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Abstract: A stability concept for the open shop schedule is
proposed. The underlying aim is to protect an organisation against
serious problems caused by accumulation of delays in various pro-
cesses realised in the organisation at the same time. The stability
criterion is coupled with that of schedule makespan minimisation.
Buffers are used as a tool of ensuring schedule stability. A fuzzy
model determining the optimal schedule with respect to both crite-
ria is formulated based on expert opinions as to the desired buffer
size and the desired planned makespan. The model is expressed as
a mixed integer linear programming model. The approach is illus-
trated by means of an example.
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1. Introduction

Machine scheduling, including the open shop problem, has been studied for
many years in various versions (see, e.g., Baker and Trietsch, 2009; Dong et al.,
2013; Panwalkar and Koulamas, 2014). In many cases deterministic models are
studied, but “practitioners often view the ignorance of uncertainty and the dy-
namic elements of the scheduling process as the major source of the gap between
scheduling theory and practice”, according to Sabuncuoglu and Goren (2009).
And they are right to expect the uncertainty and dynamism of the scheduling
context to be taken into account in the models proposed in the literature, as
there is a long list of phenomena that may and do influence schedules and their
realisation.

Sabuncuoglu and Goren (2009) present a list of possible schedule disruption
causes: unexpected arrivals, machine breakdowns, processing time variability,
due time changes, job cancelation, ready time changes, scraps and waste. All
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these phenomena and many others may cause a deterministic model to be of
little help in actual implementation.

Scheduling theory has been trying to incorporate this aspect. This has been
done by modelling processing times as random variables or fuzzy numbers (see,
e.g., Baker and Trietsch, 2009; Kasperski, Kurpisz and Zieliński, 2012), through
simulation of the randomness of such parameters as jobs arrivals, machine dis-
ruptions, etc. (for a review see Sabuncuoglu and Goren, 2009). In this context,
such schedule features as schedule robustness/stability/sensitivity/security have
been introduced and studied (in, for instance, Xiong, Xing and Chen, 2013;
Aloulou and Artigues, 2010; Baker and Trietsch, 2009; Herroelen and Leus,
2004; Jensen, 2001). The issue is considered very important and the robustness,
security and stability degree of a schedule have recently become important per-
formance measures of schedule goodness, along with the traditional ones, i.e.
makespan, flowtime, earliness or tardiness (Sabuncuoglu and Goren, 2009).

Here we concentrate on the concept of schedule stability (robustness is dis-
cussed, for instance, in Jensen, 2001; security, in Baker and Trietsch, 2009;
flexibility in Aloulou and Artigues, 2010; and all of these aspects are discussed
and compared with each other in Sabuncuoglu and Goren, 2009). The concept
of stability is concerned with the difference between the initial and the actu-
ally realized schedule, see Sabuncuoglu and Goren (2009): “A schedule whose
realisation does not deviate much from the initial schedule is called stable”.

The impact of a change in schedule may be serious not only for the jobs
included in the very schedule and their immediate users/owners who wait for
them being ready, but also to the whole organisation. A single flow/job/open
shop schedule is never the only process to be realised in the organisation. There
are other schedules to be realised, too, and we have also supporting processes,
such as deliveries, and the like. So, if a job in the schedule is processed in
another time period than it was expected, it may pose a serious problem for
several reasons – the ones linked to the job or the process in question itself (the
job or the process may be finished later than expected and the customer may
be dissatisfied) and the ones linked to the environment of the whole process.
Here we are interested rather in the latter ones. The processing of each job on
each machine may require the usage of resources that are also needed in other
processes (we mean here, above all, human resources, machine operators for
example) in the given organisation. If a job on a machine is late with respect to
the initial schedule (even if it is not the last machine in the process considered
and eventually the whole process or even the job in question will still be on
time), it may cause quite a nuisance with respect to the coordination of all
the processes in the organisation, as they may have to wait until the needed
resources are free. In other words, it may increase organisation nervousness
(Sabuncuoglu and Goren, 2009). Like it is done in multi-project management
(see, e.g., Correia and Saldanha-da-Gama, 2014), it is necessary to manage and
coordinate not just one process, but also multiple processes, taking place in
the organisation, and multiple resources, shared by all the processes. That is
why we have chosen to concentrate on the stability criterion. However, as the
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makespan is usually the most important or at least a criterion that can hardly
be neglected, and it is in conflict with the stability criterion (Sabuncuoglu and
Goren, 2009), we will take into account both criteria, and thus our approach
will be a bicriteria approach to open shop scheduling.

