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Abstract: In this paper we consider a generalization of the bin
packing problem, in which it is permitted to fragment the items while
packing them into bins. There is, however, a restriction that the size
of each piece of the fragmented item cannot be smaller than a given
parameter 5. An interesting aspect of such a model is that if 5 = 0,
then the problem can be easily solved optimally. If 3 is large enough,
meaning, in fact, that the fragmentation is not allowed, we get the
classical bin packing problem, which is NP-hard in the strong sense.
We present approximation algorithms for solving the problem and
analyse their properties. The results of computational experiments
and conclusions relating to the effectiveness of the algorithms are
also presented.
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1. Introduction

Bin packing is the problem, in which a given set of items of various sizes should
be packed into the minimum number of bins of identical capacity. The common
assumption is that items packed may not be fragmented into smaller pieces.
There are, however, several applications in which this requirement is too re-
strictive (see, e.g. Mandal, Chakrabarti and Ghose, 1998; Namman and Rom,
2001; Shachnai, Tamir and Yehezkely, 2008; Epstein and van Stee, 2008). By
packing the items in pieces we can reduce the number of necessary bins and
thus more efficiently utilize the resources available. In practical applications
some restrictions on item fragmentation usually exist, due to technological or
economic reasons. The typical requirement is that each piece of a fragmented
item must be reasonable in size, i.e. it cannot be smaller than a given parameter
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B. We will call such situation the bin packing problem with restricted item frag-
mentation. The motivation for studying this kind of problem comes from the
specific application where it is required to satisfy the demands for iron bars of
various lengths. The bars can be obtained by cutting them entirely from stock
or welding from smaller pieces. Because of technological reasons the pieces of
bars which are welded together cannot be too small.

The literature provides also examples of other variants of bin packing mod-
els with item fragmentation. Thus, Mandal, Chakrabarti and Ghose, (1998),
Menakerman and Rom (2001), and Namman and Rom (2001) considered the
problems, in which there is no restriction on the minimum size of the pieces,
but fragmentation is associated with additional consumption of bin capacity.
The authors mentioned showed that these problems are NP-hard and Shachnai
and Yehezkely (2007), Shachnai, Tamir and Yehezkely (2008) developed ap-
proximation schemes for them. In Menakerman and Rom (2001) and Shachnai
and Yehezkely (2007), Shachnai, Tamir and Yehezkely (2008), the costs of item
fragmentations were considered and algorithms for bin packing with minimal or
limited number of fragmentations were proposed. Another bin packing model
with item fragmentation was studied by Epstein and van Stee (2008). They de-
signed approximation schemes for the problem where items may be fragmented
arbitrarily, but there is an upper bound on the number of parts permitted to
be packed into each bin.

The remainder of the paper is organized as follows. In Section 2 we formally
define the bin packing problem with restricted item fragmentation. Sections
3, 4 and 5 are devoted to the analysis of the three classes of the proposed ap-
proximation algorithms. In Section 6 the computational results are provided to
illustrate the effectiveness of the algorithms for various values of the parameter
B and concluding remarks are presented.

2. Problem formulation

The bin packing problem with restricted item fragmentation can be formulated
as follows:

Problem BPFg

Given a set N of n items, each having size Sj, pack them into the minimum
number of bins of identical capacity C. Items may be fragmented into smaller
pieces provided that the size of each piece is at least (.

We assume that C' > S; > 0 for all j € N and we treat 5 as the parameter
of the model. In our formulation the original sizes of items may be S; < 8 for
some j € N, but the pieces resulting from fragmentation (of other items) cannot
be smaller than 5. It follows from the formulation of the problem that an item
j for which S; < 283 cannot be split since the sizes of both parts should be at
least 8. Further on, we will call such items undividable, whereas the remaining
items will be referred to as fragmentable.

It turns out that computational complexity of Problem BPFg strongly de-
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pends on the value of the parameter 5. If 8 > C'/2 no item can be fragmented,
and so we get the classical bin packing problem which is NP-hard in the strong
sense (see, e.g. Garey and Johnson, 1979). It is a well known combinatorial
problem and many approximation and exact algorithms have been developed
for solving it, see e.g. Johnson et al. (1974), Fleszar and Charalambous (2011),
Scholl, Klein and Jurgens (1997).

On the other hand, if 8 = 0, then all items are fragmentable and the problem
is very easy to solve. We can pack items successively into bins until the first
item, which does not fit into the current bin, is found. This item is fragmented
into two parts. The first part fills up the bin, while the second part is packed into
a new one. In this way we get an optimal solution with the following number
of bins

LB= | 8;/C (1)

JEN

where symbol [| denotes rounding up to the nearest integer.

In the following sections we present algorithms for the bin packing problems
with arbitrary values of 8. Note that LB from formula (1) may be treated as a
lower bound on the optimal number of bins for these problems.

