-5 84 91 87 92 96
strategy 2-4 34 33 35 59 85
strategy 2-5 34 33 35 59 85
strategy 3-4 69 83 86 84 97
strategy 3-5 69 83 86 84 97

Table 3. Evaluation of strategies and node divisions for φ = 0.5

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 78 86 88 92 96
strategy 2 34 35 38 51 78
strategy 3 61 86 88 94 97
strategy 4 86 86 86 86 86
strategy 5 86 86 86 86 86
strategy 1-4 79 90 87 94 97
strategy 1-5 79 90 87 94 97
strategy 2-4 35 40 44 56 83
strategy 2-5 35 40 44 56 83
strategy 3-4 68 92 88 92 96
strategy 3-5 68 92 88 92 96

New evaluations of ant colony optimization start nodes 481

Table 4. Evaluation of strategies and node divisions for φ = 0.75

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 71 81 85 89 92
strategy 2 35 55 52 60 87
strategy 3 56 76 88 95 95
strategy 4 86 86 86 86 86
strategy 5 86 86 86 86 86
strategy 1-4 67 83 89 94 95
strategy 1-5 67 83 89 94 95
strategy 2-4 39 47 48 58 85
strategy 2-5 39 47 48 58 85
strategy 3-4 56 81 87 94 97
strategy 3-5 56 81 87 94 97

Table 5. Evaluation of strategies and parameter φ values

φ 0 0.25 0.5 0.75

random 32 32 32 32
strategy 1 83 93 96 92
strategy 2 74 81 78 87
strategy 3 86 96 97 95
strategy 4 86 86 86 86
strategy 5 86 86 86 86
strategy 1-4 89 96 97 95
strategy 1-5 89 96 97 95
strategy 2-4 82 85 83 85
strategy 2-5 82 85 83 85
strategy 3-4 90 97 96 97
strategy 3-5 90 97 96 97

482 S. Fidanova, P. Marinov and K. Atanassov

strategies, we see that the worst scores are obtained when traditional ACO is
applied with random start and with strategy 2, when the subsets stay forbidden
for the current simulation. The best scores are achieved by combining strategy
3 with strategies 4 and 5 (very closely followed by the combinations of strategy
1 with 4 and 5). For a better performance of the ACO algorithm it is advisable
to forbid ”bad” regions for several iterations and to stimulate ants to start the
construction of the solutions from ”good” regions.

We compare the results obtained in this work with the results obtained in
our previous work (Fidanova et al., 2009). In Fidanova et al. (2009) we used
the same starting strategies as in this work, but with other evaluation functions,
namely:

Dj(i) =
i.Dj(i− 1) + Fj(i)

i
, (9)

Ej(i) =
i.Ej(i− 1) +Gj(i)

i
, (10)

where i ≥ 1 is the current process iteration and for each j (1 ≤ j ≤ N):

Fj(i) =

fj,A
nj

if nj 6= 0

Fj(i− 1) otherwise

, (11)

Gj(i) =

gj,B
nj

if nj 6= 0

Gj(i − 1) otherwise
, (12)

and fj,A is the number of solutions among the best A%, while gj,B is the number
of solutions among the worst B%, where A+B ≤ 100, i ≥ 1 and

N
∑

j=1

nj = n,

where nj (1 ≤ j ≤ N) is the number of solutions obtained by ants starting from
the node subset j. Initial values of the weight coefficients are Dj(1) = 1 and
Ej(1) = 0.

We compared the results from Fidanova et al.(2009) with the current results
for φ = 0.75, because it is the best value for φ. We calculated the scores of the
strategies using the best and the worst solutions obtained with the use of both
evaluation methods.

When comparing Tables 6 and 7 we observe that the scores of the evaluation
method from the current work are higher than those from Fidanova et al. (2009)
in most of the cases, except for strategy 2 and its combinations with strategies 4
and 5. The best score in Table 6 is 97, while the best score in Table 7 is 95. We
can conclude that the evaluation method proposed in the current work leads to
better results than the ones obtained in Fidanova et al. (2009).

New evaluations of ant colony optimization start nodes 483

Table 6. Evaluation of strategies and node divisions

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 71 81 85 89 92
strategy 2 35 55 52 60 87
strategy 3 56 76 88 95 95
strategy 4 86 86 86 86 86
strategy 5 86 86 86 86 86
strategy 1-4 67 83 89 94 95
strategy 1-5 67 83 89 94 95
strategy 2-4 39 47 48 58 85
strategy 2-5 39 47 48 58 85
strategy 3-4 56 81 87 94 97
strategy 3-5 56 81 87 94 97

