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Abstract: In this work, we study the equilibrium reinsurance/
new business and investment strategy for mean-variance insurers,
under the assumption that the risk aversion is a function of current
wealth level. The surplus of the agents is represented by a sum of a
compound process and a linear premium perturbed with a Brownian
component. The financial market consists of one riskless asset and
a multiple risky assets whose price processes are driven by Poisson
random measures and independent Brownian motions. We charac-
terize explicit expressions for the time-consistent Nash equilibrium
strategy and the equilibrium value function via a forward-backward
stochastic system and an equilibrium condition. An interesting fea-
ture of these FBSDEs is that a time parameter is involved, so that
they form a flow of FBSDEs. Furthermore, a feedback representa-
tion of an equilibrium solution is derived. This solution provides a
tool for comparing the equilibrium strategy with those derived in
other papers, where some special cases were studied by the dynamic
programming argument.
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1. Introduction

It is well known that some business activities, such as investing in a financial
market, purchasing reinsurance, and acquiring new business (acting as a rein-
surer for other insurers) are effective ways to control risk exposure for insurance
companies. Therefore, many problems with various objectives in insurance risk
management have been extensively investigated in the literature. For instance,
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Hipp and Plum (2000), Promislow and Young (2005) investigated the optimal
reinsurance and investment problem for an insurer in the sense of minimizing
the ruin probability. Browne (1995), Yang and Zhang (2005), Xu, Wang and
Yao (2008), and Gu et al. (2010) studied optimal investment–reinsurance
policies for an insurer who maximizes expected utility of terminal wealth in
different situations.

Besides the ruin probability minimization and the expected utility max-
imization, mean–variance criterion is another important objective function.
The optimization problems under mean-variance criterion were initiated by
Markowitz (1952), who considered a single period (one time step) model for the
portfolio optimization problem. The interesting feature of the mean-variance
model is that it allows decision makers to be risk averse. Decisions are therefore
made following two different objectives: to maximize the expected return and
to minimize the risk. The two conflicting objectives can be combined, decisions
are made so as to maximize the difference between expectation and variance of
the random quantity representing the state at terminal time. After Markowitz’s
work hundreds of papers have been published on this topic. Among others, Li
and Ng (2000) and Zhou and Li (2000) extended the model to multi-period
and continuous time settings, respectively, by using tools from stochastic
LQ control theory. Moreover, optimal investment–reinsurance problems for
insurance companies under the mean–variance criterion have recently gained a
lot of attention. See, for examples, Bäuerle (2005), Delong and Gerrard (2000),
Bai and Zhang (2008), Zeng, Li and Liu (2011), Zeng and Li (2012), and Li
and Li (2013).

Due to the existence of a non-linear function of the expectation in the
objective functional, the mean-variance criterion lacks the iterated expectation
property. Consequently, continuous-time and multi-period mean-variance
problems are time-inconsistent in the sense that the Bellman’s principle of
optimality does not hold; which means that a control, optimizing the mean–
variance utility at time zero may not be optimal for mean–variance utility at
later time. One way to get around the time-inconsistency issue is to consider
only pre-committed controls i.e. the controls that are optimal only when
viewed at the initial time instant. This is what all of the literature mentioned
above have considered. However, the study of time inconsistency by economists
goes back to Strotz (1955) who was the first to propose another way to handle
the time-inconsistent problem: the formulation of a time-inconsistent decision
problem as a noncoperative game between incarnations of the controller at dif-
ferent instants of time; Nash equilibrium of these strategies was then considered
to define the new concept of solution of the original problem. Although the
game formulation is very easy to understand when the time setting is discrete,
in a continuous-time setting, the formulation is considerably more delicate and
the concept of equilibrium solution can be presented in different ways. Ekeland
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and Pirvu (2008) first provided a precise definition of equilibrium concept in
continuous time. Further extensions of Ekeland and Pirvu’s work can be found
in Björk and Murgoci (2008), and Ekeland, Mbodji and Pirvu (2012). Recently,
Basak and Chabakauri (2010) considered a continuous time mean–variance
portfolio problem and derived the closed-form expression for its time-consistent,
or equilibrium, strategy via some extended Hamilton-Jacobi-Bellman (HJB)
equations. Björk, Murgoci and Zhou (2014) introduced the mean–variance
problem with state-dependent risk aversion. Then, by using the extended HJB
equation, obtained in Björk and Murgoci (2008), they obtained equilibrium
solutions via some well posed integral equations. In order to study the mean-
variance portfolio problem with state-dependent risk aversion and stochastic
coefficients, Hu, Jin and Zhou (2012) provided a precise definition of open loop
Nash equilibrium controls, in continuous time setting, which is different from the
feedback one, given in Björk and Murgoci (2008) and Ekeland and Privu (2008).

Concerning equilibrium strategies for optimal investment-reinsurance
problems under the mean-variance criterion, Zeng and Li (2011) were the
first to investigate Nash equilibrium strategies, where the surplus of insurers
is modeled by the diffusion model and the price process of the risky asset is
driven by geometric Brownian motion. Zeng and Li (2012) studied equilibrium
investment–reinsurance strategy for mean–variance insurers, where the surplus
process, as well as the price process of the risky asset, are modeled by geometric
Levy process. Recently, Li, Zheng and Lai (2012) investigated equilibrium
investment and reinsurance strategies for insurers under Heston’s SV model.
The work of Li, Rong and Zhao (2015) investigated equilibrium reinsurance
and investment strategies for an insurer and a reinsurer with mean–variance
criterion under the CEV (Constant Elasticity of Variance) model. However,
in all those papers the authors considerd the problems with constant risk
aversion. This assumption of a constant risk aversion parameter leads to some
(deterministic) equilibrium solutions. Especially, the dollar amount invested in
the risky asset is independent of current wealth, which turns out be unrealistic
from an economic point of view, the reason having been elaborated in Björk,
Murgoci and Zhou (2014). Moreover, in order to be economically reasonable,
Björk, Murgoci and Zhou (2014) suggest that it is more rational to allow
the risk aversion to depend on current wealth. Unfortunately, as far as we
know, there is little work in the literature concerning equilibrium strategies
for optimal investment-reinsurance problems under the mean-variance criterion
with state-dependent risk aversion. Li and Li (2013) were the first to investigate
the case, where the surplus of insurers is modeled by the diffusion model and
the price processes of the risky assets are only driven by geometric Brownian
motions. Following the approach developed by Björk, Murgoci and Zhou (2012,
2014), Li and Li (2013) have derived feedback equilibrium strategies via some
class of well posed integral equations.
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The purpose of this paper is to develop on the existing theory concerning
the study of equilibrium solutions to investment and reinsurance strategies
for mean–variance insurers, in which the state dependent on the risk aversion
coefficient is taken into consideration, this case being more reasonable that
the one with constant risk aversion, since the equilibrium strategies obtained
are proportional to current wealth. Another main contribution of this work is
that, following the idea of Hu, Jin and Zhou (2012), we consider the definition
of equilibrium strategies in the sense of open-loop one, then by means of a
variational method, we characterize an explicit representation of the equilibrium
investment and reinsurance strategies in the setting where the surplus process
is assumed to follow a geometric Lévy process, while in Li and Li (2013) the
surplus process is approximated by a diffusion process in the absence of Poisson
jumps.

We want to point out also that, in distinction from Li and Li (2013), where
some feedback equilibrium strategies are derived via several very complicated
highly nonlinear integro-differential equations, in this work we give an explicit
representation of the equilibrium strategies via simple ODEs. This is essentially
due to the difference between the two definitions of equilibria (open-loop and
feedback).

2. The model and problem formulation

Throughout this paper, let (Ω,F , (Ft)t∈[0,T ] ,P) be a filtered probability space
such that F0 contains all P-null sets, FT = F for an arbitrarily fixed finite time
horizon T > 0, and (Ft)t∈[0,T ] satisfy the usual conditions. Ft stands for the
information available up to time t and any decision made at time t is based on
this information. We also assume that all processes and random variables are
well defined and adapted in this filtered probability space.

2.1. Notations

We use C⊤ to denote the transpose of any vector or matrix C, diag(C) stands
for the diagonal matrix with the elements of a vector C on the diagonal. In ad-
dition, for some Euclidean space Rm with the inner product 〈., .〉 and Frobenius
norm |.| , we denote by 0Rm the null vector and we use the standard notations;
furthermore, for all t ∈ [0, T ] we let

1. L
p (Ω,Ft,P;R

m) : the set of random variables ξ, with E [|ξ|p] < ∞, for
any p ≥ 1.

2. S2
F (t, T ;Rm) : the space of R

m−valued, (Fs)s∈[t,T ] −adapted càdlàg pro-
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cesses Y (·), with

‖Y (·)‖2S2
F
(t,T ;Rm) = E

[
sup

s∈[t,T ]

|Y (s)|2 ds

]
< ∞.