The literature contains numerous concepts on the way to construct a stable
initial schedule in several scheduling problems. All of them are listed in Sabun-
cuoglu and Goren (2009). Without entering into details, two statements can be
formulated on the basis of Sabuncuoglu and Goren (2009) and other literature
sources, known to the author:

1. There is no concept of a stable schedule that refers to the open shop prob-
lem. All the concepts of stable schedules refer to other types of scheduling
problems (project schedules, flow shop, job shop). The uncertainty in the
open shop problem has been taken into account, but this was done either
through fuzzy modelling (see, e.g., Noori-Darvish, Mahdavi and Mahdavi-
Amiri, 2012) or through stochastic modelling (see, e.g., Frostig, 1991);

2. The stability of a schedule is measured as:

(a) the expected (mean) value, or

(b) the variance, or

(c) the worst case value

of differences between selected features of the initial schedule (known in
the decision-making moment) and the actual schedule (unknown in the
decision-making moment, thus requiring assumptions). The selected fea-
tures may be, for example the individual jobs starting times, the individual
jobs completion times, the makespan, or the jobs order.

In this paper we will propose a concept of a stable schedule for the open shop
problem, to our knowledge the first one in the literature so far. We will use a new
measure of schedule stability: the certainty degree (assessed by experts) that
the periods for which human resources are reserved for the process (known in
the decision-making moment) and the actual time periods in which the resources
will be used (unknown in the decision-making moment) will not differ. Our aim
is to be able to plan the resources usage times in the organisation in such a
way that possibly little changes will be necessary in their usage in the actual
realisation. As mentioned above, we will combine this objective with that of a
possibly small planned makespan.

Coming back to the state of the art, one of the tools used to achieve schedule
stability in terms of deviations are time buffers. In machine scheduling, this term
usually has another meaning (see, e.g., Zhang et al., 2013), but here we will use
it in the sense adopted from project management (see, e.g., Herroelen and Leus,
2004). A buffer will thus be a period of idle time in the schedule, inserted at the
beginning or at the end of a task/operation (or, in a more general case, before or
after a group of tasks), often unknown to the task executors. It is not explicitly
added to the estimated duration time of a task/operation, as psychologically
this would push people to use it even if it were not really necessary (because of
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the so-called student syndrome, Goldratt, 1997). It is an extra reserve, known
to the manager of the project or, in our case, process, which gives him more
certainty that the whole project or process will not be disturbed with respect
to the initial schedule and that it will not disturb other processes.

To our knowledge, the buffers as a tool ensuring schedule stability have
been used only in project management (a recent application can be found in
Kuchta, 2014), thus our approach is a novel proposal of applying it to machine
scheduling, and, more exactly, to the open shop problem.

An open problem in each buffer application is the size of the buffers. There
are many proposals in the area of project management; most of them are based
on the features of individual activities or on project network features (see, e.g.,
Kobylański and Kuchta, 2007; Herroelen and Leus, 2004; Slusarczyk et al.,
2013). In machine scheduling what will have to be taken into account while
determining buffer size is:

• features of individual machines, jobs, operations;
• features of human resources responsible for jobs, machines, operations;
and

• features of the ordered couples of jobs.

Some machines may require bigger buffers between jobs processed on them be-
cause they are less reliable than other machines. Some jobs or operations may
be more innovative or complicated, or the responsible resources less experienced
or competent, in which case the buffers should also be bigger. Some ordered
couples of jobs may also require larger buffers between the two jobs: this is true,
for example, if it is absolutely impossible to process both elements of the couple
simultaneously using overtime. If the two jobs of the couple could be processed
simultaneously, the simultaneous operation using extra hours could make up for
the delays in the processing of the first job of the couple and the buffer between
the two jobs may be smaller; if not, the buffer has to be bigger. The latter case
may occur, for example, if a machine does the colouring of the jobs (elements
being processed) and job io should be blackened and job i1 whitened. The two
jobs cannot possibly be simultaneously processed on this machine using over-
time because the machine has to be cleaned very carefully after blackening; it is
not possible to continue with blackening in extra time and simultaneously start
whitening in normal time.

