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Abstract: An Active Queue Management (AQM) robust con-
trol strategy for Traffic Control Protocol (TCP) data transfer is
proposed. To this purpose, the TCP behaviour is first approximated
by a second–order model with delayed input obtained from the lin-
earization of an efficient and commonly used nonlinear fluid–based
model. The adopted feedback control structure uses a fractional–
order PI controller. To ensure the desired robustness, the parameter
regions where such a controller guarantees a given modulus margin
(inverse of the H∞ norm of the sensitivity function) are derived. An
example commonly used in the literature is worked out to show that
the suggested graphically–based design technique is simple to ap-
ply while it limits the effects of disturbances and of the unmodelled
dynamics.
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1. Introduction

Transmission Control Protocol (TCP) is one of the core protocols of the internet
protocol suite (Forouzan, 2010). It is used by about 90% of the Internet Protocol
(IP) traffic in the Internet. The IP task is to exchange pieces of information
called datagrams. Due to network congestion, traffic load balancing, or other
unpredictable causes, IP packets can be lost or delivered out of order. TCP
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detects these situations, requests retransmission of lost packets, rearranges out–
of–order packets, and then passes the restored data to the application program,
thus separating the application’s communication from networking details.

Network congestion depends on the limitation of all network resources, such
as router processing time and link throughput. To avoid, at least in part, this
problem, core routers mark, or even drop, TCP packets with the objective
of managing network utilization and queuing delay. This task is called Ac-
tive Queue Management (AQM) (Low, Paganini and Doyle, 2002; Chatranon,
Labrador and Banerjee, 2004). Various AQM algorithms have been proposed
and applied, from the first Random Early Detection (RED) (Floyd and Jacob-
son, 1993; Hollot et al., 2001) method to the more robust and reliable Propor-
tional plus Integral (PI) control that can be run with its default parameters in
most circumstances.

To enable the application to AQM of the control engineering principles,
such as the PI scheme, a suitable dynamic model of the TCP behaviour is
required. An effective TCP model has been developed in Misra, Gong and
Towsley (2000) and adopted in Hollot et al. (2002) to tune the parameters of P
and PI controllers. A similar model for wireless networks has also been used in
Yanping (2011). Simulations using the network simulator ns-2 have confirmed
the usefulness of such a control engineering approach.

The two main sources of difficulties in the analysis of TCP dynamics are the
input and state delay, on the one hand, and the parameter uncertainties and
variations, on the other. To deal with the control of uncertain time–delayed
systems in a proper way, different approaches have been proposed recently.
Particularly interesting in this regard is the geometrical method described in
Klamka and Tańcula (2010, 2012a,b), where the set of uncertain parameter
values ensuring either asymptotic stability or D-stability has been determined
with reference to the popular Random Early Detection (RED) algorithm for
queue management (modelled as a first–order transfer function in the feedback
control channel).

Noninteger–order systems have been considered with increasing interest in
the recent control literature, because many plants can be described more sat-
isfactorily by models of this kind (Chen, Petráš and Xue, 2009; Petráš, 2009)
or because noninteger–order controllers provide a better performance than the
classic integer–order ones (Podlubny, 1999). In fact, it has been shown that
in many instances the fractional–order PID controllers outperform the best
integer–order PID controllers (Luo and Chen, 2009; Chao et al., 2009). In
the following, we consider the situation in which queue management is carried
out using a fractional–order PI controller and the controlled system is described
by a second–order model plus a time delay obtained from the nonlinear model
derived in Misra, Gong and Towsley (2000). A similar approach has recently
been followed with reference to wireless networks in Yanping (2011) using classic
frequency–domain specifications.