3. L2
F (t, T ;Rm) : the space of R

m−valued, (Fs)s∈[t,T ] −adapted processes

Z (·), with

‖Z (·)‖
2
L2

F
(t,T ;Rm) = E

[∫ T

t

|Z (s)|
2
ds

]
< ∞.

4. L2
F ,p (t, T ;R

m) : the space of R
m−valued, (Fs)s∈[t,T ]−predictable pro-

cesses u (·) , with

‖u (·)‖
2
L2

F,p
(t,T ;Rm) = E

[∫ T

t

|u (s)|
2
ds

]
< ∞.

5. Lµ,2
F ,p ([t, T ]× R

∗;Rm) , where R
∗=R− {0} : the space of R

m−valued,

(Fs)s∈[t,T ] −predictable processes R (·, ·), with

‖R (·, ·)‖
2
L

µ,2

F,p
([t,T ]×R∗;Rm) = E

[∫ T

t

∫

R∗

R (s, z)
⊤
diag (ν (dz))R (s, z)ds

]
< ∞,

for any positive and σ−finite measure
ν (dz) = (ν1 (dz) , ν2 (dz) , ..., νm (dz))⊤.

2.2. Surplus process and the financial market

In this section, we first present the dynamics of the financial market and in-
surance risk model and we formulate the optimal investment–reinsurance prob-
lem for an insurer under the mean–variance criterion with state dependent risk
aversion. We use the standard assumptions of continuous-time financial models:
continuous trading is allowed, no transaction cost or tax is involved in trading
and all assets are infinitely divisible.

2.2.1. Surplus process

We consider the classical compound Poisson risk model perturbed by a diffusion,
which is generated by the randomness of claim sizes and claim occurrence times.
A classical model is the Lundberg model for the risk process, which uses a
compound Poisson process for the claims. The surplus process of the insurance
company is described by

dR (s) = cds+ σ0dW0 (s)− d





N(s)∑

j=1

Zj



 , (2.1)
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where c > 0 denotes the premium rate per unit of time, σ0 is a positive con-
stant representing the diffusion volatility parameter, Zj for j = 1, 2, ... is a
sequence of independent and identically distributed nonnegative random vari-
ables with a common distribution PZ , finite first and finite second moments

µZ =

∫ +∞

0

zPZ (dz) and σZ =

∫ +∞

0

z2PZ (dz) , respectively. Note that Zj de-

notes the amount of the j-th claim and N (s) represents the number of claims
occurring within the time horizon [0, s] . We assume that N (·) is a time homo-
geneous Poisson process with intensity λ > 0 and W0 (·) is a standard Brownian
motion. In addition, we assume that (Zj)j≥1 , N (·) and W0 (·) are mutually
independent. The premium rate c is assumed to be calculated via the expected
value principle, i.e. c = (1 + η)λµZ with safety loading η > 0. Let us note at
this point that the classical Lundberg model is given by (2.1) without reinsur-
ance and investment.

Now, we assume that the insurer can control its insurance risk by purchasing
proportional reinsurance or acquiring new business, for example, acting as a
reinsurer of other insurers, see e.g. Bäuerle (2005). Let uR (s) denote the
retention level of reinsurance or new business acquired at time s ∈ [0, T ] . When
uR (s) ∈ [0, 1] , it corresponds to a proportional reinsurance cover and shows
that the cedent should divert part of the premium to the reinsurer at the rate of
(1− uR (s)) (θ0 + 1)λµZ , where θ0 is the relative safety loading of the reinsurer,
satisfying θ0 ≥ η. Meanwhile, for each claim occurring at time s, the reinsurer
pays 100 (1− uR (s))% of the claim, while the insurer pays the rest. The case,
where uR (s) ∈ (1,+∞), corresponds to acquiring new business. The process
uR (·) is called a reinsurance strategy. Incorporating purchasing proportional
reinsurance and acquiring new business into the surplus process, changes the
equation (2.1) to

dRuR(s) (s) =

{η − θ0 + (1 + θ0)uR (s)}λµZds+ σ0uR (s) dW0 (s)− uR (s) d






N(s)∑

j=1

Zj




 .

We refer the readers, for example, to Zheng, Li and Lai (2013) and references
therein for more information about the above model.

Following ∅ksendal and Sulem (2007), the compound Poisson process
N(·)∑
j=1

Zj

can also be defined through a finite Poisson random measure γ0 (·, ·) with a
compensator having the form ν0 (dz) ds = λPZ (dz) ds, on the measurable space
([0, T ]× R

∗,B ([0, T ])⊗ B (R∗)) , as follows

N(s)∑

j=1

Zj =

∫ s

0

∫

R∗

zγ0 (dr, dz) .
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We use the notation γ̃0 (dr, dz) = γ0 (dr, dz)−ν0 (dz) dr for the compensated
jump martingale measure of γ0 (dr, dz) . Obviously, we have

∫

R∗

zν0 (dz) ds = λ

∫

R∗

zPZ (dz) ds = λµZds.

Hence, the dynamics for the surplus process becomes

dRuR(s) (s) =

{
(η − θ0 + θ0uR (s))λµZ + uR (s)

∫

R∗

zν0 (dz)

}
ds

+ σ0uR (s) dW0 (s)

− uR (s)

∫

R∗

zγ0 (dr, dz) ,

equivalently, we obtain

dRuR(s) (s) =

(η − θ0 + θ0uR (s))λµZds+ σ0uR (s) dW0 (s)− uR (s)

∫

R∗

zγ̃0 (dr, dz) .

(2.2)

2.2.2. Financial market

Besides taking reinsurance strategy, the insurer can also invest in financial mar-
ket, in which n+ 1 assets (or securities) are traded continuously. One of them
is a bond, with price P0 (s) at time s ∈ [0, T ] governed by

dP0 (s) = r0 (s)P0 (s) ds, P0 (0) = p0 > 0, (2.3)

where r0 : [0, T ] → (0,+∞) is a deterministic function, which represents the
risk-free rate. The other n assets are called risky stocks, whose price processes
Pi (·) , for i = 1, 2, ..., n, satisfy the following jump-diffusion stochastic differen-
tial equations





dPi (s) = Pi (s−)

(
ri (s) ds+

n∑
j=1

σij (s) dWj (s) +
n∑

j=1

∫

R

φij (s, z) γ̃j (ds, dz)

)
,

Pi (0) = pi > 0.

(2.4)

For (i, j) ∈ {1, 2, ..., n}
2
, ri : [0, T ] → R, σij : [0, T ] → R and φij : [0, T ]×R

∗ →
R are assumed be deterministic functions, such that ∀s ∈ [0, T ] , ri (s) ≥ r0 (s).

The process W (·) = (W1 (·) , ...,Wn (·))
⊤

is an n-dimensional standard Brow-

nian motion, and let γ (·, ·) = (γ1 (·, ·) , ..., γn (·, ·))
⊤

be an n-dimensional Pois-
son random measure on the measurable space ([0, T ]× R

∗,B ([0, T ])⊗ B (R∗)).
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For i = 1, 2, ..., n, we assume that the compensator of γi (ds, dz) has the form
µi (ds, dz) = νi (dz) ds, for some positive and σ−finite Lévy measure νi (dz) on

R
∗, such that

∫
R∗1 ∧ z2νi (dz) < ∞. Denote by ν (dz) = (ν1 (dz) , ..., νn (dz))

⊤

the n-dimensional Lévy measure. We assume that W (·) , γ (ds, dz) and
N(·)∑
j=1

Zj

are independent and write γ̃i (·, ·) = γi (·, ·)− µi (·, ·) for the compensated jump
random measure of γi (·, ·) .

2.2.3. Wealth process

Starting from an initial capital x0 > 0 at time 0, the insurer is allowed to
dynamically purchase proportional reinsurance, acquire new business and in-
vest in the financial market during the time horizon [0, T ]. A reinsurance-
investment strategy is described by an (n+ 1)-dimensional stochastic process

u (·) = (uR (·) , u1 (·) , ..., un (·))
⊤
. The process uR (s) is the retention level

of reinsurance or new business acquired at time s ∈ [0, T ] and ui (·) for
i = 1, 2, ..., n, represents the amount invested in the i-th risky stock at time
s ∈ [0, T ] . The vector uI (·) = (u1 (·) , ..., un (·))

⊤ is called an investment strat-

egy. The dollar amount invested in the bond at time s is Xx0,u(·) (s)−
n∑

j=1

ui (·),

where Xx0,u(·) (·) is the wealth process associated with the strategy u (·) and
the initial capital x0. The evolution of Xx0,u(·) (·) can be described as






dXx0,u(·) (s) = dRuR(s) (s) +

{
Xx0,u(·) (s)−

n∑
i=1

ui (s)

}
dP0 (s)

P0 (s)

+
n∑

i=1

ui (s)
dPi (s)

Pi (s−)
, s ∈ [0, T ] ,

Xx0,u(·) (0) = x0.