Table 7. Evaluation of strategies and node divisions with the evaluation strate-
gies from Fidanova (2009)

number of nodes 10 5 4 2 1

random 32 32 32 32 32
strategy 1 64 86 83 90 93
strategy 2 63 87 83 91 91
strategy 3 62 89 83 90 88
strategy 4 84 82 84 87 92
strategy 5 85 85 86 90 87
strategy 1-4 68 89 85 93 95
strategy 1-5 62 90 81 92 92
strategy 2-4 65 89 86 90 93
strategy 2-5 59 88 84 92 93
strategy 3-4 66 90 84 94 93
strategy 3-5 61 86 81 94 92

484 S. Fidanova, P. Marinov and K. Atanassov

5. Conclusion

In this paper we address the improvement of the process of ant colony optimiza-
tion method by applying evaluations, combining five start strategies. The start
node of each ant depends on the goodness of the respective region. We focus
on parameter settings, which manage the starting procedure. We investigate
the influence of the parameter φ on algorithm performance. The best solutions
are obtained when ”bad” regions are forbidden for several iterations and the
probability that the ants start from ”good” regions is high. In the future, we
will apply our modification of the ACO algorithm to various classes of problems.
We will investigate the influence of the evaluations and starting strategies on
the obtained results.

Acknowledgment

This work has been partially supported by the Bulgarian National Scientific
Fund under the grants Ultimate/Supreme Parallel Algorithms for Large-Scale
Computational Problems and Modeling of Data Mining Techniques Using Gen-
eralized Nets.

References

BONABEAU E., DORIGO M. and THERAULAZ G. (1999) Swarm Intelli-

gence: From Natural to Artificial Systems. Oxford University Press, New
York.

DIFFIE W. and HELLMAN M.E. (1976) New directions in cryptography.
IEEE Trans Inf. Theory, 22 (6), 644–654.

DORIGO M. and GAMBARDELLA L.M. (1997) Ant Colony System: A Co-
operative Learning Approach to the Traveling Salesman Problem. IEEE

Transactions on Evolutionary Computation 1, 53-66.
DORIGO M. and STUTZLE T. (2004) Ant Colony Optimization. MIT Press.
FIDANOVA S. (2002) Evolutionary Algorithm for Multiple Knapsack Prob-

lem. Int. Conference Parallel Problems Solving from Nature, Real World

Optimization Using Evolutionary Computing, Granada, Spain, University
of Granada.

FIDANOVA S. (2006) Ant colony optimization and multiple knapsack prob-
lem. In: J. Ph. Renard, ed., Handbook of Research on Nature Inspired

Computing for Economics ad Management. Idea Group Inc., 498-509.
FIDANOVA S. (2008) Probabilistic Model of Ant Colony Optimization for

Multiple Knapsack Problem. Large Scale Scientific Computing. Lecture

Notes in Computer Science, 4818, 545-552.
FIDANOVA S., ATANASSOV K., MARINOV P. and PARVATHI R. (2009)

Ant Colony Optimization for Multiple Knapsack Problem with Controlled
Start. Int. Journal on BIOautomation, 13(4), 271-280.

New evaluations of ant colony optimization start nodes 485

KONG M., TIAN P. and KAO Y. (2008) A New Ant Colony Optimization
Algorithm for the Multidimensional Knapsack Problem. J. Computers

and Operational Research, 35(8), 2672–2683.
LEGUIZAMON G. and MICHALEWICZ Z. (1999) A New Version of Ant

System for Subset Problems. In: Proceedings of Congress on Evolutionary

Computation. IEEE Press, 1459–1464.
MARTELLO S. and TOTH P. (1984) A mixture of dynamic programming and

branch-and-bound for the subset-sum problem. Management Science 30,
756–771.

REIMAN M. and LAUMANNS M. (2004) A Hybrid ACO algorithm for the
Capacitate Minimum Spanning Tree Problem. In: Ch. Blum, A. Roli and
M. Sampels, eds., Proceedings of First International Workshop on Hybrid

Metaheuristics, Valencia, Spain, ISBN 3-00-015331-4, 1–10.
SINHA A. and ZOLTNER A.A. (1979) The multiple-choice knapsack problem.

J. Operational Research 27, 503–515.
STUTZLE T. and DORIGO M. (1999) ACO Algorithm for the Traveling Sales-

man Problem. In: K. Miettinen, M. Makela, P. Neittaanmäki, J. Periaux,
eds., Evolutionary Algorithms in Engineering and Computer Science. Wi-
ley, 163–183.

STUTZLE T. and HOOS H.H. (2000) MAX-MIN Ant System. In: M. Dorigo,
T. Stutzle and G. Di Caro, eds., Future Generation Computer Systems,
16. Elsevier, 889–914.

ZHANG T., WANG S., TIAN W. and ZHANG Y. (2006) ACO-VRPTWRV: A
New Algorithm for the Vehicle Routing Problems with Time Windows and
Re-used Vehicles based on Ant Colony Optimization. In: Proc. of Sixth

International Conference on Intelligent Systems Design and Applications,
IEEE Press, 390-395.