Robustness is a fundamental issue in AQM and in noninteger–order control,
too (see. e.g., Quet and Ozbay, 2004). In particular, it is very important to de-
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termine the set of PIλ controllers that satisfy certain stability margins. Among
these margins, the modulus margin (also called H∞ margin because it is the
inverse of the H∞ norm of the sensitivity function) seems to be the most mean-
ingful (Garcia, Karimi and Longchamp, 2004; Krajewski, Lepschy and Viaro,
2004). Determining the controllers that ensure a given modulus margin, how-
ever, is not an easy task even for integer–order systems. Such problem has been
tackled, e.g., in Krajewski and Viaro (2012) for integer–order time-delay plants
and PID controllers using different approaches. Here, we extend the essentially
graphic method from Krajewski and Viaro (2012) to the aforementioned case
of PIλ controllers. The entire stability region in the space of controller param-
eters has already been determined in Hamamci (2007), Ruszewski (2008), and,
for particular classes of fractional–order controllers and time–delay plants, in
Hamamci and Koksal (2010), Rahimian and Tavazoei (2010), where, however,
no indication is given regarding the loci of the constant modulus margin.

The remainder of this paper is organized as follows. In Section 2, the afore-
mentioned TCP fluid–based model is briefly recalled. The considered control
problem is stated in Section 3. The equation of the stability boundary in the
controller parameter plane is derived in Section 4 along the lines followed in
Krajewski and Viaro (2012) for the integer–order case. The loci of constant
modulus margin are determined in Section 5 and plotted using a dedicated
Matlab problem. An example frequently considered in the literature shows the
effectiveness of the adopted approach in Section 6. A few concluding remarks
are made in Section 7.

2. TCP flow model

By ignoring the TCP timeout mechanism, the nonlinear dynamic model of TCP
behaviour developed in Misra, Gong and Towsley (2000) is described by the
following pair of nonlinear differential equations:

Ẇ (t) =
1

R(t)
−

W (t)W (t−R(t))

2R(t−R(t))
p (t−R(t)) (1)

q̇(t) =
W (t)

R(t)
N(t) − C (2)

where:
W = expected TCP window size in packets,
q = expected queue length in packets,

R =
q

C
+ Tp = round–trip time in seconds,

C = link capacity in packets per second,
Tp = propagation delay in seconds,
N = number of TCP sessions (load factor),
p = probability of packet marking or dropping.

The window size W and the queue length q are non–negative and bounded, that
is, W ∈ [0,Wmax], q ∈ [0, qmax], where Wmax and qmax denote the maximum
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window size and buffer capacity, respectively. Obviously, p ∈ [0, 1]. The number
N of sessions and the link capacity C are assumed constant.

The above model has a unique equilibrium point (W0, q0, p0), characterized
by

W0 =
R0C

N
, W 2

0 p0 = 2 , R0 =
q0
C

+ Tp . (3)

By linearizing equations (1)–(2) about this point and taking into account the
considerations from Hollot et al. (2001), the model becomes

˙δW (t) = −
2N

R2
0C

δW (t) −
R0C

2

2N2
δp(t−R0) , (4)

δ̇q(t) =
N

R0
δW (t) −

1

R0
δq(t) , (5)

where δW (t)
.
= W (t) − W0, δq(t)

.
= q(t) − q0, and δp(t)

.
= p(t) − p0. The

deviations δW (t) and δq(t) represent the state variables, whereas δp(t) is the
control variable.

The main task of the AQM algorithm is to relate the queue length q at the
bottleneck router to the marking probability p, and then inform the TCP sender
on the state of congestion. For the adopted model the transfer function between
δp(t) and δq(t) turns out to be:

G(s) =
−
C2

2N
e−sR0

(s +
2N

R2
0C

)(s +
1

R0
)

, (6)

so that the TCP behaviour is locally described by a linear second–order model
with delayed input and poles at −2N/(R2

0C) and −1/R0.
Clearly, the control signal δp(t) should drive the state [δW (t), δq(t)]T of the

linearized model to the origin. The main goals of the control system design are:
(i) to ensure suitable stability margins, (ii) to allow for efficient queueing utiliza-
tion, and (iii) to guarantee robustness against uncertainties and disturbances.

3. Problem statement

Consider a unity–feedback control system and assume that the controlled plant
is described by the transfer function:

G(s) =
n(s)

d(s)
e−Ts , (7)

where: n(s) =
C2

2N
, d(s) = s2 + (

2N

R2
0C

+
1

R0
)s +

2N

R3C
, and T = R0 is a time

delay.
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Assume also that plant is controlled by means of a standard PIλ controller
described by the transfer function:

C(s) = kp +
ki
sλ

, (8)

where λ > 0, and kp, ki are the proportional and integral gain, respectively.
Clearly, this setting encompasses any combination of integer–order time–delay
plant and integer–order or noninteger–order controller.