(2.5)

Accordingly, the wealth process solves the following SDE with jumps






dXx0,u(·) (s) ={
r0 (s)X

x0,u(·) (s) + (δ + θ0uR (s))λµZ +
n∑

i=1

ui (s) (ri (s)− r0 (s))

}
ds

+σ0u0 (s) dW0 (s) +
n∑

i,j=1

ui (s)σij (s) dWj (s)

−

∫

R∗

u0 (s) zγ̃0 (ds, dz) +
n∑

i,j=1

∫

R∗

ui (s)φij (s, z) γ̃j (ds, dz) ,

for s ∈ [0, T ] ,
Xx0,u(·) (0) = x0,

where δ = η − θ0. To simplify our notation, we shall write

r (s) = (r1 (s)− r0 (s) , ..., rn (s)− r0 (s))
⊤
,
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σ (s) = (σij (s))1≤i,j≤n
∈ R

n×n,

φ (s, z) = (φij (s, z))1≤i,j≤n
∈ R

n×n, B (s) = (λµZθ0, r (s))
⊤
, κ = δλµZ ,

D (s) =

(
σ0 0⊤

Rn

0Rn σ (s)

)
,

and

F (s, z) =

(
−z 0⊤

Rn

0Rn φ (s, z)

)
.

Then, if we define the processes W ⋆ (·) and γ̃⋆ (·, ·) by

W ⋆ (·) = (W0 (·) ,W1 (·) , ..,Wn (·))
⊤

and

γ̃⋆ (·, ·) = (γ̃0 (·, ·) , γ̃1 (·, ·) , .., γ̃n (·, ·))
⊤
,

respectively, the state equation (2.5) admits the following representation






dXx0,u(·) =
(
r0 (s)X

x0,u(·) + u (s)
⊤
B (s) + κ

)
ds+ u (s)

⊤
D (s) dW ⋆ (s)

+

∫

R⋆

u (s)
⊤
F (s, z) γ̃⋆ (ds, dz) , for s ∈ [0, T ] ,

Xx0,u(·) (0) = x0.

(2.6)

As time evolves, we need to consider the controlled stochastic differential
equation parameterized by (t, xt) ∈ [0, T ] × L

2 (Ω,Ft,P;R) and satisfied by
X (·) = Xt,xt (·)





dX (s) =
(
r0 (s)X (s) + u (s)

⊤
B (s) + κ

)
ds+ u (s)

⊤
D (s) dW ⋆ (s)

+

∫

R∗

u (s)
⊤
F (s, z) γ̃⋆ (ds, dz) , for s ∈ [t, T ] ,

X (t) = xt.

(2.7)

In this paper, a trading strategy u (·) = (uR (·) , uI (·)) is said to be admissi-
ble over a time interval [t, T ] if u (·) ∈ L2

F ,p

(
t, T ;Rn+1

)
. Note that here we use

the convention (uR (·) , uI (·)) = (uR (·) , (u1 (·) , .., un (·))) .
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2.3. Assumptions on the coefficients

We impose the following assumptions about the coefficients of the state equation

(H1) The functions r0 (·) , r (·) , σ (·) and φ (·, ·) are continuous and such that

sup
t∈[0,T ]

∫

R∗

tr
[
φ (t, z)⊤ diag (ν (dz))φ (t, z)

]
< +∞.

(H2) We assume a uniform ellipticity condition as follows

σ (s)σ (s)
⊤
+

∫

R∗

φ (s, z) diag (ν (dz))φ (s, z)
⊤
≥ εIn×n, a.e.

for some ε > 0, where In×n denotes the identity matrice of Rn×n.

Under (H1), for any (t, xt, u (·)) ∈ [0, T ] × L
2 (Ω,Ft,P;R) ×

L2
F ,p

(
t, T ;Rn+1

)
, the state equation (2.7) has a unique solution X (·) ∈

S2
F (t, T ;R) , see e.g. Meng (2014). We also have the following estimate

E

[
sup

t≤s≤T

|X (s)|
2

]
≤ K

(
1 + E

[
|xt|

2
])

, (2.8)

for some positive constant K. In particular for t = 0 and u (·) ∈
L2
F ,p

(
0, T ;Rn+1

)
, the state equation (2.6) has a unique solution X (·) ∈

S2
F (0, T ;R) with the following estimate holds

E

[
sup

0≤s≤T

|X (s)|2
]
≤ K

(
1 + |x0|

2
)
.

2.4. Mean–variance criterion with state dependent risk aversion

For any fixed (t, xt) ∈ [0, T ] × L
2 (Ω,Ft,P;R) , the objective of the insurer

is to choose a reinsurance-investment strategy u (·) in order to maximize the
conditional expectation of terminal wealth E

t [X (T )] over time interval [t, T ],
while trying at the same time to minimize financial risk. Interpreting risk as

the conditional variance Vart [X (T )] = E
t
[
X (T )2

]
−E

t [X (T )]2 and switching

from gains to be maximized to costs to be minimized, the optimization problem
becomes therefore the one to minimize

J (t, xt, u (·))
.
=

1

2
Vart [X (T )]− γ (xt)E

t [X (T )] ,

=
1

2

{
E
t
[
X (T )

2
]
− E

t [X (T )]
2
}
− γ (xt)E

t [X (T )] , (2.9)

subject to X (·) = Xt,xt (·) satisfying (2.7) and over u (·) ∈ L2
F ,p

(
t, T ;Rn+1

)
.

Here, Et [·] = E [· |Ft ], Var
t [·] = Var [· |Ft ] and γ (xt) > 0 is the risk aversion

coefficient, which is assumed be dependent on the current wealth xt, for an
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economic motivation of this choise, we refer the readers to Björk, Murgoci and
Zhou (2014). Noting that, besides the constant risk aversion parameter, there
are several state-dependent risk aversion parameters. Björk, Murgoci and Zhou
(2014) and Wu (2013) proposed, respectively, in continuous time setting and
multi-period setting, that risk aversion parameter takes a fractional form of
current wealth level. Hu, Jin and Zhou (2012) proposed that the risk aversion
parameter takes the form of a linear function of current wealth level. In our

studies we use the risk aversion function γ (xt) =
xt

µ
, with µ > 0.

3. Characterization of the equilibrium strategies

It is well known that the stochastic control problem, described above, is not
separable in the sense of dynamic programming theory. More specifically, the
problem does not satisfy the Bellman principle and cannot be solved directly
by the dynamic programming principle, because it evolves a nonlinear function
of the expectation term in the variance. Many researchers have developed the
pre-commitment solutions for the classical Markowitz’s model in some cases.
The basic idea, presented in Zhou and Li (2000) is to embed the problem
into a stochastic LQ control problem. Such an approach establishes a natural
connection of the portfolio selection problems and the standard stochastic
control models. The paper by Chighoub and Mezerdi (2013) shows how to solve
this optimization problem by applying a verification result for the stochastic
maximum principle. However, since what is optimal for the t-agent, will not
be optimal (in general) for the future s-agents, s > t, the concept of optimality
plays no role here, and the optimal pre-commitment solution of the problem
is not time-consistent. The most widely used approach is to reformulate the
problem into a game problem and then apply the backward induction method
from Björk, Murgoci and Zhou (2014), where the optimal strategy can be
interpreted as the outcome of the sub-game perfect Nash equilibria in an
interpersonal game, in which current and future selves of a hedger are different
players.

In this paper we follow an alternative method of the extended dynamic pro-
graming principle, following Hu, Jin and Zhou (2012), we adopt the concept
of open loop Nash equilibrium solution, which is, for any t ∈ [0, T ], optimal
“infinitesimally” via spike variation, and then we derive some general necessary
and sufficient condition for equilibrium strategies, by using the second order
expansion in the spike variation, in the same spirit of proving the stochastic
Pontryagin’s maximum principle for equilibriums as in Ju, Jin and Zhou (2012,
2017), where the authors studied the Brownian case only. We recall that the
approach that we follow here is very distinctly different from the dynamic pro-
gramming approach to the study of this problem as it appears in the existing
literature.
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Given an admissible strategy û (·) ∈ L2
F ,p

(
0, T ;Rn+1

)
, for any t ∈ [0, T ] and

for any ε ∈ [0, T − t) , define

uε (s) =

{
û (s) + v, for s ∈ [t, t+ ε) ,
û (s) , for s ∈ [t+ ε, T ] ,

(3.1)

where v ∈ L
2
(
Ω,Ft,P;R

n+1
)
, and we have the following definition.