In our model the experts will be asked to formulate their requirements as
to the individual buffer sizes. We want to insert at the end of each job enough
time (a buffer), unknown to the job executor, such that we can be pretty sure
that even if there are problems with job processing, the resources needed for
the process and reserved for it, according to the initial schedule (the period
of their reservation will be known only to the manager, not to the resources
themselves), will be able to be used elsewhere outside these reservation periods.
Thus, we want to minimize the differences between the periods, for which human
resources needed in the process are initially planned, and the periods in which
they will potentially be actually needed in the process in question. While aiming
at the minimisation of these deviations, we will also aim for the minimisation of
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the planned makespan – for otherwise a very stable schedule with a very long
makespan might be constructed, which would block an unnecessary amount of
time, making the organisation lose time, money, and competitiveness, and the
human resources lose motivation.

Given that we face two conflicting objectives, we apply a fuzzy approach: a
decision maker will give for each buffer a lower limit of the buffer size, with which
he would be fully satisfied, and an upper limit of the buffer size, with which
he would be satisfied to the degree 0 – his degree of satisfaction between the
two limits will be then expressed as a fuzzy number. Another decision maker
will give an upper bound for the scheduled makespan, with which he would
be completely satisfied, and a lower bound of the makespan values, where his
satisfaction is equal to zero. The satisfaction of the decision maker with the
scheduled makespan will be also modelled by means of a fuzzy number.

A mixed integer linear model will be formulated that will determine a sched-
ule maximizing the minimum of all the satisfaction degrees of all the decision
makers – the one interested in the stability of the schedule and the one inter-
ested in a small scheduled makespan. Let us indicate that a similar approach,
but in the context of project management, has been applied in Kuchta (2014).

The structure of the paper is as follows: first, we present selected information
about the type of fuzzy numbers that we use in our model. Then we describe
an open shop model known from the literature that will form a basis for our
model. Further, we formulate the problem using fuzzy numbers, and we finally
transform this problem into a mixed integer linear model. An example is used
to illustrate the proposal.

2. Basic information about fuzzy numbers

In this section we limit ourselves to the type of fuzzy numbers that we shall
need in this paper.

Definition 1 A left hand fuzzy number Ãl = (a,a)
L
is determined by its mem-

bership function µÃl :R −→ [0, 1] where R is the set of real numbers, such that
there exist two real numbers a and a, a6a, such that µÃl (x) = 1 for x6a,
µÃl (x) = 0 for x>a and µÃl is continuous and decreasing in the interval (a, a);
and
A right hand fuzzy number Ãr = (a,a)

R
is determined by its membership func-

tion µÃr :R −→ [0, 1] where R is the set of real numbers, such that there exist
two real numbers a and a, a6a, such that µÃr (x) = 0 for x6a, µÃr (x)= 1 for
x> a and µÃr is continuous and increasing in the interval (a,a).

Fuzzy numbers may have various interpretations, but in this paper we will
use just one: for a given x∈ R, µÃl (x) or µÃr (x) represent the degree of sat-
isfaction of a decision maker with a given value x. Various fuzzy numbers may
represent the satisfaction of various decision makers, with various aspects, fea-
tures or objects seen from various points of view. Left hand fuzzy numbers will
be used in the case a decision maker would like a value to be rather small, and
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the right hand fuzzy numbers in the case when big values are preferred. The
numbers a and a represent the limits of satisfaction – beyond the interval (a,a)
only full or no satisfaction occurs, while inside the interval the intermediate
satisfaction degrees are contained.

