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Abstract: Enzymes play a significant role in controlling the
characteristics of various chemical and biochemical reactions. They
act as catalysts that increase the rate of reaction without undergo-
ing any change in quantity. Enzymatic reactions occur through the
active sites, which combine with the substrates to form intermedi-
ate complexes, subsequently leading to products. An enzyme hav-
ing two active sites can show cooperative phenomena. Against this
background, an enzyme-kinetic mathematical model is formulated
using fractional order derivatives. Optimal control mechanism has
been incorporated into the fractional-order model system to maxi-
mize the product output. Euler-Lagrange optimality conditions are
derived for the FOCP (fractional order control problem) using maxi-
mum principle. Numerical iterative schemes have been developed to
solve the fractional order optimal control problem through Matlab.

Keywords: enzyme kinetics, cooperative phenomenon, frac-
tional derivative, mathematical modeling, Hamiltonian, optimal con-
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1. Introduction

Enzymes are proteins, which exist in nature, and which act as catalysts in bio-
chemical reactions. They reduce the activation energy of reactions and acceler-
ate the rate of reaction. Moreover, they are selective in nature, i.e. a particular
enzyme accelerates only a specific reaction. The dynamic part of an enzyme
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is the active site, through which it binds with target molecules or substrates.
After binding with substrate, an enzyme-substrate complex is formed, which is
then either reverted back to unmodified substrate and enzyme or is transformed
into product. Regarding the cooperative behavior of enzymes, enzyme may bind
with another substrate molecule if it has more than one active site (Rubinow,
1975; Murray, 1989).

In biological essence, enzymes may have multiple binding sites which react with
the substrate molecules. A single enzyme molecule with two active sites can
bind with a substrate molecule at one site and another substrate molecule at
the other active site. The binding of one substrate molecule at one active site
has a significant effect on the binding of another substrate molecule at another
active site (allosteric site). This type of binding between distinct and specific
sites is called allosteric effect or cooperative phenomenon and the respective
enzyme is called an allosteric enzyme (Murray, 1989). Mathematical modeling
provides a framework for investigating the mechanism of cooperation in, for in-
stance, hemoglobin (Antonini and Brunori, 1971; Henry et al., 2002; Szabo and
Karplus, 1972).

Analysis of enzyme kinetics, described by the mathematical models, is consid-
ered in different studies, reported in the literature (Segel, 1980; Roberts, 1977).
Ordinary differential equations (ODEs) are used to describe the dynamics of
enzymatic reactions in biochemical systems. These equations are based on the
law of mass action (Roy et al., 2013). The product obtained by application of
this type of simple mechanism may not always secure the optimum course of
the reaction process. Reaction conditions are maintained or controlled so as to
get the optimum process control that is analyzed and designed with the use of
optimal control theory. Mathematical study helps to find the most appropriate
reaction conditions for process optimization (Nandi et al., 2013; Al Basir et al.,
2015).

Contemporary research articles demonstrate that fractional order differential
equations (FDEs) are a powerful tool for modelling the dynamics of enzymatic
processes under difficult reaction conditions (Magin, 2006; Sabatier et al., 2007).
Fractional derivatives can represent the non-local property, thereby providing
an excellent mechanism for describing the dynamical behavior of various chem-
ical and biochemical systems. There are several research articles on applica-
tion of FDEs in biochemical or chemical reactions. Magin has used fractional
derivatives and fractional integrals to describe the stress-strain relationship in
biomaterials (Magin, 2006). Craiem et al. (2008) applied fractional calculus to
model arterial viscoelasticity. Abdullah (2011) has used fractional differential
equations to model the Michaelis-Menten reaction in a 2D region.