When presenting the algorithms we will denote them by NAME if a given
algorithm applies the fragmentation of items. The special variant of such al-
gorithm, in which fragmentation is not allowed, will be denoted by NAME
(without subscript 3). Analogously, for a given instance I of the bin packing
problem, NAME3(I) and NAME(I) stand for the number of bins used by the
algorithm NAME g and its variant NAME, respectively. We also use OPT g(I)
to denote the optimal number of bins for packing problem with restricted item
fragmentation.

3. Item oriented algorithms

Since the classical bin packing problem is NP-hard in the strong sense, ap-
proximate algorithms have been studied extensively. The best known heuris-
tics are based on the FF (First-Fit) and BF (Best-Fit) concept (see John-
son et al., 1974). They start with empty bins, consider the items in a specified
order and try to find place for each of them in one of the bins.

Algorithm FF puts the item into the bin with the smallest index that has
sufficient residual capacity. Algorithm BF' puts the current item into the bin
with the smallest but sufficient residual capacity. Ties are broken in favour of
the lowest indexed bin.

Although these algorithms are based on very simple strategies, they often
provide satisfactory results, especially if items are considered in non-increasing
order of their sizes, i.e. the item with maximum size is packed first. Such
variants of algorithms are called FFD (First-Fit Decreasing) and BFD (Best-
Fit Decreasing).
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To adapt these algorithms to the model with restricted item fragmentation
let us note that a given item j may be put into a bin either in full size or as a
fragment of size at least 3 and not greater than S; — 8. This condition follows
from the fact that the sizes of both parts of each fragmented item must be at
least 3.

In the description of algorithms we assume that s; denotes the current size
of item j and ¢; the current residual capacity of bin ¢. At the beginning we have
sj = S and ¢; = C for all items and bins. Let Np be a set of fragmentable
items, i.e. Np = {j € N : S; > 28}. The first packing strategy for Problem
BPF 3 is as follows.

Packing Rule R1

o If s; < ¢; pack the whole item j into bin i.

o If s; > ¢; > B and j € Np then split item j and pack only fragment of
size min{s; — B, ¢;} into bin 1.

The algorithms using this strategy are referred to as FFg and BFg.

Algorithm FFg

Create a list L of items.

Take the first item j from L.

Find the lowest indexed bin for which s; < ¢; or ¢; > fif j € Np.
Apply packing rule R1. If item j is fragmented, then insert the remaining
piece into list L.

5. If list L is not empty, go to Step 2, else STOP.

Algorithm BF g differs from FFg only in Step 3. It chooses the bin whose
residual capacity would be the smallest if packing rule R1 is applied. If there is
more than one such bin, the one with the smaller index is preferred.

In algorithms FFg and BFg no specific ordering of items in the list L is
assumed. The variants of FFg and BF g where items are ordered according to
non-increasing sizes are referred to as FF'Dg and BFDg. The properties of these
algorithms are as follows.

Ll o =

Proposition 1. For any instance I of Problem BPFg and any ordering of
items FFg(I) < [R(B)OPTs(I)] and BF(I) < [R(B)OPT3(I)], where

B < for0<p<C/4
R(B) = { 0225 for p = C/4.

Proof. Note, that in any solution provided by algorithms FFg and BFg only
one bin can have at least C/2 space left. To see this, suppose that there are
two such bins, say k and [, where k < [. Then we come to the conclusion that
items from bin [ fit in bin k, so algorithms FF g and BF g would pack them into
lower indexed bin £ instead of [. Let z be the number of bins used by FFpg or
BFg. Since all bins except at most one are more than half full then

>8> (z-1)C)2

JEN
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and

2 jen S

2
z < C

+1<20PTg(I)+1 so =z<[20PT(I)]

For 8 < C'/4 we can strengthen the above upper bound on z if we notice that
there can be at most one bin with residual capacity at least 23. In case of
algorithm F'Fg, if ¢, > 23 for some bin k and there are still items in the list L,
then they are first put entirely or partially into bin k£ before filling a new bin.
In algorithm BF'g an item can be put into a new bin instead of k& only if it is

greater than C — (3, so both algorithms fill at most one bin to capacity no larger
than C' — 25. Hence

38> (2 - 1)(C - 28)

JEN

and

< ZJ‘EN Sj

C—28

It follows from Proposition 1 that if 8 = 0 then FFg(I) < OPTg(I) and
BF3(I) < OPTg(I), so both algorithms give an optimal solution. The compu-
tational experiments show, however, that in many other cases the performance
of algorithms FFg and BFg is poor. There are even instances of bin packing
problems, for which algorithm FFD without applying item fragmentation gives
a better solution than FFDg and BFDg.