3. Formulation of the open shop problem with removal

times

As a basis for our proposal we will use the slightly modified formulation of the
open shop problem of Low and Yeh (2009): we have m machines and n jobs,
pij (i= 1, . . . ,n, j = 1, . . . ,m) stands for the processing time of the i-th job
on the j-th machine. Each job has to be processed on each machine in any
sequence. Rikj (i, k = 1, . . . , n, j= 1, . . . ,m) stands for the necessary removal
time of the i-th job before the immediate processing of the k-th job on the j-th
machine. Oij (i = 1, . . . , n, j = 1, . . . ,m) stands for the processing of the i-th
job on the j-th machine. On+1,j – a dummy operation with processing time 0
that is assumed to be processed on machine j, j = 1, . . . ,m, when all the jobs
have been processed and removed from this machine.

The removal time Rikj (i, k = 1, . . . , n, j = 1, . . . ,m) is treated in Low and
Yeh (2009) as the time necessary to “clean up” the j-th machine between the
completion of the i-th job and the start of the processing of the kth job on
machine j, if Okj is scheduled immediately after Oij . It is worth mentioning
that, according to the model from Low and Yeh (2009), during this “cleaning
up”, the i-th job may already be processed on one of the other machines.

The following decision variables are used in the model from Low and Yeh
(2009):

• yijh − equal to 1 if Oij immediately precedesOih, i = 1, . . . , n; j, h =
1, . . . ,m, equal to 0 otherwise;

• xlqj − equal to 1 if Olj precedes Oqj , i, k = 1, . . . , n; j = 1, . . . ,m,
equal to 0 otherwise;

• zlqj − equal to 1 if Olj immediately precedes Oqj , i, k = 1, . . . , n; j =
1, . . . ,m, equal to 0 otherwise; and

• TSij − starting time of Oij (i = 1, . . . , n, j = 1, . . . ,m).

Apart from that, the following notation is used in the formulation of the
constraints:

• Aj − set of operations that may be processed on machine j, |Aj | denotes
the cardinality of this set;

• Ej − set of operation pairs that may be processed on machine j, j =
1, . . . ,m;

• Bi − set of operation pairs for job i, i = 1, . . . , n; and
• M − a large real number.

The objective function (minimised) will be the completion time of all the jobs
on all the machines, taking into account the removal times. This completion
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time, in other words – the makespan, will be denoted as MS. Thus, we have:

MS =



TSij + pij+
∑

aqj∈Aj

Rikjzikj



 . (1)

The constraints are as follows:

TSij + pij−M(1−yijh)6TSih TSih + pih −Myijh 6 TSij

∀ (Oij , Oih) ∈ Bi, i = 1, . . . , n (2)

TSij + pij +
∑

aqj∈Aj

Rikjzikj −M (1− xikj) 6 TSkj

TSkj + pkj +
∑

aqj∈Aj

Rikjzikj −M (1− xikj) 6 TSij

∀ (Oij , Okj) ∈ Ej , j = 1, . . . ,m (3)

n+1
∑

k=1

zkij = 1, ∀i, j i = 1, . . . , n; j = 1, . . . ,m (4)

xkij + zkij > 0, xkij + zikj 6 1 ∀i, j, k i, k = 1, . . . ,m; j = 1, . . . ,m.

(5)

Constraints (2) express the relationships concerning the processing of one job on
consecutive machines. Constraints (3) refer to individual machines and ensure
the correctness of the order of the processing of individual jobs on the machines
(here the necessary removal times are taken into account). Constraints (4) and
(5) ensure correct values of decision variables xikj and zikj (i, k = 1, . . . , n; j =
1, . . . ,m), which both refer to the relationship between Oij and Okj (i, k =
1, . . . , n; j = 1, . . . ,m), but one takes into account just the fact or preceding
or not, and the other one takes into account only immediate preceding.

Once the solution is determined, the values of the decision variables TSij

i= 1, . . . ,n; j= 1, . . . ,m, will define the optimal schedule.
Let us illustrate the model, defined through formulae (1)–(5) with an exam-

ple:
Example: Let us consider two machines and three jobs. The processing

times are as in Table 1.:
The required removal times are assumed to be zero.
In this case we get: TS11 = 0, TS12 = 7, TS21 = 8, TS22 = 1, TS31 = 3,

TS32 = 8, and the objective function value (the minimal makespan) is 9 time
units.