In addition, many researchers describe the non-local property and the mem-
ory effect using the fractional differential operator (Sun et al., 2011; Du et al.,



Optimal control of a fractional-order enzyme kinetic model 445

2013). In particular, Magin has provided a simple but illustrative example of
the memory effect of fractional derivative. Therefore, the fractional derivative
oriented models are more accurate in their description capacity (Magin, 2006).
Theoretical developments are also in progress for more extensive use of this tool
in science and engineering. Toledo-Hernandez et al. (2014a) have shown the
feasibility and capabilities of fractional calculus as a tool for modeling dynamic
systems in the area of process systems engineering. They have proposed a model
for the fermentation problem using fractional calculus as a modeling tool and
used experimental data to establish the validity of the model in biochemical
reaction (Toledo-Hernandez et al., 2014b).

In other fields, the applications of fractional calculus are developed as exten-
sions of the well established mathematical models that are based upon ordinary
differential equations. Therefore, in those cases it is important to understand
how to properly fractionalize these classical models using different definitions
(Rana et al., 2013; Roy et al., 2013).

Optimal control problems, involving the use of fractional derivatives, have been
extensively studied in the literatures (Sabatier Agrawal and Teneiro-Machado,
2007; Agarwal, 2008). Several references and classical books provide the theo-
retical basis and fundamentals for this area (Sethi and Thompson, 2000; Stengel,
1994). Interesting and promising applications of fractional calculus have been
proposed in the area of process control (Moreau et al., 2008; Delavari et al.,
2013). However, in the area of optimal control, the fractional calculus liter-
ature is quite limited. Agrawal (2008) derived the optimality conditions for
the fractional order optimal control problems (FOCP) for single state and con-
trol variable. Further, Agrawal (2008) provided the Euler-Lagrange equations
for the FOCP, based on the Riemann-Liouville definition of fractional deriva-
tive. Agrawal, Defterli and Babanu (2010) and Ding, Wang and Ye (2012) have
derived the optimality conditions for several state and control variables using
Caputo definitions.

In this research article, we propose an enzyme-kinetic mathematical model
of fractional order. We also incorporate optimal control mechanism in our
fractional-order model system to optimize the respective process. Maximum
principle is used to solve the optimum control problem using Hamiltonian. Nu-
merical iterative schemes are developed to get approximate analytical solution
for the model system and also for the fractional optimal control problem. Nu-
merical simulation has also been performed with the use of Matlab programming
in order to illustrate the analytical results.

2. The fractional derivatives

To analyze the dynamical behavior of a fractional system it is necessary to use
an appropriate definition of the fractional derivative. In fact, the definition of
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the fractional order derivative is not unique, and there exist several of them,
including Grünwald-Letnikov, Riemann-Liouville, Weyl, Riesz, and the Caputo
representation. In the Caputo case, the derivative of a constant is zero and we
can properly define the initial conditions for the fractional differential equations,
so that they can be handled analogously to the classical integer case. Caputo
derivative implies a memory effect by means of a convolution between the in-
teger order derivative and a power of time (Ahmed, 2013; Toledo-Hernandez et
al., 2014a,b; Aguilar et al., 2014).

The right-sided Caputo fractional derivative and the Riemann-Liouville frac-
tional derivative are defined in the book by Li and Zeng (Li and Zeng, 2015).
The left-sided Caputo fractional derivative can be defined as:

C
a D

α
t g(t) =

1

Γ(n− α)

∫ t

a

g(n)(s)

(t− s)α−n+1
ds. (1)

The right-sided Caputo fractional derivative is defined as:

C
t D

α
b g(t) =

(−1)n

Γ(n− α)

∫ b

t

g(n)(s)

(t− s)α−n+1
ds, (2)

where α is the order of the derivative and n− 1 < α < n, Γ denotes the gamma
function, and n is considered as an integer.

The left-sided Riemann-Liouville fractional derivative is defined as:

aD
α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

g(s)

(t− s)α−n+1
ds. (3)

Furthermore, the right-sided Riemann-Liouville fractional derivative is defined
as:

tD
α
b g(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

g(s)

(t− s)α−n+1
ds, (4)

where α is the order of the derivative and n− 1 < α < n, Γ denotes the gamma
function, and n is considered as an integer, while a > 0, b > 0 are constants.