Definition 1 (Open-loop Nash equilibrium) Let û (·) ∈ L2
F ,p

(
0, T ;Rn+1

)

be an admissible strategy and X̂ (·) ∈ S2
F (0, T ;R) the corresponding wealth pro-

cess. û (·) is a Nash equilibrium strategy if

lim
ε↓0

inf
1

ε

{
J
(
t, X̂ (t) , uε (s)

)
− J

(
t, X̂ (t) , û (s)

)}
≥ 0, (3.2)

for any t ∈ [0, T ] and v ∈ L
2
(
Ω,Ft,P;R

n+1
)
.

Remark 1 The above definition of Nash equlibrium strategy is different from
the one used in Björk and Murgoci (2008), Li and Li (2013), Zeng and Li
(2011), Zeng, Li and Lai (2013), since an equilibrium strategy here is defined
in the class of open-loop strategies, while in the most of the existing literature
only feedback strategies are considered. In addition, in the above definition, the
perturbation of the strategy û (·) in [t, t+ ε) will not change û (·) in [t+ ε, T ],
which is not the case with feedback strategies.

In the rest of this paper, sometimes we simply call û (·) an equilibrium strat-
egy instead of open-loop Nash equilibrium strategy when there is no ambiguity.

3.1. The adjoint equations

First, motivated by Hu, Jin and Zhou (2012) nd Tang and Li (1994) we in-
troduce the adjoint equations involved in the characterization of equilibrium
strategies. Let û (·) ∈ L2

F ,p

(
0, T ;Rn+1

)
and X̂ (·) ∈ S2

F (0, T ;R) be its corre-
sponding wealth process. For each t ∈ [0, T ], we introduce the first order ad-
joint equation defined on the time interval [t, T ] and satisfied by the processes
(p (·; ·) , q (·; ·) , r (·, ·; ·)) as follows






dp (s; t) = −r0 (s) p (s; t)ds+ q (s; t)
⊤
dW ⋆ (s) +

∫

R⋆

r (s, z; t)
⊤
γ̃⋆ (ds, dz) ,

s ∈ [t, T ] ,

p (T ; t) = −X̂ (T ) + E
t
[
X̂ (T )

]
+

X̂ (t)

µ
,

(3.3)

where

q (·, ·)=(q0 (·, ·) , q1 (·, ·) , .., qn (·, ·))
⊤and r (·, ·; ·)=(r0 (·, ·; ·) , r1 (·, ·; ·) , .., rn (·, ·; ·))⊤.
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Under (H1), equation (3.3) is uniquely solvable, moreover, there exists a con-
stant K > 0 such that the following estimate holds

‖p (.; t)‖S2
F
(t,T ;R)+‖q (.; t)‖L2

F
(t,T ;Rn+1)+‖r (., .; t)‖

L
ν∗,2

F,p
([t,T ]×R∗;Rn+1)

≤ K (1 + x0) .

(3.4)

Next, associated to the 5-tuple
(
û (·) , X̂ (·) , p (·, ·) , q (·, ·) , r (·, ·; ·)

)
we de-

fine for any t ∈ [0, T ] and s ∈ [t, T ]

H (s; t) = B (s) p (s; t)+D (s) q (s; t)+

∫

R⋆

F (s, z) diag (ν⋆ (dz)) r (s, z; t) , (3.5)

and

L (s) = −e
∫

T

s
2r0(τ)dτ

(
D (s)D (s)

⊤
+

∫

R⋆

F (s, z) diag (ν⋆ (dz))F (s, z)
⊤

)
,

s ∈ [0, T ] . (3.6)

3.2. Necessary and sufficient condition for equilibriums

The following theorem is the first main result of this work. It provides a nec-
essary and sufficient condition to characterize the open-loop Nash equilibrium
controls for the minimization problem (2.9) subject to the dynamics (2.7).

Theorem 1 Let (H1)-(H2) hold. Given an admissible strategy û (·) ∈
L2
F ,p

(
0, T ;Rn+1

)
, let for any t ∈ [0, T ] , (p (·, ·) , q (·, ·) , r (·, ·; ·)) be the unique

solution to the BSDE (3.3). Then, û (·) is an open-loop Nash equilibrium, if and
only if, the following condition holds

H (t; t) = 0, dP−a.s., dt− a.e., (3.7)

where H (·, ·) is given by (3.5) .

3.2.1. Proof of the main result

Let û (·) ∈ L2
F ,p

(
0, T ;Rn+1

)
be an admissible strategy and X̂ (·) the correspond-

ing controlled process. Consider the perturbed strategy uε (·) defined by the
spike variation (3.1) for some fixed arbitrary t ∈ [0, T ] , v ∈ L

2
(
Ω,Ft,P;R

n+1
)

and ε ∈ [0, T − t] . Denote by X̂ε (·) the solution of the state equation corre-
sponding to uε (·). Since the coefficients of the controlled state equation are
li-near, then by the standard perturbation approach, see, e.g., Tang and Li
(1994), we have

X̂ε (s)− X̂ (s) = yε (s) , s ∈ [t, T ] , (3.8)
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where yε (·) solves the following linear stochastic differential equation





dyε (s) =
{
r0 (s) y

ε (s) + 1[t,t+ε) (s) v
⊤B (s)

}
ds+ 1[t,t+ε) (s) v

⊤D (s) dW ⋆ (s)

+ 1[t,t+ε) (s)

∫

R⋆

v⊤F (s, z) γ̃⋆ (ds, dz) , s ∈ [t, T ] ,

yε (t) = 0,

(3.9)

The following two Lemmas play a fundamental role when establishing The-
orem 1.

Lemma 1 For any t ∈ [0, T ] , ε ∈ [0, T − t) and v ∈ L
2
(
Ω,Ft,P;R

n+1
)
define

uε (s) by (3.1). Under the assumption (H1), we have the following estimates,
for k ≥ 1,

sup
s∈[t,T ]

∣∣Et [yε (s)]
∣∣2k = O

(
ε2k
)
, (3.10)

sup
s∈[t,T ]

E
t
[
|yε (s)|

2k
]
= O

(
εk
)
. (3.11)

In addition, we have the equality

J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)

= −

∫ t+ε

t

{〈
E
t [H (s; t)] , v

〉
+

1

2
〈L (s) v, v〉

}
ds+ o (ε) . (3.12)

Proof. See Appendix A.1.

Lemma 2 The following two statements are equivalent

1) lim
ε↓0

1

ε

∫ t+ε

t

E
t [H (s; t)] ds = 0, dP− a.s, ∀t ∈ [0, T ] .

2) H (t; t) = 0, dP− a.s, dt− a.e.

Proof. See Appendix A.2.
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Proof of the Theorem 1 Given an admissible strategy û (·) ∈
L2
F ,p

(
0, T ;Rn+1

)
, for which (3.7) holds, according to Lemma 2 we have for

any t ∈ [0, T ]

lim
ε↓0

1

ε

∫ t+ε

t

E
t [H (s; t)] ds = 0.

Then by the representation (3.12) for any t ∈ [0, T ] and for any v ∈
L
2
(
Ω,Ft,P;R

n+1
)
, this yields

lim
ε↓0

1

ε

{
J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)}

= − lim
ε↓0

∫ t+ε

t

{〈
E
t [H (s; t)] , v

〉
+

1

2
〈L (s) v, v〉

}
ds,

= −
1

2
〈L (t) v, v〉 ,

≥ 0.

Hence, û (·) is an equilibrium strategy.
Conversely, assume that û (·) is an equilibrium strategy. Then, by (3.2)

together with (2.13) , for any (t, u) ∈ [0, T ] × R
n+1 the following inequality

holds

lim
ε↓0

〈
1

ε

∫ t+ε

t

E
t [H (s; t)] ds, u

〉
+

1

2
〈L (t)u, u〉 ≤ 0. (3.13)

Now, we define

Ψ (t, u) =

〈
lim
ε↓0

1

ε

∫ t+ε

t

E
t [H (s; t)] ds, u

〉
+
1

2
〈L (t)u, u〉 , ∀ (t, u) ∈ [0, T ]×R

n+1.