+1= waz”’%\’sj +1 so z< [C_LQBOPT@(I)] . a

Example 1. Consider the packing problem with 6 items of sizes 6, 6, 3,
3, 2 and 2. The capacity of bins is 11 and 8 = 2. Algorithms FFD and BFD
pack the first, third and the fifth item into bin 1, filling it completely, and the
remaining items into bin 2. Two bins are used. Algorithms FFDg and BFDg
pack the first item into bin 1. The second item is fragmented and only four
units of it are put into bin 1 since the size of the second fragment must be at
least 2. Items 3, 4, the remaining piece of item 2 and item 5 are packed into the
second bin consuming 10 units of its capacity. The last item must be packed
into the third bin.

4. Bin oriented algorithms

The algorithms presented in the previous section are item oriented. It means
that for each particular item they try to find a bin, in which this item could be
placed. We can also propose, though, the bin oriented heuristics, which consider
bin by bin. They start with an empty bin, open it and attempt to fill it as much
as possible considering items from the list L and applying the packing rule R1.
When no item or its fragment fits in the current bin, it is closed and the next
bin is opened. This process is repeated until all items are packed.

We call such heuristics BIN-FF g. The special variant is BIN-FFD g, where
items are ordered in the list L according to non-increasing sizes. It turns out
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that the results produced by the algorithms BIN-FF g and FFg are very often
similar. This fact is partially justified by the following properties.

Proposition 2. If for a given instance I of bin packing problem without
fragmentation the ordering of the list L is the same in both algorithms BIN-FF
and FF, then BIN-FF(I) = FF(I).

Proof. In both algorithms each bin is filled with those items which do not
fit in the previous bins. They are packed in the same sequence resulting from
ordering of the list L. O

Proposition 3. BIN-FFDg(I) = FFDg(I) for any instance I of Problem
BPFg.

Proof. If items are not fragmented, the property follows from Proposition 2.
So, let k be the first item that is fragmented. Proposition 2 implies that all
items preceding k in the list L are packed in the same way by both algorithms,
so item k must be also fragmented in the same way. Because the ordering of
the list L is non-increasing, the remaining part of item k is inserted in the same
position of the list L in both algorithms. So, the packing order of all fragmented
pieces is the same in both algorithms and according to Proposition 2 the number
of used bins must be equal. O

More effective is usually the algorithm BIN-BFg. It also packs bin by bin
but selects items in a different way. The priority is given to the item that fills
the bin maximally, i.e. after packing it with rule R1 the residual capacity in
the bin is the smallest possible. The ordering of the list L affects the algorithm
BIN-BF g slightly and only when fragmentable items are considered.

Proposition 4. For any instance I of the bin packing problem without
fragmentation BIN-BF(I) = BIN-FFD(I) = FFD(I).

Proof. To fill the bin as much as possible, the algorithm BIN-BF always
selects the largest item that fits, so BIN-BF(I) = BIN-FFD(I). Next, it follows
from Proposition 2 that BIN-FFD(I) = FFD(I). ad

5. Item grouping

An essential improvement in bin packing with restricted item fragmentation may
be achieved if we analyse the structure of items and reserve big fragmentable
items mainly for completing the filling of the bins. Starting with an empty bin
we can first attempt to pack the undividable items. They should consume no
more than C' — 8 units of bin capacity in total, so that remaining space could
be filled up with a fragmentable item. The packing rule for such strategy is a
little more complicated and it looks as follows.

Packing Rule R2

o If s; =¢; ors; < ¢ — B then pack the whole item j into bin i.

o If s; € (¢; - B, ¢;) and j € Np then split item j and pack only the fragment
of the size s; — 3.
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o If s; € (¢ci, c; + B) and j € Np and ¢; > 25 then pack the fragment of
the size ¢; — 8.

o If s; > ¢; + B and j € Nr then pack the fragment of the size c;.

e Otherwise do not pack item j into bin 3.

Packing rule R2 ensures that bins are either completely filled up or have residual
capacity not smaller than 8. It is advantageous to use such rule as long as
fragmentable items are still available in the list L. If there is no fragmentable
item then packing rule R1 should be rather applied. The following conditions
are proposed to specify the situations when rule R2 should be replaced by rule
R1.

C1.- all the remaining items in the list L are undividable.

(C2.—- the considered item is undividable and is greater than C — S.

C3.— the residual capacity of bin is ¢; < 28 and the sizes of all items in the
list L are in the range (¢; — 8, ¢; + B).

Conditions C1 and C2 are rather obvious. Condition C3 relates to such
situations when although some fragmentable items are still in the list L, they
are too small to fill up the bin completely, so it is no use reserving capacity for
them. If any of conditions C1, C2 or C3 is met, we propose to continue packing
the bin with BIN-BF'g. The scheme of the whole algorithm may be summarized
as follows.