Next, the definition of the fractional derivative due to Grünwald-Letnikov (GL)
for FODEs is expressed as follows:

GLD
α
t g(t) = lim

h→0
h−α

[(t−α)/h]
∑

i=0

(−1)i(αi )g(t− ih). (5)

After some simplifications, the GL definition can be modified into the following
form:

GLD
α
t x(tm) = h−α

m
∑

i=0

vi
(α)xm−i. (6)
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Here, h denotes the size of the time step and vαi are the Grünwald-Letnikov
coefficients that are given through the expression below:

vαi = (1− (1 + α)/i)vαi−1, i = 0, 1, 2, ... and vα0 = h−α. (7)

The definition of the fractional derivative Dα
t g(t) is also constructed on the

basis of the finite differences of an equidistant grid in [0, t]. In each and every
finite interval (φ, t), t 6 T , it is assumed that the function g(ω) satisfies some
smoothness conditions. The considered grid is as follows:

0 = ω0 ≤ ω1 ≤ ω2 ≤ ... ≤ t = ωn+1 = (n+ 1)h, (8)

where ωn+1 − ωn = h.

By applying the general definition of finite differences and with the help of the
GL definition, we obtain

1

hα
∆α

hg(t) =
1

hα

(

g(ωn+1)−

n+1
∑

ζ=1

kαζ g(ωn+1−ζ)
)

, (9)

where

kαζ = −(1)ζ−1(αζ ). (10)

In general, the GL definition is a transposition of the Euler mechanism to the
fractional-order differential equations. If α → 1, then the general implicit or
explicit Euler procedure is achieved. If we compare this with the linear multi-
step methods, then the totality of divided differences leads to a lengthy process
(Podlubny and Chen, 2007).

We use the notation of the operatorDα
t for left-Caputo andDα

tf
for right-Caputo

derivative throughout the article.

3. The fractional-order model

Typical simulation and optimization models for reactive biological systems do
not necessary follow the classical mass-action law, but include equations involv-
ing empirical or semi-empirical expressions (Toledo-Hernandez et al., 2014a).
By applying the memory effect to the dynamics of such systems, the kinetics
of those reactive systems can also be accurately represented by using fractional
calculus, yielding forms similar to those obtained by the law of mass action.
The following assumptions are adopted in the formulation of the mathematical
model:

An enzyme molecule (E) having a double active site can bind with a substrate
molecule S to form a single bound substrate-enzyme complex C1. This complex
C1 may break down to form a product P or can combine with another substrate
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molecule to form a dual bound substrate-enzyme complex C2. This C2 complex
breaks down to form the product P , and the single bound complex C1 (Murray,
1989; Henry et al., 2002).

Based on the above assumptions, the reaction mechanism for this model can be
given schematically by:

S + E
k1

⇋
k
−1

C1
k2→ P + E

S + C1

k3

⇋
k
−3

C2
k4→ P + C1.

Here ki’s are the rate constants. The concentrations of the reactants and prod-
ucts are denoted by lower case letters. So, s = [S], e = [E], c1 = [C1], c2 = [C2]
and p = [P ] where [ ] denotes the concentration of the reactants.

With the assumptions here adopted, the integer order model can therefore be
formulated as:

ds

dt
= −k1se+ (k−1 − k3s)c1 + k−3c2

dc1
dt

= k1se− (k−1 + k2 + k3s)c1 + (k−3 + k4)c2

dc2
dt

= k3sc1 − (k−3 + k4)c2

de

dt
= −k1se+ (k−1 + k2)c1

dp

dt
= k2c1 + k4c2,

(11)

with initial conditions: s(0) = s0, e(0) = e0, c1(0) = 0, c2(0) = 0, and p(0) = 0.