(3.14)

Easy manipulations show that the inequality (3.13) is equivalent to

Ψ (t, 0) = max
u∈Rn+1

Ψ(t, u) , dP− a.s, ∀t ∈ [0, T ] . (3.15)

It is easy to prove that the maximum condition (3.15) leads to the following
condition, ∀t ∈ [0, T ]

Ψu (t, 0) = lim
ε↓0

1

ε

∫ t+ε

t

E
t [H (s; t)] ds = 0, dP− a.s. (3.16)

According to Lemma 1, the equality (3.7) follows immediately. This completes
the proof.
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3.3. An explicit representation of the equilibrium control

In this section, we look at the (equilibrium) efficient frontier of the mean-
variance problem, but with the risk aversion parameter being state-dependent.
We face an ODE-type system of two equations instead of solving some very
complicated highly nonlinear integro-differential equations as in Björk, Murgoci
and Zhou (2014) and Li and Li (2013). The key point in the explicit resolution
of the problem is that the adjoint process may be separated into functions of
time and state variables. Then, one needs only to solve some linear ODEs in
order to completely determine the equilibrium control. By standard arguments,
we will prove the following result, first letting ∀t ∈ [0, T ]

α (t) =
e−
∫ T

t
r0(s)ds

µ

(
1−

2

µ

∫ T

t

e−
∫

T

τ
3r0(ι)dιΦ (τ) dτ

) 1
2

,

and Φ (t) = B (t)⊤ Θ (t)B (t) with

Θ (t) =

(
D (t)D (t)

⊤
+

∫

R∗

F (t, z) diag (ν⋆ (dz))F (t, z)
⊤

)−1

.

Proposition 1 Let (H1)-(H2) hold. The stochastic mean-variance control
problem (2.9) subject to the SDE (2.7) , has an open-loop Nash equilibrium so-
lution having the following feedback representation

ûR (s) = α (s)λµZθ0

(
σ2
0 +

∫ +∞

0

z2ν0 (dz)

)−1

X̂ (s) , s ∈ [0, T ] , (3.17)

ûI (s) = α (s)

(
σ (s)σ (s)

⊤
+

∫

R∗

φ (s, z) diag (ν (dz))φ (s, z)
⊤

)−1

r (s) X̂ (s) ,

s ∈ [0, T ] . (3.18)

Moreover, the associated expected terminal wealth is

E

[
X̂ (T )

]
= e

∫
T

0
(r0(l)+α(l)Φ(l))dl

(
x0 + κ

∫ T

0

e−
∫

τ

0
(r0(l)+α(l)Φ(l))dldτ

)
, (3.19)

and the corresponding variance of the terminal wealth is

Var
[
X̂ (T )

]
=

∫ T

0

e−2
∫

T

τ
2(r0(l)+α(l)Φ(l))dlα (τ)

2
Φ (τ)E

[
X̂ (τ)

2
]
dτ, (3.20)
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where, for any s ∈ [0, T ] , the associated expected square wealth is given by

E

[
X̂ (s)

2
]

= e
∫

s

0 (2r0(l)+(2α(l)+α(l)2)Φ(l))dl

×

{
x2
0 +κ

∫ s

0

e
∫

τ

0
−(r0(l)+(α(l)+α(l)2)Φ(l))dl

(
x0 +κ

∫ τ

0

e
∫

ς

0
−(r0(l)+α(l)Φ(l))dldς

)
dτ

}
.

Proof. The result of the previous subsections leads to the following flow of
forward and backward stochastic differential system with jumps, parameterized
by t:






dX̂ (s) =
(
r0 (s) X̂ (s) + û (s)⊤ B (s) + κ

)
ds+ û (s)⊤ D (s) dW ⋆ (s)

+

∫

R∗

û (s)⊤ F (s, z) γ̃⋆ (ds, dz) , s ∈ [0, T ] ,

dp (s; t) = −r0 (s) p (s; t)ds+ q (s; t)
⊤
dW ⋆ (s) +

∫

R∗

r (s, z; t)
⊤
γ̃⋆ (ds, dz) ,

0 ≤ t ≤ s ≤ T,

X̂ (0) = x0, p (T ; t) = −
(
X̂ (T )− E

t
[
X̂ (T )

])
+

X̂ (t)

µ
, for t ∈ [0, T ] ,

(3.21)

with the condition

B (t) p (t; t)+D (t) q (t; t)+

∫

R∗

F (t, z) diag (ν⋆ (dz)) r (t, z; t) = 0, dP−a.s., dt−a.e.

(3.22)

From the terminal condition of (3.21), we consider the following Ansatz

p (s; t) = −M (s)
(
X̂ (s)− E

t
[
X̂ (s)

])
+Υ(s) X̂ (t) , ∀0 ≤ t ≤ s ≤ T (3.23)

for some deterministic functions M (·) ,Υ(·) ∈ C1 ([0, T ] ,R) such that, M (T ) =

1 and Υ (T ) =
1

µ
. We would like to determine the equations that M (·) and

Υ (·) should satisfy. To this end we differentiate (3.23) and we get

dp (s; t) =

−

(
dM

ds
(s)
(
X̂ (s)− E

t
[
X̂ (s)

])
+

dΥ

ds
(s) X̂ (t)

)
ds

−M (s) d
(
X̂ (s)− E

t
[
X̂ (s)

])
. (3.24)

We remark that

dEt
[
X̂ (s)

]
=
(
r0 (s)E

t
[
X̂ (s)

]
+ E

t
[
û (s)

⊤
]
B (s) + κ

)
ds,
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then

d
(
X̂ (s)− E

t
[
X̂ (s)

])
=

(
r0 (s)

(
X̂ (s)− E

t
[
X̂ (s)

])
+
(
û (s)− E

t [û (s)]
)⊤

B (s)
)
ds

+û (s)⊤ D (s) dW (s) +

∫

R∗

û (s)⊤ F (s, z) γ̃⋆ (ds, dz) . (3.25)

Now, by invoking (3.24) and (3.25) , and then by comparing with the BSDE
in (3.21), we easily check that

− r0 (s)
(
−M (s)

(
X̂ (s)− E

t
[
X̂ (s)

])
+Υ(s) X̂ (t)

)

= −
dM

ds
(s)
(
X̂ (s)− E

t
[
X̂ (s)

])
+

dΥ

ds
(s) X̂ (t)

−M (s)
{
r0 (s)

(
X̂ (s)− E

t
[
X̂ (s)

])
+
(
û (s)− E

t [û (s)]
)⊤

B (s)
}
,

(3.26)

and also we get

(q (s; t) , r (s, z; t)) =
(
−M (s)D (s)⊤ û (s) ,−M (s)F (s, z)⊤ û (s)

)
. (3.27)

Moreover, by taking (3.23) and (3.27) in (3.22) , we obtain

B (t)Υ (t) X̂ (t)−M (t)

(
D (t)D (t)

⊤
+

∫

R∗

F (t, z) diag (ν⋆ (dz))F (t, z)
⊤

)
û (t)

= 0.

Subsequently, we obtain that û (t) admits the following representation

û (t) = M (t)−1 Θ(t)B (t)Υ (t) X̂ (t) . (3.28)

Next, from (3.26) and (3.28) we obtain

0 =

(
−
dM

ds
(s)− 2r0 (s)M (s) +M (s)

−1
Φ (s)Υ (s)

)(
X̂ (s)− E

t
[
X̂ (s)

])

+

(
dΥ

ds
(s) + r0 (s)Υ (s)

)
X̂ (t) . (3.29)

This suggests that the functions M (·) and Υ (·) solve the following system of
equations






dM

ds
(s) + 2r0 (s)M (s)−

1

M (s)
Φ (s)Υ (s) = 0, s ∈ [0, T ] ,

dΥ

ds
(s) + r0 (s)Υ (s) = 0, s ∈ [0, T ] ,

M (T ) = 1, Υ(T ) =
1

µ
.

(3.30)



Equilibrium reinsurance-investment strategy for mean-variance insurers 507

Note that the second equation in (3.30) is a linear ordinary differential equa-
tion with unique solution given by

Υ (t) =
1

µ
e

∫ T

t
r0(τ)dτ , s ∈ [0, T ] .

Now, by multipling by M (s), the first equation in (3.30) can be rewritten
as

{
dM

ds
(s)M (s) + 2r0 (s)M

2 (s) = Φ (s)Υ (s) , s ∈ [0, T ] ,

M (T ) = 1.

By the change of variable z(s) = M2 (s) we get

{
dz

ds
(s) + 4r0 (s) z(s) = 2Φ (s)Υ (s) , s ∈ [0, T ] ,

z (T ) = 1,

which is a linear ordinary differential equation that is explicitly solved by

z (t) = e
4
∫ T

t
r0(ι)dι

(
1−

∫ T

t

e−
∫

T

τ
4r0(ι)dι2Φ (τ) Υ (τ) dτ

)
, t ∈ [0, T ] .

Then

M (t) = e2
∫ T

t
r0(ι)dι

(
1−

2

µ

∫ T

t

e−
∫

T

τ
3r0(ι)dιΦ (τ) dτ

) 1
2

, t ∈ [0, T ] . (3.31)

By (3.28) we get

(ûR (t) , ûI (t))
T
= α (t)Θ (t) (λµZθ0, r (t))

T
X̂ (t) . (3.32)

Note that ∀t ∈ [0, T ] , Θ(t) can be represented as follows

Θ (t) =




(
σ2
0 +

∫ +∞

0

z2ν0 (dz)

)−1

0⊤
Rn

0Rn

(
σ (t)σ (t)

⊤
+

∫

R⋆

φ (t, z) diag (ν (dz))φ (t, z)
⊤

)−1


.