The problem we refer to is that of finding a controller as in equation (8) in
such a way that the overall unity–feedback control system is stable with a mod-
ulus margin greater than a prescribed value. In the usual case of integer–order
controllers, there are two design parameters, i.e., kp and ki, whereas the afore-
mentioned control problem allows for one more design parameter, i.e., λ, and
this greater flexibility can be exploited in order to achieve a better performance.

4. Stability regions

The Nyquist diagram of the loop function:

L(s) = C(s)G(s) (9)

crosses the unit circle centred at the origin with a phase equal to mϕ−π, where
mϕ is the phase margin, if:

L(ωa) = e(mϕ−π), (10)

where ωa denotes the gain crossover frequency and  denotes the imaginary unit.
Taking into account equations (7) and (8), the interpolation condition, expressed
by equation (10), can be written as

[

kp(ωa)λ + ki
]

n(ωa) = d(ωa)(ωa)λ e(Tωa+mϕ−π). (11)

By decomposing n(ωa) and d(ωa) into their real and imaginary parts according
to

n(ωa) = nr(ωa) +  ni(ωa), d(ωa) = dr(ωa) +  di(ωa), (12)

equation (11) can be split into two equations relating the real and imaginary
parts on both of its sides, leading, after some algebra, to

kp sinλ
π

2
= −A(ωa) sin

(

ωaT +mϕ+λ
π

2

)

+B(ωa) cos
(

ωaT +mϕ+λ
π

2

)

, (13)

ki sinλ
π

2
= ωλ

a

[

A(ωa) sin
(

ωaT + mϕ

)

−B(ωa) cos
(

ωaT + mϕ

)

]

(14)

with

A(ωa) =
dr(ωa)nr(ωa) + di(ωa)ni(ωa)

n2
r(ωa) + n2

r(ωa)
, (15)

B(ωa) =
dr(ωa)ni(ωa) − di(ωa)nr(ωa)

n2
r(ωa) + n2

i (ωa)
, (16)
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which provide the parametric equations (with parameter ωa) of a curve in the
(kp, ki)–plane.

When mϕ = 0, at each point of these curves 1 + L(ωa) = 0, i.e., the char-
acteristic equation 1 + L(s) = 0 of the feedback control system exhibits the
purely imaginary roots ±ωa. Therefore, on the parameter plane (kp, ki), these
curves separate regions characterized by different numbers of right half–plane
(RHP) and left half–plane (LHP) roots of the system characteristic equation,
and some of these regions may correspond to a stable behaviour. This prop-
erty was proved in Krajewski and Viaro (2012) for integer–order systems and
controllers.

For λ = 1 (integer–order PI controller) equations (13) and (14) simplify to

kp = −A(ωa) cos
(

ωaT + mϕ

)

− B(ωa) sin
(

ωaT + mϕ

)

, (17)

ki = ωa

[

A(ωa) sin
(

ωaT + mϕ

)

−B(ωa) cos
(

ωaT + mϕ

)

]

, (18)

which of course coincide with equations (10) and (11) in Krajewski and Viaro
(2012).

The stability boundaries have been determined for the sample network con-
sidered in Hollot et al. (2002), where C = 3750 packets/s (15Mbps), N = 60
and R0 = 0.246 s. In particular, Fig. 1 shows the stability regions for λ =
0.8, 1.0, 1.1, 1.25.

By way of example, the loci described by equations (13) and (14) inside the
stability region for different values of the phase margin mϕ when λ = 1.25, are
shown in Fig. 2.

5. Loci of constant modulus margin

An indicator of system robustness that is more adequate than the phase and
gain margins is the modulus margin defined as:

δ := min
ω

|1 + L(ω)| (19)

which represents the minimal distance of the Nyquist diagram of the loop func-
tion from the critical point −1 + 0 and corresponds to the reciprocal of the
infinity norm of the sensitivity function.