The physicochemical nature of biological processes involves, in this case, the dy-
namic behavior of the processes with memory. Microorganism activity forms the
major source for enzymes. Enzymes (generally proteins) are catalysts that help
to convert substrates into products and are particularly efficient at speeding up
biological reactions. Microorganism growth depends on the medium, in which
the microorganisms are located. The dynamic behavior of living microorganisms
is affected by a number of factors (substrate concentration, medium conditions,
etc.) and they will adapt to changes in their environment. Thus, we can assume
that the dynamic behavior of a living microorganism does not depend only on
conditions existing at the current point in time, but also on the states of the
entire system at earlier points. Therefore, the dynamics of biological reactions
can, in general, involve memory effects (Ahmed, 2013; Toledo-Hernandez et al.,
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2014a,b).

Based on the above prerequisites, the fractional order model is thus formulated
as:

Dα
t s = −k1se+ (k−1 − k3s)c1 + k−3c2

Dα
t c1 = k1se− (k−1 + k2 + k3s)c1 + (k−3 + k4)c2

Dα
t c2 = k3sc1 − (k−3 + k4)c2

Dα
t e = −k1se+ (k−1 + k2)c1

Dα
t p = k2c1 + k4c2, (12)

with initial conditions: s(0) = s0, e(0) = e0, c1(0) = 0, c2(0) = 0, and p(0) = 0.

The above system can be written down in the matrix form as below:

Dα
t x(t) = f(x(t)), (13)

with x(0) = x0 as the initial conditions.

Here, x = (s, e, c1, c2, p)
T and f = (f1, f2, f3, f4, f5)

T , where fi, i = 1, . . . , 5 are
the right hand sides of the system (12).

4. Non-negative solutions

Initially, we prove the non-negativity of the solutions. Next, we show that the
solution x(t), with x(0) > 0, is always positive, whenever the solution exists
and the solutions will remain in ℜ5

+, where ℜ5
+ = {x ∈ ℜ5 : x ≥ 0} and

x(t) = (s(t), c1(t), c2(t), e(t), p(t))
T .

For the proof of the theorem about the nonnegativity of solutions, we need the
following Lemma (see Odibat and Shawagfeh, 2007) :

Lemma 1 (Generalized Mean Value Theorem): Let f(x) ∈ C[a, b] and Dα
t ∈

C(a, b] for 0 < α ≤ 1, then we have

f(x) = f(a) +
1

Γ(α)
Dα

t f(ξ)(x− a)α, (14)

with 0 ≤ ξ ≤ x, for all x ∈ (a, b].

Remark 1 With f(x) ∈ C[0, b] and Dα
t ∈ C(a, b] for 0 < α ≤ 1 it is clear from

Lemma 1 that if Dα
t ≥ 0, for all x ∈ (0, b), then the function f is non decreasing,

and if Dα
t ≤ 0, for all x ∈ (0, b), then the function f is non increasing for all

x ∈ [0, b].
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Theorem 1 There is a unique solution x(t) = (s(t), c1(t), c2(t), e(t), p(t))
T for

the initial value problem given by (12) and the solution remains in ℜ5
+.

Proof: The existence and uniqueness of the solution of (12) in (0, ∞) can be
established by Theorem 3.1 and Remark 3.2 of Lin (2007). We need to show
that the domain ℜ5

+ is positively invariant.
Since

Dα
t s|s=0 = (k−1c1 + k−3c2 ≥ 0,

Dα
t c1|c1=0 = k1se+ (k−3 + k4)c2 ≥ 0,

Dα
t c2|c2=0 = k3sc1 ≥ 0,

Dα
t e|e=0 = (k−1 + k2)c1 ≥ 0,

Dα
t p|p=0 = k2c1 + k4c2 ≥ 0,

by Remark 1, the solution will remain in ℜ5
+. So we can say that on each

hyperplane, bounding the non-negative orthant, the vector field points into ℜ5
+.