It follows immediately that the open loop Nash equilibrium solution is given
by (3.17) and (3.18).
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Next, we derive the equilibrium efficient frontier of the mean-variance prob-
lem. By substituting the equilibrium solution (3.17) and (3.18) into the wealth
process we obtain






dX̂ (s) =
{
(r0 (s) + α (t) Φ (s)) X̂ (s) + κ

}
ds

+ X̂ (s)α (s)B (s)⊤ Θ(s)D (s) dW ⋆ (s)

+X̂ (s)α (s)

∫

R⋆

B (s)⊤Θ(s)F (s, z) γ̃⋆ (ds, dz) , for s ∈ [t, T ] ,

X̂ (0) = x0.

(3.33)

By taking expectations on both sides of (3.33) , we represent E

[
X̂ (s)

]
as

follows




dE
[
X̂ (s)

]
=
{
(r0 (s) + α (s)Φ (s))E

[
X̂ (s)

]
+ κ
}
ds,

E

[
X̂ (0)

]
= x0,

(3.34)

and then, the unique solution to the linear ordinary differential equation (3.34)
is explicitly given by

E

[
X̂ (s)

]
= e

∫
s

0
(r0(l)+α(l)Φ(l))dl

(
x0 + κ

∫ s

0

e−
∫

τ

0
(r0(l)+α(l)Φ(l))dldτ

)
,

which implies (3.19) .

Now, applying Itô’s formula to s → X̂ (s)2 we get

dX̂ (s)
2
=
{(

2r0 (s) +
(
2α (t) + α (s)

2
)
Φ (s)

)
X̂ (s)

2
+ 2κX̂ (s)

}
ds

+2X̂ (s)2 α (s)B (s)⊤ Θ(s)D (s) dW ⋆ (s)

+

∫

R∗

{(
B (s)

⊤
Θ(s)F (s, z)

)2
+ 2X̂ (s)B (s)

⊤
Θ(s)F (s, z)

}
γ̃⋆ (ds, dz) .

Taking the expectation, we conclude that E

[
X̂ (s)2

]
satisfies the following

linear ordinary differential equation






dE
[
X̂ (s)2

]
={(
2r0 (s) +

(
2α (s) + α (s)

2
)
Φ (s)

)
E

[
X̂ (s)

2
]
+ 2κE

[
X̂ (s)

]}
ds,

E

[
X̂ (0)

2
]
= x2

0.
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A variation of constant formula leads to the following representation, for
s ∈ [0, T ] ,

E

[
X̂ (s)

2
]

= e
∫

s

0 (2r0(l)+(2α(l)+α(l)2)Φ(l))dl

×

(
x2
0 + κ

∫ s

0

e
∫

τ

0
−(r0(l)+{α(l)+α(l)2}Φ(l))dl

{
x0+κ

∫ τ

0

e
∫

ς

0
−(r0(l)+α(l)Φ(l))dldς

}
dτ

)
.

On the other hand, simple computations show that Var
[
X̂ (·)

]
=

E

[
X̂ (·)

2
]
− E

[
X̂ (·)

]2
satisfies the following ODE




dVar

[
X̂ (s)

]
=
{
2 (r0 (s) + α (s)Φ (s))Var

[
X̂ (s)

]
+α (s)2 Φ (s)E

[
X̂ (s)2

]}
ds,

Var
[
X̂ (0)

]
= 0,

which is explicitly solved by

Var
[
X̂ (s)

]
=

∫ s

0

e−2
∫

s

τ
2(r0(l)+α(l)Φ(l))dlα (τ)

2
Φ (τ)E

[
X̂ (τ)

2
]
dτ,

which implies (3.20) . This completes the proof.

Remark 2 A simple computation shows that the objective function value of the
equilibrium strategy û (·) is given by

J (0, x0, û (·))

=
1

2

∫ T

0

e−2
∫

T

τ
2(r0(l)+α(l)Φ(l))dlα (τ)

2
Φ (τ)E

[
X̂ (τ)

2
]
dτ

−
x0

µ
e
∫

T

0
(r0(l)+α(l)Φ(l))dl

(
x0 + κ

∫ T

0

e−
∫

τ

0
(r0(l)+α(l)Φ(l))dldτ

)
.

4. Special cases

Equilibrium strategies for mean–variance models under state dependent risk
aversion have been studied, in particular, in Björk, Murgoci and Zhou (2014),
Hu, Jin and Zhou (2012), and Li and Li (2013), among others, in different
frameworks. In this section, we will compare our results with some of the
existing ones in the literature.

4.1. Cramér–Lundberg model

Suppose that the surplus of the insurer is modelled with the classical Cramér–
Lundberg (CL) model (i.e. the model (2.2), in which σ0 = 0). In addition,
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we assume that the financial market consists of one risk-free asset, whose price
process is given by (2.3) and n risky assets, whose price processes do not have
jumps (i.e. the model (2.4) with φij (s, z) = 0, ds−a.e.). Then, the dynamics of
the wealth processX (·) = Xt,xt (·), which corresponds to an admissible strategy
u (·) = (uR (·) , uI (·)) and the initial pair (t, xt) ∈ [0, T ] × L

2 (Ω,Ft,P;R) can
be described by





dX (s) = {r0 (s)X (s) + (δ + θ0uR (s))λµZ + uI (s) r (s)} ds

+ uI (s)
⊤
σ (s) dW (s)− uR (s)

∫

R⋆

zγ̃0 (ds, dz) , for s ∈ [t, T ] ,

X (t) = xt.

(4.1)

In this case, the equilibrium strategy, given by the expressions (3.17) and
(3.18), changes to

ûR (s) =
λµZθ0e

−

∫ T

s
r0(ṽ)dṽ

µ

(
1−

2

µ

∫ T

s

e−
∫

T

v
3r0(ũ)dũΦ (ṽ) dṽ

) 1
2 (∫ +∞

0

z2ν0 (dz)

)X̂ (s) ,

s ∈ [0, T ] , (4.2)

ûI (s) =
e
−

∫ T

s
r0(ṽ)dṽ

µ

(
1−

2

µ

∫ T

s

e−
∫

T

v
3r0(ũ)dũΦ (ṽ) dṽ

) 1
2

(
σ (s)σ (s)

⊤
)−1

r (s) X̂ (s) ,

s ∈ [0, T ] , (4.3)

where

Φ (t) =




(λµZθ0)
2

(
σ2
0 +

∫ +∞

0

z2ν0 (dz)

) + r (s)
⊤
(
σ (s)σ (s)

⊤
)−1

r (s)


 .

The above equilibrium reinsurance-investment solution is comparable with
the one obtained in Li and Li (2013) in which the equilibrium is, however, defined
within the class of feedback controls. Note that in Li and Li (2013) the authors
have used the approach developed by Björk, Murgoci and Zhou (2014) and
they have obtained feedback equilibrium solutions via some well posed integral
equations, for which they had not obtained explicit solutions.
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4.2. The investment only

We conclude this section with the case where the insurer is not allowed to
purchase reinsurance or acquire new business, i.e. uR (s) ≡ 1, and the financial
market consists of one risk-free asset, whose price process is given by (2.3)
and n risky assets whose price processes do not have jumps. In this case a
trading strategy u (·) reduces to an n-dimensional stochastic process uR (s) =

(u1 (s) , ..., un (s))
⊤
, where ui (s) represents the amount invested in the i-th risky

stock at time s. The dynamics of the wealth process X (·), which corresponds
to an admissible investment strategy uR (·) and initial pair (t, ξ) ∈ [0, T ] ×
L
2 (Ω,Ft,P;R) can be described by






dX (s) =
{
r0 (s)X (s) + ηλµZ + uR (s)

⊤
r (s)

}
ds+ uR (s)

⊤
σ (s) dW (s)

−

∫ +∞

0

zγ̃0 (ds, dz) , for s ∈ [t, T ] ,

X (0) = x0.

(4.4)

Similarly as in the previous section, for the investment only case, we can
derive the open loop equilibrium strategy, which is described as

ûI (s) =
e
−

∫ T

s
r0(ṽ)dṽ

µ

(
1−

2

µ

∫ T

s

e−
∫

T

v
3r0(ũ)dũΦ (ṽ) dṽ

) 1
2

(
σ (s) σ (s)

⊤
)−1

r (s) X̂ (s) ,

(4.5)

where Φ (t) = r (s)
⊤
(
σ (t) σ (t)

⊤
)−1

r (s). This essentially covers the solution

obtained by Hu, Jin and Zhou (2012).