Algorithm BIN-FFSLg

1. Create the list L with undividable items ordered according to non-increasing
sizes and followed by fragmentable items ordered in non-decreasing way.

2. Take next empty bin.

3. Apply the packing rule R2 to successive items from the list L until the
bin is full or one of conditions C1, C2 or C3 is satisfied. Insert the pieces
resulting from fragmentation into the list L according to its ordering.

4. If any of conditions C1 or C2 or C3 is satisfied, complete the packing of
the bin with the algorithm BIN-BFg.

5. If the list L is not empty, go to Step 2, else STOP.

Example 2. Consider the instance from Example 1. Algorithm BIN-BFg
results in identical packing as FFDg and BFDg using 3 bins. Algorithm BIN-
FFSLg reorders items so that items 3, 4, and 5 are packed first. Then, item
1 is fragmented and 3 units are packed to fill up the first bin. The remaining
fragment of this item and the other items are packed into the second bin.

Algorithm BIN-FFSLg is bin oriented and has interesting properties. It can
be verified that Proposition 1 is also valid for it. If all items are undividable,
the BIN-FFSLg algorithm works as BIN-BF'g, which is in this case equivalent
to FFD, according to Proposition 4. On the other hand, if items are big and
fragmentable, the algorithm BIN-FFSLg gives optimal solutions.

Proposition 5. If S; > 33 for all jeN then algorithm BIN-FFSLg provides
an optimal solution using LB bins.
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Proof. First, let us note that when starting packing a new bin, there may
be at most two fragmented items that are smaller than 33, and both of them
cannot have sizes s; € (5, 26). Items smaller than 35 are packed into the bin
first. Now, if all the remaining items fit in that bin, they are packed there.
If they exceed its residual capacity but less than § units then the bin remains
unfilled and the next bin is used. Otherwise, the packing rule R2 ensures that
the bin is filled up completely and again at most two new fragments appear in
the list L. So, when the algorithm BIN-FFSLg stops, the slack capacity may
be only in the last bin and in the previous to the last one. However, the number
of used bins denoted by z always satisfies the condition

(z-1C <Y 8 <z2C
JEN
so z = LB, which is the lower bound on the optimal number of bins. O

It follows from Proposition 5 that if in Problem BPF g all items have the
size of at least 33, then the optimal number of bins is LB. Note that the com-
putational complexity of the algorithm BIN-FFSLg is O(]N|?). So, another
important conclusion is that if § < min{S;/3: j € N} then Problem BPFg
may be solved optimally in polynomial time. In general case, this problem is
NP-hard in the strong sense as it is a generalization of the classical bin packing
problem.

6. Computational results

The performance of the presented algorithms has been tested using the data
instances considered in Scholl, Klein and Jurgens (1997). There are 36 groups
of 20 instances with 50, 100, 200 and 500 items. Bin capacity is 100, 120 or 150
and the sizes of items are integer values generated randomly from the ranges [1,
100], [20, 100] and [30, 100].

We have compared algorithms FFD and BFD assuming that fragmentation
is not exploited and algorithms FFg, BFg, BIN-FFg, BIN-BFg and BIN-
FFSLg for various values of parameter 3. It turns out that algorithms FFD
and BFD give almost identical results. In only one case out of 720 tests BFD
has used one bin less than FFD. The performance of FFDg and BFDg is also
similar. The algorithm BFDg has been slightly better in 25 cases for some
values of 3. For the algorithm BIN-BFg a variant with non-decreasing list L
seems to be the most advantageous and we denote it by BIN-BFIg.

Figures 1 and 2 illustrate the performance of algorithms BFD, BFDg, BIN-
BFIg and BIN-FFSLg for various values of 5. The data sets are N2C2W1
and N2C2W2, where 100 items are considered and capacity of bins is 120. The
sizes of items are between 1 and 100 for N2C2W1 and between 20 and 100 for
N2C2W2. The results shown in Figs. 1 and 2 represent the average number of
used bins over 20 instances of each data set.

Computational experiments show that algorithms F'F'Dg and BFDg are out-
performed. In many cases they give worse results than FFD or BFD which do
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not exploit fragmentation. A much better algorithm than FFDg and BFDg
turns out to be BIN-BFIg. However, the most effective is BIN-FFSLg which
gives optimal solutions for a wide range of S values. Proposition 5 specifies
some sufficient conditions for such cases. The crucial role in effective packing
is played by the big fragmentable items with sizes of at least 35. In practice, a
relatively small number of such items allows to limit utilization of bins to the
level close to the lower bound LB. It is worth noting that for both data sets
N2C2W1 and N2C2W2 there is no item with size exceeding 35 when 3 > 34.
If we look at Figs. 1 and 2 we can notice that § = 34 is also the threshold
value, above which the number of used bins starts to increase drastically for the
algorithm BIN-FFSLg.
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