Therefore, the domain ℜ5
+ is a positively invariant region. ✷

5. The fractional optimal control problem (FOCP)

5.1. Formulation

Optimal control is a useful tool for appropriate steering of a chemical or bio-
chemical system. By applying the methods of optimal control, the time de-
pendent profiles of the control variable are determined to optimize a particular
performance. In the present article, as product formation constitutes a fast
irreversible step and complexes are formed in a reversible manner, so control
measures are being applied in the case of both backward reversible stages for
production process optimization. In this way, backward reactions can be re-
duced to some extent, and hence we can increase the rate of forward reaction.
Ultimately, this leads to product output optimization. The system with the
application of control can be represented schematically as:

S + E
k1

⇋
k
−1,u

C1
k2→ P + E

S + C1

k3

⇋
k
−3,u

C2
k4→ P + C1. (15)

Here, u(t) represents control input with values normalized between 0 and 1. This
means that u(t) = 1 represents the maximal use of control and u(t) = 0 signifies
no control. The control measure can be realized through reaction temperature,
pressure, enzyme concentration, activation energy etc. (Roy et al., 2014; Basir
and Roy, 2015). By applying the control u(t) at the reversible steps, the system
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(12) becomes a controlled system, which is now written down as below:

Dα
t s = −k1se+ {u(t)k−1 − k3s}c1 + u(t)k−3c2

Dα
t c1 = k1se− {u(t)k−1 + k2 + k3s}c1 + (u(t)k−3 + k4)c2

Dα
t c2 = k3sc1 − {u(t)k−3 + k4}c2 (16)

Dα
t e = −k1se+ {u(t)k−1 + k2}c1

Dα
t p = k2c1 + k4c2,

with initial conditions: s(0) = s0, e(0) = e0, c1(0) = 0, c2(0) = 0 and p(0) =
0. The system (16) is the state system and the derivative is taken in the left-
Caputo sense. The control–induced system can be written down in the matrix
form as:

Dα
t x(t) = f(x(t), u(t)), (17)

where x(t) ≡ (s(t), e(t), c1(t), c2(t), p(t))
T is the state vector, u(t) is the control

variable and t is time. We want to maximize the product amount (p), while
keeping cost as low as possible. We thus formulate the objective function as:

J(u) =

∫ tf

ti

[u2(t)− p2(t)]dt

=

∫ tf

ti

g(x(t), u(t))dt (18)

say,
where ti stands for initial time and tf for final time. Our aim is to find the
optimal control u(t) for the system (16) such that minimizes the functional
J(u) and hence to optimize the product volume (p).

5.2. The optimality of the system

Ding, Wang and Ye (2012) and Agrawal, Defterli and Baleanu (2010) have pre-
sented a general formulation and the derivation of the optimality conditions
for a FOCP for several state and control variables. Here, we have solved our
FOCP using the results from these articles. There is no difficulty in using the
respective principle in case of fractional ordered system (Agrawal, Defterli and
Baleanu, 2010).

We formulate the Hamiltonian as below

H(u(t), x(t), λ(t)) = g(x(t), u(t)) + λT f(x(t), u(t)). (19)

The co-state system with λ as the costate vector can be obtained by the following
relation:

Dα
tfλ =

∂H

∂x
=

∂g

∂x
+ λT ∂f

∂x
, with boundary conditions λi(tf ) = 0. (20)



452 Fahad Al Basir, Ahmed M Elaiw, Dipak Kesh, Priti Kumar Roy

Figure 1. Numerical solutions of the fractional model of the system for different
values of α and other parameters as given in Table 1

The optimal control function u(t) satisfies the following relation:

∂H

∂u
=

∂g

∂u
+ λT ∂f

∂u
= 0. (21)

The Euler-Lagrange optimality conditions for the FOCP with Caputo fractional
derivatives are given by relations (20) and (21). It can be noted that if the or-
der of the fractional derivatives (α) becomes equal to 1, the above system of
equations reduces to the classical optimality condition for an optimal control
problem.