5. Numerical results

In this section we provide a numerical example to illustrate our results. Without
loss of generality, we only consider the situation when all the parameters of the
financial market are assumed be constants. For the case, in which the surplus of
the insurers is modelled by (2.2), we suppose that the financial market consists
of one risk-free asset, whose price process is given by (2.3) and only one risky
asset whose price process is modelled by the geometric Lévy process





dP (s) = P (s−)

(
r1ds+ σdW (s) + d

(
Ñ(s)∑
i=1

Yi

))
,

P (0) = p > 0.

(5.1)
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Here r and σ are assumed to be constants, such that r1 ≥ r0. The process
W (·) is a one-dimensional standard Brownian motion, Yi for i = 1, 2, ... is a
sequence of independent and identically distributed nonnegative random vari-
ables with a common distribution PY , with finite first and finite second moments

µY =

∫ +∞

0

zPY (dz) and σY =

∫ +∞

0

z2PY (dz) , respectively. Note that Yi de-

notes the amount of the i-th claim and Ñ (s) represents the number of claims

occurring within the time horizon [0, s] . We assume that Ñ (·) is a time homo-
geneous Poisson process with intensity λY > 0. We assume also that (Yi)i≥1 ,

Ñ (·) and W (·) are mutually independent. A trading strategy π(.) is described
by two-dimensional stochastic processes (uR(.), uI(.)), where uR(s) represents
the retention level of reinsurance or new business acquired at time s ∈ [0, T ] and
uI(s) represents the amount invested in the risky stock at time s. The dynam-
ics of the wealth process X(.) = Xt,xt (·), which corresponds to an admissible
strategy u(.) = (uR(.), uI(.)) and initial pair (t, xt) ∈ [0, T ] × L

2 (Ω,Ft,P;R)
can be described by





dX (s) = {r0X (s) + (δ + (1 + θ0)uR (s))λµZ + (r1 − r0)uI (s)} ds
+ uR (s)σ0dW0 (s)

+ uI (s)σdW (s)− uR (s) d

(
N(s)∑
i=1

Zi

)
+ uI (s) d

(
Ñ(s)∑
i=1

Yi

)
,

for s ∈ [0, T ] ,
X (t) = xt.

In this case, the equilibrium strategies, given by the expressions (3.17) and
(3.18), have the following representations

ûR (s) = α (t)

(
λZµZθ0

σ2
0 + λZσ

2
Z

)
X̂ (t) , (5.2)

ûI (s) = α (t)

(
r1 − r0 + λY mY

σ2 + λY σ
2
Y

)
X̂ (t) , (5.3)

where

α (t) =

e−r0(T−t)

(
µ−

2

3r0

(
1− e−3r0(T−t)

)( (λZµZθ0)
2

σ2
0 + λZσ

2
Z

+
(r1 − r0 + λY mY )

2

σ2 + λY σ
2
Y

))− 1
2

.

More specifically, in the framework of classical Cramér–Lundberg modelling,
i.e. σ0 = 0 and λY = 0, the expressions (5.2) and (5.3) reduce to the following
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representations

ûR (t) = α̃ (t)

(
λZµZθ0

λZσ
2
Z

)
X̂ (t) ,

ûI (t) = α̃ (t)

(
r1 − r0

σ2

)
X̂ (t) ,

with

α̃ (t) = e−r0(T−t)

(
µ−

2

3r0

(
1− e−3r0(T−t)

)((λZµZθ0)
2

λZσ
2
Z

+
(r1 − r0)

2

σ2

))−1

.

Let us denote by c1 (.), and c2 (.) the propensities to equilibrium reinsurance
strategy and investment strategy, respectively, i.e.

c1 (t) ≡
ûR (t)

X̂ (t)
≡ α (t)

(
λZµZθ0

σ2
0 + λZσ

2
Z

)

and

c2 (t) ≡
ûI (t)

X̂ (t)
≡ α (t)

(
r1 − r0 + λY mY

σ2 + λY σ
2
Y

)
.

We also denote by c3 (.) and c4 (.) the propensities to reinsurance and investment
strategies in the case of Cramér–Lundberg model, i.e.

c3 (t) ≡ α̃ (t)

(
λZµZθ0

λZσ
2
Z

)

and

c4 (t) ≡ α̃ (t)
r1 − r0

σ2
.

We illustrate the propensities c1 (.), c2 (.) , c3 (.) and c4 (.) with various
choices of µ. We have used the parameter values: T = 5; λ = 0.4; µY = 0.6;
θ0 = 1.5; r0 = 0.35; σ0 = 0.5; σY = 1; r1 = 0.7; λZ = 0.5; µZ = 0.3; σ = 0.3;
σZ = 0.5.

Figures 1 and 2 show that the propensity to equilibrium amount invested
in the risky asset and the propensity to equilibrium reinsurance strategy both
increase with respect to time. Then, Figs. 3 and 4 plot the propensities to
reinsurance and investment strategies for Cramér–Lundberg model for µ = 1,
0.5, 0.2, 0.1.

In addition, Figs. 1 and 3 illustrate that the proportion of wealth invested
in risky stock is decreasing with respect to the coefficient of risk aversion µ,
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Figure 1. The equilibrium investment proportion in our model with different
values of µ

i.e., the more the insurer dislikes risk, the lower investment proportion the
insurer invests in the risky asset. Figures 2 and 4 tell us that the equilibrium
reinsurance proportion decreases with respect to the coefficient of risk aversion,
that is to say, the more risk averse the insurer is, the less insurance proportion
the insurer keeps.

On comparing the results in our model (Figs. 1 and 2) with the ones
obtained in the case of Cramér–Lundberg model (Figs. 3 and 4), we can see
that in the framework of CL model both the equilibrium investment proportion
and the equilibrium reinsurance proportion increase. Especially, the insurer
should invest in the second case a higher proportion of wealth in the risky
asset.

6. Conclusion and future work

In this paper, the open-loop time-consistent equilibrium control is investigated
for a kind of investment and reinsurance problem under the assumption that
the risk aversion is a function of current wealth level for insurer with mean–
variance utility. We provide a necessary and sufficient condition for equilibrium
and derive explicitly the time-consistent investment–reinsurance strategy and
the equilibrium value function. Some comparison results are illustrated. Fur-
thermore, we present some numerical illustrations to demonstrate the results
we have derived. For future research, the closed-loop time-consistent solution
should be studied.
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Figure 2. The equilibrium reinsurance proportion in our model with different
values of µ
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Figure 3. The equilibrium reinsurance proportion in CL model with different
values of µ
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Figure 4. The equilibrium investment proportion in CL model with different
values of µ
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7. Appendix: Additional proofs

A.1. Proof of Lemma 1

First let us prove (3.10). By taking conditional expectations into (3.9) , we find
that
{

dEt [yε (s)] =
{
r0 (s)E

t [yε (s)] + v⊤B (s) 1[t,t+ε) (s)
}
ds , s ∈ [t, T ] ,

E
t [yε (t)] = 0.

(A.1.1)

Accordingly, in the integral form we get for any s ∈ [t, T ]

E
t [yε (s)] =

∫ s

t

{
r0 (τ)E

t [yε (τ)] + v⊤B (τ) 1[t,t+ε) (τ)
}
dτ. (A.1.2)

Thus,

∣∣Et [yε (s)]
∣∣2k =

∣∣∣∣
∫ s

t

r0 (τ)E
t [yε (τ)] dτ + v⊤

∫ s

t

B (τ) 1[t,t+ε) (τ) dτ

∣∣∣∣
2k

. (A.1.3)

By using the inequality (a+ b)2k ≤ 22k−1
(
a2k + b2k

)
, for a, b ∈ R, we obtain

∣∣Et [yε (s)]
∣∣2k ≤

22k−1

(∣∣∣∣
∫ s

t

r0 (τ)E
t [yε (τ)] dτ

∣∣∣∣
2k

+

∣∣∣∣v
⊤

∫ s

t

B (τ) 1[t,t+ε) (τ) dτ

∣∣∣∣
2k
)
.