Let us assume that for the processing of each job at any machine we need a
human operator: person A for Job 1, person B for Job 2, person C for Job 3.
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Table 1. Data for the Example
Job i pi1 pi2

Job 1 2 1
Job 2 2 6
Job 3 5 2

 M1

M2 J1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

J3 J2

J2 J3

J1

Figure 1. Optimal schedule for the Example

These persons are potentially also needed in other processes, which are realized
in the organisation. If we accept for realisation the schedule from Fig. 1, we
will reserve the resources for the periods given in Table 2.:

Outside these periods the resources will be considered to be free for other
activities in the organisation.

Now, let us suppose that during the realisation of the schedule from Fig.
1 some problems occur with Job 1 on M1. As a result of these problems, the
processing of this job on M1 takes 3 units instead of 2. Even if we assume that
no other problems occur in the realisation of the schedule from Fig. 1, if there
is no possibility to process Job 1 simultaneously with Job 3 on M1 in the 3
units of time (sometimes there might be such possibilities owing to the use of
overtime hours, but, as mentioned in the introduction, this is not always the
case), the schedule shown in Fig. 2 would be actually realised (the jobs marked
grey are those, whose realisation time is different than in the planned schedule
from Fig.1).

 

M1

M2 J1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1

J2

J3 J2

J3

Figure 2. Actual schedule for the Example

The resources would, therefore, actually be needed for the process in question
in slightly different periods than planned.
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Table 2. Resource reservation periods for the Example
Resource Reservation period

A 1-2, 7
B 1-6, 8-9
C 3-9

Table 3. Resource reservation and actual usage periods for the Example
Resource Reservation

period

Actual

usage

period

Time units with potential

problems for the whole or-

ganisation

A 1-2, 7 1-3, 8 3, 8
B 1-6, 8-9 1-6, 9-10 10
C 3-9 4-10 10

In the time units, which are listed in the last column of Table 3, the resources
A, B, C may have been planned for other processes in the organisation. If so,
they will not be available for them as they still will be needed in the process in
question due to the slight delay in finishing Job 1 on M1.

In the stable schedule, constructed according to the concept we propose here,
we would like to fit the resources within the originally planned usage time even
if disturbances occur. Hence, the aim is to have the last column of Table 3
possibly empty, so that problems causing changes in the jobs processing times
of the process in question do not affect, or affect as little as possible, other
processes in the organisation.

In the discussed example this would have been achieved if, having by some
chance foreseen the possibility of problems with J1, we had inserted into the
initial schedule a buffer after J1, just on M1 or on both machines. If we had
thought the problems were job oriented and not machine oriented, we would
have chosen to add a buffer after J1 on both machines, thus obtaining the
schedule as shown in Fig.3.

 

M1 B

M2 J1 B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J2 J3

J1 J3 J2

Figure 3. Planned schedule for the Example with buffers after job J1 operations
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The buffers would not have been made known to resource A, in order to
avoid the student syndrome problem. Thus, we would have had two human
resources oriented schedules. One would have been known to the resources A,
B, C, and it is given in Table 4.

Table 4. Resource schedule known to the resources, corresponding to Fig.3
Resource Assignment period

A should do J1 1-2, 7
B should do J2 1-6, 9-10
C should do J3 4-10

Another schedule would be prepared for the management, as provided in
Table 5.

Table 5. Resource schedule known to the management, corresponding to Fig.3
Resource Assignment period

A 1-3, 7-8
B 1-6, 9-10
C 4-10

Owing to the usage of the buffer, the problem with the realisation of J1
described above (even accompanied by a similar problem with the same job on
M2) would not have caused any disturbances in the organisation. In this sense,
the schedule from Fig. 3 and Table 5 would have been stable – if only problems
regarding J1 fitting into the buffers would have occurred.

Yet, of course, we prepared our stable schedule of Fig. 3 and Table 5 post
factum. The aim is to have a model that would generate a stable schedule before
process realisation. However, the stability of the schedule is not the only goal,
because if it were so, we could have put huge buffers everywhere in the schedule
and reserved the resource for the process in question for long periods, losing a
lot of time and of opportunities, as the resources would be idle for a long time
or would use the time inefficiently. So, the model should seek a compromise
between two conflicting objectives: minimising the makespan of the schedule
and maximising its stability. The respective model will be proposed in the
following section.