Here,

λ = (λ1, λ2, λ3, λ4, λ5)
T , f = (f1, f2, f3, f4, f5)

T , fi, i = 1− 5

are the right hand sides of the system (16). Using the optimality conditions
given by equations (20) and (21), the Euler-Lagrange optimality conditions that
minimize the objective functional (18) are obtained as follows:

The adjoint system is obtained as:

Dα
tfλ1 = −λ1(k1e+ k3c1)− λ2(k3c1 − k1e)

+λ3k3c1 − λ4k1e

Dα
tfλ2 = λ1(k−1u(t)− k3s)− λ2(k−1u(t) + k2

+k3s) + λ3k3s+ λ4[k−1u(t) + k2] + λ5k2

Dα
tf
λ3 = λ1u(t)k−3 + (λ2 − λ3)(u(t)k−3 + k4) + λ5k4

Dα
tf
λ4 = (−λ1 + λ2 − λ4)k1s

Dα
tf
λ5 = −2p, (22)
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with the boundary conditions: λi(tf ) = 0, i = 1, 2, 3, 4, 5.

From relations (19) and (21), we get the expression for the optimal control
function as:

u(t) =
k−1c1(λ1 + λ4 − λ2) + k−3c2(λ1 + λ2 − λ3)

2
. (23)

Due to boundedness of the optimal control we have:

u(t) = min
{

max
{k−1c1(λ1 + λ4 − λ2) + k−3c2(λ1 + λ2 − λ3)

2
, 0
}

, 1
}

.(24)

Equation (16), together with equations (22) and (23), represent the FOCP.
Thus, the optimality system constitutes a two-point boundary value problem
including a set of fractional order differential equations.

Table 1: Values of the parameters used in the model equation
Parameter Assigned values Units

k1 3 mol L−1 hour−1

k2 3 hour−1

k3 0.6 mol L−1 hour−1

k4 3 hour−1

k−1 1 h−1

k−3 1 hour−1

6. Numerical simulation

In previous sections, we have presented some analytical results related to the
fractional mathematical model (12). We have shown that solutions of the sys-
tem are non-negative and remain always in ℜ5

+. Next, we have incorporated
optimal control with respect to the formulated fractional model to optimize the
product generation process. In this section, we explore the numerical simulation
of the fractional model system and FOCP against the outlook of the analytical
results. We apply numerical techniques for the cases of fractional-order differ-
ential equations to achieve approximate solutions. There are few analytical and
numerical methods for solving the fractional differential equations. We have
developed iterative schemes to solve the fractional order systems and proceed
through Matlab using the schemes.

The main objective of this study is to show the effect of memory (α) on enzy-
matic system and to find out the optimal control profile u(t) to minimize the
reverse reaction of enzyme substrate complex in order to optimize the product
generation process. Numerically, we have tried to solve the fractional model
system (16) and the fractional optimal control problem. The solution has been
displayed in respective figures.
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Figure 2. Numerical solution of the FOCP for α = 0.95 and α = 1 and other
parameter values as in Table 1

Numerical simulation of the fractional system (12)

The following numerical scheme is developed for solving the fractional model
(12):

s(i) = [−k1s(i−1)e(i−1)+k−1c1(i−1)−k3s(i−1)c1(i−1)+k−3c2(i− 1)]hα

−

i
∑

j=1

m(j)s(i−j),

c1(i) = [k1s(i)e(i−1)−k−1c1(i− 1)−k2c1(i−1)− k3s(i)c1(i − 1)

+k−3c2(i−1)+k4c2(i−1)]hα−

i
∑

j=1

m(j)c1(i−j),

c2(i) = [k3s(i)c1(i)− k−3c2(i− 1)− k4c2(i− 1)]hα −

i
∑

j=1

m(j)c2(i− j),

e(i) = [−k1 c1(i) + k−1s(i)e(i− 1) + k2c1(i)]h
α −

i
∑

j=1

m(j)e(i− j),
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p(i) = [−k2c1(i) + k4c2(i)]h
α −

i
∑

j=1

m(j)p(i − j).