(A.1.4)

Moreover, by Hölder’s inequality and the bondedness condition of r0 (·) and
B (·) we deduce that

∣∣∣∣
∫ s

t

r0 (τ)E
t [yε (τ)] dτ

∣∣∣∣
2k

≤

{(∫ s

t

∣∣Et [yε (τ)]
∣∣2k dτ

) 1
2k
(∫ s

t

|r0 (τ)|
2k

2k−1 dτ

) 2k−1

2k

}2k

,

≤ K1

∫ s

t

∣∣Et [yε (τ)]
∣∣2k dτ , (A.1.5)
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and
∣∣∣∣v

⊤

∫ s

t

B (τ) 1[t,t+ε) (τ) dτ

∣∣∣∣
2k

≤ |v|
2k






(∫

[t,t+ε]

|B (τ)|
2k

dτ

) 1
2k
(∫

[t,t+ε]

1dτ

) 2k−1

2k






2k

,

≤ K2 |v|
2k

ε2k, (A.1.6)

for some constants K1, K2 > 0. Invoking (A.1.5) and (A.1.6) in (A.1.4) we
obtain with C1 = 22k−1K1 and C2 = 22k−1K2 that

∣∣Et [yε (s)]
∣∣2k ≤ C1

∫ s

t

∣∣Et [yε (u)]
∣∣2k dτ + C2 |v|

2k
ε2k.

By Grönwall Inequality we deduce that

∣∣Et [yε (s)]
∣∣2k ≤ C2 |v|

2k
ε2k exp (C1 (s− t)) ,

which implies that

sup
s∈[t,T ]

∣∣Et [yε (s)]
∣∣2k ≤ C2 |v|

2k
ε2k exp (C1 (T − t)) .

Then,

sup
s∈[t,T ]

∣∣Et [yε (s)]
∣∣2k = O

(
ε2k
)
.

The estimation (3.11) is a direct consequence of Lemma 2.1. in Tang and Li
(1994).

To prove (3.12), we consider the difference

J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)

=
1

2
E
t
[(

X̂ε (T )
2
− X̂ (T )

2
)]

−
1

2

(
E
t
[
X̂ε (T )

]2
− E

t
[
X̂ (T )

]2)

−
X̂ (t)

µ

(
E
t
[
X̂ε (T )

]
− E

t
[
X̂ (T )

])
.

Noting that, by the second order Taylor-Lagrange expanssion, see, e.g., Yong
and Zhou (1999), and from (3.8) it results that

J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)

= E
t

[
1

2
yε (T )

2
+

(
X̂ (T )− E

t
[
X̂ (T )

]
−

X̂ (t)

µ

)
yε (T )−

1

2
E
t [yε (T )]

2

]
.

(A.1.7)
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On the other hand, from (3.10) the following estimate is deduced

1

2
E
t [yε (T )]

2
= o (ε) .

Then, from the terminal conditions in the adjoint equation (3.3), it follows
that

J
(
t, X̂ (t) , uε (·)

)
−J

(
t, X̂ (t) , û (·)

)
= −E

t

[
p (T ; t) yε (T )−

1

2
yε (T )

2

]
+o (ε) .

(A.1.8)

Now, by applying Itô’s formula to s 7→ p (s; t) yε (s) on [t, T ], we get, by
taking conditional expectations,

E
t [p (T ; t) yε (T )] = E

t

[∫ t+ε

t

{
v⊤B (s) p (s; t) + v⊤D (s) q (s; t)

+

∫

R∗

v⊤F (s, z) diag (ν⋆ (dz)) r (s, z; t)
}
ds

]
. (A.1.9)

Again, by applying Itô’s formula to s 7→ e

∫ T

s
2r0(τ)dτyε (s)

2
on [t, T ] , we get,

by taking conditional expectations,

E
t
[
yε (T )2

]
= E

t

[∫ t+ε

t

e

∫ T

s
2r0(τ)dτ

{
2v⊤B (s) yε (s)

+v⊤
(
D (s)D (s)

⊤
+

∫

R∗

F (s, z) diag (ν⋆ (dz))F (s, z)
⊤

)
v

}
ds

]
.

(A.1.10)

Moreover, we conclude from (H1) together with (3.10)− (3.11) that

E
t

[∫ t+ε

t

e

∫ T

s
2r0(τ)dτv⊤B (s) yε (s) ds

]
≤ Kε

1
2

(∫ t+ε

t

E
t
[
yε (s)

2
]
ds

) 1
2

,

≤ Kε

(
sup

s∈[t,T ]

E
t
[
|yε (s)|

2
]) 1

2

,

= o (ε) . (A.1.11)
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By taking (A.1.8)− (A.1.11) in (A.1.7), it can be deduced that

J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)
=

−E
t

[∫ t+ε

t

{
v⊤B (s) p (s; t) + v⊤D (s) q (s; t)

+

∫

R∗

v⊤F (s, z) diag (ν⋆ (dz)) r (s, z; t)

−
1

2
e
∫

T

s
2r0(τ)dτv⊤

(
D (s)D (s)

⊤
+

∫

R∗

F (s, z) diag (ν⋆ (dz))F (s, z)
⊤

)
v

}
ds

]

+o (ε) , (A.1.12)

which is equivalent to

J
(
t, X̂ (t) , uε (·)

)
− J

(
t, X̂ (t) , û (·)

)

= −

∫ t+ε

t

{〈
E
t [H (s; t)] , v

〉
+

1

2
〈L (s) v, v〉

}
ds+ o (ε) .

A.2. Proof of Lemma 2

First we put α (s) = −e
∫

T

s
r0(τ)dτ and define for t ∈ [0, T ] and s ∈ [t, T ] the

process p̄ (s; t) by

p̄ (s; t) = −α (s) p (s; t) + E
t
[
X̂ (T )

]
+

X̂ (t)

µ
.

Then, by the integration by parts formula, on the time interval [t, T ], for
any t ∈ [0, T ] ,

{
dp̄ (s; t) = −p (s; t) dα (s)− α (s) dp (s; t) , s ∈ [t, T ] ,

p̄ (T ; t) = X̂ (T ) ,

the triple (p̄ (·, ·) , q̄ (·, ·) , r̄ (·, ·; ·)) satisfies the following equation




dp̄ (s; t) = q̄ (s; t) dW ⋆ (s) +

∫

R⋆

r̄ (s, z; t) γ̃⋆ (ds, dz) , s ∈ [t, T ] ,

p̄ (T ; t) = X̂ (T ) ,
(A.2.1)

where

(q̄ (s; t) , r̄ (s, z; t)) ≡ −α (s) (q (s; t) , r (s, z; t)) .

It is clear that neither the terminal condition nor the coefficients of the
equation (A.2.1) depend on t, so it can be taken as a BSDE on the time interval
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[0, T ]. This implies that the process (p̄ (·, ·) , q̄ (·, ·) , r̄ (·, ·; ·)) does not depend on
t. Thus, we denote the solution of (A.2.1) by (p̄ (·) , q̄ (·) , r̄ (·; ·)) . We have then,
for any t ∈ [0, T ] and s ∈ [t, T ],

(p (s; t) , q (s; t) , r (s, z; t)) =

−α (s)
−1

((
p̄ (s)− E

t
[
X̂ (T )

]
−

X̂ (t)

µ

)
, q̄ (s) , r̄ (s, z)

)
. (A.2.2)

Now, using (A.2.2) we have from the definition of H (·; ·) given by (3.5), for
any t ∈ [0, T ] and s ∈ [t, T ]

E
t [H (s; t)−H (s; s)] = E

t [B (s) (p (s; t)− p (s; s))] ,

= α (s)
−1 B (s)

µ
E
t
[
X̂ (t)− X̂ (s)

]
, (A.2.3)

where we have used the law of iterated expectations (i.e. E
t [Es [X ]] = E

t [X ] ,

for any t ≤ s, and X ∈ L
1 (Ω,F ,P;Rn)). Moreover, since B (s) and α (s)−1 are

bounded and X̂ (·) is a right continuous with finite left limit, we have

lim
ε↓0

1

ε

[∫ t+ε

t

∣∣Et [H (s; t)−H (s; s)]
∣∣ ds
]

= lim
ε→0

1

ε

∫ t+ε

t

∣∣Et [B (s) (p (s; t)− p (s; s))]
∣∣ ds,

= lim
ε→0

1

ε

∫ t+ε

t

∣∣∣∣
B (s)

µ
α (s)−1

E
t
[
X̂ (t)− X̂ (s)

]∣∣∣∣ ,

≤ K lim
ε→0

1

ε

∫ t+ε

t

E
t
∣∣∣X̂ (t)− X̂ (s)

∣∣∣ ,

= 0,

and thus for any t ∈ [0, T ] we have

lim
ε↓0

1

ε
E
t

[∫ t+ε

t

H (s; t) ds

]
= lim

ε↓0

1

ε
E
t

[∫ t+ε

t

H (s; s) ds

]
. (A.2.4)

From the above equality, it is clear that if 2) holds, then

lim
ε↓0

1

ε
E
t

[∫ t+ε

t

H (s; t) ds

]
= 0. P− a.s.

Conversely, according to Lemma 3.5 in Hu, Jin and Zhou (2017) if 1) holds,
then H (s; s) = 0, P− a.s, a.e. s ∈ [0, T ] . This completes the proof.