Now, the locus of the parameter points where δ = const is the envelope of
the loci:

|1 + L(ω)| = δ, ∀ω, (20)

which is equivalent to

L(ω) + L(ω) + |L(ω)|2 = δ2 − 1 , (21)

where the overbar denotes complex conjugate.
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Figure 1. Stability regions for different values of the exponent λ in equation
(8) (regions below the curves, corresponding to each value of λ, and above the
horizontal axis) when the plant transfer function is given by equation (6), with
C = 3750 packets/s (15Mbps), N = 60 and R0 = 0.246 s

Simple algebra leads from equation (21) to

(

kpω
λ
)2

+ k2i + 2ki
(

kpω
λ
)

cosλ
π

2
+ 2kpω

2λ
[

A(ω) cosωT + B(ω) sinωT
]

+2kiω
λ
[

A(ω) cos(ωT + λ
π

2
) + B(ω) sin(ωT + λ

π

2
)
]

= ω2λ d2r(ω) + d2i (ω)

n2
r(ω) + n2

i (ω)
(δ2 − 1), (22)

which is the equation of an ellipse in the (kp, ki)–plane, whose centre can be
found using standard procedures of analytic geometry.

The region, where δ > 0.2 inside the stability area for the plant model in
equation (6) with C = 3750 packets/s, N = 60, R0 = 0.246, and λ = 1.25 in
equation (8), is shown in Fig. 3: it is given by the area under the lower envelope
of the family of ellipses.

6. Example

In Hollot et al. (2002), to control the considered plant, the integer–order PI
controller C(s) = kp + ki

s
with kp = 1.822 · 10−5 and ki = 9.64 · 10−6 has

been adopted. It locally stabilizes the equilibrium point corresponding to the
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Figure 2. Loci described by equations (13) and (14) for λ = 1.25 and phase
margin mϕ = 0, π

8 ,
π
4 ,

π
3 , when the plant transfer function is given by equation

(6) with C = 3750 packets/s (15Mbps), N = 60 and R0 = 0.246 s

parameter values that characterize the nominal plant, i.e., C = 3750 packets/s,
N = 60 and R0 = 0.246. However, this PI controller is rather fragile since the
point (kp, ki) = (1.822 · 10−5, 9.64 · 10−6) is close to the stability boundary (see
the point P1 in Fig. 4).

A less fragile controller is obtained for kp = 3.7 · 10−5 and ki = 2.2 · 10−5

(corresponding to the point P2 in Fig. 4) which ensure almost the same be-
haviour of the feedback control system as the controller proposed in Hollot et
al. (2002), when the plant parameter take the nominal values.

Fig. 5 shows the unit step responses of the control system with this less
fragile controller for the nominal plant with C = 3750 packets/s, N = 60,
R0 = 0.246, as well as for the two partly perturbed plant models with C = 3750
packets/s, N = 80, R0 = 0.15 and, respectively, C = 3750 packets/s, N = 45,
R0 = 0.4. In the last case the considered PI controller (and, to a greater extent,
the less robust controller derived in Hollot et al., 2002) does not even guarantee
stability.

Fig. 6 depicts the step responses for the same plant models when a fractional–
order PIλ controller, characterized by the same values of kp and ki, and by
λ = 1.25, is adopted. The control system performance is better than that
afforded by the integer–order controller. In particular, the fractional–order con-
troller locally stabilizes the system in all of the three cases, thus ensuring greater
robustness.
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Figure 3. Family of ellipses corresponding to ω ∈ (0.2, 5.0) rad/s when δ = 0.2
and λ = 1.25 in equation (22). The lower envelope of this family delimits the
area of the first two quadrants, where stability is ensured, and the modulus
margin satisfies the inequality δ > 0.2

7. Conclusions

A fractional–order PIλ controller has been applied to the control of TCP packet
flows. The regions of the controller parameter space, where given stability
margins are ensured, have been determined. Particular attention has been given
to the so–called modulus margin that accounts well for system robustness. The
loci of constant stability margins in the parameter space have been plotted using
a simple Matlab program. As shown in Section 6, these curves can profitably
be used to design robust fractional–order controllers in a simple and intuitive
way.

It is believed that considerable improvements over conventional AQM tech-
niques can be achieved in terms of both performance and robustness using
fractional–order controllers in conjunction with modulus margin specifications.
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