The last term of the above equations stands for memory. The parameter m(j)
is defined as m(0) = 1 and m(j) = (1 − 1+α

j )m(j − 1), j ≥ 1. Here, s(0) = s0,

e(0) = e0, c1(0) = 0, c2(0) = 0, and p(0) = 0 are the initial conditions, and h is
the time step length, and we take h=0.05.

Figure 3. Comparison between two concentrations of product (p) in two cases:
(case I) with control, taking α = 0.95, and (case II) without control, taking
α = 1

The solution trajectory of the system (12) is plotted in Fig. 1. Here, we take
e(0) = 1 mol/L, s(0) = 1 mol/L, and see that the substrate concentration
decreases with time. This is due to the fact that as the substrate is consumed
gradually by the binding sites of the enzymes and as the reaction progresses, sin-
gle bound enzyme-substrate complex is restricted as to reverting back due to the
application of control variable in this step. Rather, complex C1 has a stronger
tendency to form the product and to bind with another substrate molecule (due
to the allosteric nature), so as to form the double bounded enzyme-substrate
complex, i.e. the second complex, C2. As the second complex is formed from
the first one, it takes some time period to reach the maximum, after which the
volumes of both complexes gradually fall off. The enzyme, which is consumed
during the process, is recuperated back at the end of the reaction. The product
(p), which is obtained from the two stages of the reaction, displays a continuous
rise in concentration, this concentration becoming stable at the end of reaction.
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Numerical simulation of the FOCP
We have provided here the iterative scheme for solving the FOCP (the sys-

tem (16), (22) and (23)). The FOCP is a two point boundary value problem
with the state and adjoint systems. The state system is an initial value whereas
adjoint system is a boundary value problem. We proceed through Matlab using
the iterative scheme described below.

We perform forward integration of the state variables from t0 to tf and sim-
ilarly, using the final condition λ(tf ) = 0, we perform the backward integration
of the adjoint variables λi from tf to t0.

The state system (16) can be solved by the following iterative scheme, de-
veloped for this purpose:

s(i)=[−k1s(i− 1)e(i− 1)+uk−1c1(i− 1)− k3s(i− 1)c1(i− 1)+uk−3c2(i− 1)]

hα −
i

∑

j=1

m(j)s(i − j),

c1(i)=[k1s(i)e(i− 1)−uk−1c1(i − 1)− k2c1(i− 1)+uk−3c2(i− 1) + k4c2(i− 1)]

hα −

i
∑

j=1

m(j)c1(i− j),

c2(i) = [k3s(i)c1(i)− uk−3c2(i− 1)− k4c2(i − 1)]hα −

i
∑

j=1

m(j)c2(i− j),

e(i) = [−k1s(i)e(i− 1) + uk−1s(i)e(i− 1) + k2c1(i)]h
α −

i
∑

j=1

m(j)e(i − j),

p(i) = [k2c1(i) + k4c2(i)]h
α −

i
∑

j=1

m(j)p(i− j).

Here, s(i) is the value of s(t) at the ith iteration. The last term of the above
equations stands for memory. Here, s(0) = s0, e(0) = e0, c1(0) = 0, c2(0)
= 0, and p(0) = 0 are the initial conditions, and h is the time step length,
and we take h=0.05. Also, the parameter m(j) is defined as m(0) = 1 and
m(j) = (1− 1+α

j )m(j − 1), j ≥ 1.

The optimal control is updated by the scheme given below:

u = min
{

max
{k−1c1(i)(λ1 + λ4 − λ2) + k−3c2(i)(λ1 + λ2 − λ3)

2
, 0
}

, 1
}

.