4. Formulation of the stable schedule open shop problem

First of all, let us remark that we base our proposal on model (1)–(5), using the
removal times as buffers. However, there will be two differences between model
(1)–(5) and our approach:
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• The removal times, called here buffers, will not be given as input data,
but will be decision variables, whose value will have to be determined;

and

• During the removal time after the processing of a job on one machine, it
will not be possible to process this job on any other machine (which is
not the case in model (1)–(5)). This is how the buffers should act: they
should reserve time for finishing the processing of a job on a machine
in case of problems occurring during this processing and if problems do
occur, the job will be blocked for processing on other machines. That is
why constraints (2) have to be changed into:

TSij + pij−M(1−yijh) +
∑

aqj∈Aj

Rikjzikj6TSih

TSih + pih−Myijh+
∑

aqj∈Aj

Rikjzikj6TSij (6)

∀ (Oij , Oih) ∈ Bi, i = 1, . . . , n.

In the proposed model we will use a fuzzy approach while modelling the pref-
erences of various decision makers, who would have conflicting objectives. One
decision maker would be interested in a possibly short makespan MS, in or-
der not to block too much time in the organisation for the process in ques-
tion. He would express his preferences in the form of a left-hand fuzzy number

M̃S
l
= (ms,ms)

L
, with the membership function µ

M̃S
l .

Another decision maker would be interested in a high stability of the sched-
ule, so that problems in its realisation would possibly not affect the rest of the
organisation.

The latter type of decision maker would formulate his views or preferences
on the basis of, for example:

• The proneness of individual machines to break down (if a machine is more
suspect to fail, the buffers on this machine should be higher);

• The experience and reliability of human resources assigned to the process
(less experienced and less reliable resources require longer buffers);

• The characteristics of individual jobs (jobs which are more complicated or
more unusual for the organisation require longer buffers); and

• The characteristics of job couples, related to machines:

– some jobs may, in case of a delay on a machine, be processed on this
machine simultaneously with another job, thanks to, for example
overtime – for such job couples shorter buffers between the jobs will
be sufficient;

– some job couples cannot be processed simultaneously on the same
machine (an example was given in the introduction) – they will need
longer buffers between jobs.
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We will model the preferences of such a decision maker using right hand fuzzy

numbers ˜Rikj

r
=

(

rikj , rikj
)R

with membership functions µ ˜Rikj
r . In some cases

we may have identical ˜Rikj

r
for a fixed j, if the necessary buffers depend only

on the machine and its proneness to failure. In other special cases we may have
identical ˜Rikj

r
for a fixed i, if the buffer depends only on the job characteristics.

In yet other cases we may have special values for selected couples (i, k) of jobs
coming one after another, sometimes for selected triples (i, j, k).

The aim will be to maximise the total satisfaction of all the decision makers,
measured as:

min
{

µ
M̃S

l (MS) ,mini,k,jµ ˜Rikj
r (Rikj)

}

→ max (7)

with constraints (3)–(6).

The fuzzy number µ ˜Rikj
r (Rikj) (∀i, k = 1, . . . , n; j = 1, . . . ,m) measures

the degree of possibility that the usage of resources assigned to operation Oij

(like in the Example, where resource A was assigned to operations O11 i O12),
in case when on the j-th machine immediately after the i-th job the k-th job
is processed, will not exceed pij+Rikj . Thus, µ ˜Rikj

r (Rikj) is a measure of

stability of the schedule of resources assigned to the open shop problem. The
other component of the objective function (7) measures the satisfaction of the
decision maker with the planned makespan.