The adjoint system (22) is solved backward-in-time with terminal conditions
λi(tf ) = 0 using the following iterative scheme:
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λ1(i) = [−λ1(i − 1){k1e(i) + k3c1(i)} − λ2(i − 1)(k3c1(i)− k1e(i))

+ λ3(i− 1)(k3c1(i))− λ4(i)k1e(i)]h
α −

i
∑

j=1

m(j)λ1(i− j),

λ2(i) = [λ1(i)(uk−1c2 − k3s(i))− λ2(i− 1)(uk−1c2 + k2 + k3s(i))

+λ3(i)k3s(i)+λ4(i)(−uk−1c2+k2)+λ5(i)k2]h
α−

i
∑

j=1

m(j)λ2(i− j),

λ3(i) = [λ1(i)uk−3+(λ2(i)−λ3(i))(k4+uk−3)+λ5(i)k4]h
α−

i
∑

j=1

m(j)λ3(i−j),

λ4(i) = [−λ1(i) + λ2(i)− λ4(i)k1s(i)]h
α −

i
∑

j=1

m(j)λ4(i − j),

λ5(i) = [−2p(i)]hα −
i

∑

j=1

m(j)λ5(i− j).

The FOCP is solved in Matlab using the two iterative schemes given above.
We solve the state system by forward iteration method and the adjoint system
by backward iteration method, alternatively.

The optimal control approach applied to fractional differential equation
(FDS) and the effect of control are shown in Fig. 2 for different values of
α. The figure reveals the changes in concentration by using two different values
of the parameter α and other parameters as given in Table 1.

Figures 2 represent the variation of the system dynamics considering dif-
ferent control approaches (OCP and FOCP) with respect to a definite time
interval. Here we observe the changes in concentration of the product, induced
by varying the value of α. The control profile of the system is also plotted for
different values of α. It is seen that control applied to the system is reduced if
we consider the memory effect by taking the fractional order model.

In Fig. 3, we have compared the concentrations of product obtained from the
integer order system and from the fractional system to see the combined effect
of memory and optimal control on the system. We compare the concentrations
of the desired product (p) for two cases: case I: at optimum condition, taking
α = 0.95, and case II: at α = 1, when no control is applied to the system. This
figure shows that concentration depends strongly on the parameter α, i.e. the
order of the system. Taking into account the memory and control, it can be
seen that the rate of production has also increased significantly.
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7. Discussion

In this article, we have proposed a fractional order model of the enzymatic reac-
tion system. Fractional optimal control problem (FOCP) for the enzyme-kinetic
system is formulated, meant to optimize the process of product generation. Nec-
essary conditions (Euler-Lagrange optimality conditions) have been given for the
optimality of the fractional optimal control problem. Numerical simulation has
been displayed to illustrate the main results obtained using numerical iterative
schemes.

Control applied in the first, reversible stage actually directs the reaction
faster in the forward direction. By applying control in the backward reaction
stage, we get earlier binding between the initial complex and substrate in the
remaining active site, which ultimately yields the product in shorter time. The
action of control causes that all the substrate eventually becomes product, due
to the irreversibility, while the enzyme is free and the complex concentration
tends to zero. Numerical analysis of the fractional order enzymatic system gives
a better understanding for the FOCP with respect to optimization of the pro-
duction process.

8. Conclusion

The dynamical behavior of a biological reaction systems depends on memory.
Fractional-order mathematical models are endowed with memory. Therefore,
fractional-order model is more realistic than the integer-order models. The
fractional optimal control problem is solved numerically and it offers better pre-
diction concerning the product generation optimization. Thus, our analytical
and numerical analysis would be helpful for experimental researchers in pre-
dicting the dynamics of biochemical reacting systems. It can be expected that
the proposed fractional order model and the control theoretic approach can be
successfully applied to experimental investigations.
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