Problem (3)–(7) can be expressed as a linear programming problem if the
membership functions measuring the satisfaction of the decision makers are
piecewise linear, what we assume here. The linear programming problem is
then as follows:

σ → max (8)

TSij + pij+
∑

aqj∈Aj

Rikjzikj 6 λ (∀i, j, k : i, k = 1, . . . , n; j = 1, . . . ,m) (9)

ms6λ 6 ms (10)

µ
M̃S

l (λ) > σ (11)

rikj 6Rikj 6 rikj (∀i, j, k : i, k = 1, . . . , n; j = 1, . . . ,m) (12)

µ ˜Rikj
r (Rikj) > σ (∀i, j, k : i, k = 1, . . . , n; j = 1, . . . ,m) (13)

All the constraints of the above problem are linear, under the assumption
that the membership functions are piecewise linear. It is enough to consider the
intervals where the membership functions increase from 0 to 1 or decrease from 1
to 0 (constraints (10) and (12)), because the maximum value of the membership
function σ will certainly be found there. There may be a better solution than
the one found in this way – better in terms of the buffer size or the makespan –
but not in terms of the satisfaction of the decision makers, and we are interested
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only in the decision maker’s satisfaction measured by the fuzzy numbers given
by them.

As a result of solving model (8)–(13), we will get a schedule with buffers,
ensuring the highest possible total satisfaction of both the decision maker con-
cerned with the stability of the schedule and the decision maker concerned with
a possibly short makespan.

Let us consider the following variation of the Example: the data from Table
1 are adopted, plus the requirements of the decision makers:

• regarding the makespan: M̃S
l
= (12, 14)

L

• regarding schedule stability, thus the buffers:
˜Rikj

r
= (0, 2) for all i, k =1,2,3, j =1,2, except for i = 1 and k = 3,

˜R13j

r
=(2, 5) for j = 1, 2.

The sequence J1, J3 requires, therefore, an especially big buffer between the
two jobs on both machines.

The optimal solution of model (8)–(13) for this data includes the optimal
objective function (8) value of 0.5, equal to that of the objective function (7),
being the maximal total satisfaction of all the decision makers, and the schedule
as given in Fig. 4.

 M1 B B B

M2 B J1 B B

1 2 3 4 5 6 7 8 9 10 11 12 13 14

J1 J2 J3

J3 J2

Figure 4. Optimal stable schedule for the modified Example

In the case of the schedule from Fig. 4, the decision maker interested in
a possibly small makespan is satisfied to the degree 0.5 and so is the decision
maker concerned about schedule stability. According to this schedule, we would
make a reservation of the resources for the periods, specified in Table 6.

Table 6. Stable resource schedule known to the management, corresponding to
Fig.4

Resource Reservation period

A 1-5
B 4-12
C 1-2, 6-11

If we took the initial optimal schedule for the Example (Fig. 1), which did
not take into account the stability problem, and if we simply inserted after each
operation the buffer corresponding to the satisfaction degree 0.5, we would get
the schedule as shown in Fig. 5.

The satisfaction degree of the planned makespan of the schedule from Fig. 5
is 0.33, which would also be the value of the total satisfaction (7). Any attempt
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 M1 B B

M2 B J1 B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

J1 B J3 J2

J2 B J3

Figure 5. Optimal schedule for the Example from Fig. 1, made stable with the
satisfaction degree 0.5 without changing the operation order

to improve this satisfaction degree without changing the order of operations
would decrease satisfaction with schedule stability. The application of model
(3)–(7) has allowed for avoiding the couple J1, J3 as immediate neighbours in
processing (with J1 being processed at first) and, owing to this, to achieve the
total satisfaction degree equal 0.5.

5. Conclusions

In this paper we propose the first – to our knowledge – open shop schedule
stability concept. Stability is here understood in terms of ensuring that the
initial resource usage schedule will differ as little as possible from the actual one.
The tools used in our model to guarantee schedule stability are constituted by
the time buffers. The buffers inserted into the schedule permit to protect the
whole organisation against problems due to delays in various processes executed
in the organisation and the resulting resource demand conflicts. Fuzzy modelling
is used to express the compromise between the need for a possibly stable and
for a possibly short schedule, but finally an equivalent standard mixed integer
linear programming problem has to be solved in order to find a solution.

The problem of a stable open shop schedule should be further exploited, as
this aspect seems to have been neglected in the literature so far. New concepts
should be proposed and verified in practice, and this will constitute the future
research directions.
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