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Abstract: In this paper, we are concerned with optimality con-
ditions and duality results of generalized fractional minimax pro-
gramming problems. Sufficient optimality conditions are established
for a class of nondifferentiable generalized fractional minimax pro-
gramming problems, in which the involved functions are locally Lip-
schitz (b,Ψ,Φ, ρ)-univex. Subsequently, these optimality conditions
are utilized as a basis for constructing various parametric and non-
parametric duality models for this type of fractional programming
problems and proving appropriate duality theorems.
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1. Introduction

In this paper, we consider the following generalized fractional minimax pro-
gramming problem:

Minimize Φ(x) = sup
y∈Y

f(x,y)
g(x,y)

subject to hj(x) ≤ 0, j = 1, ...,m,
x ∈ Rn,

(P)

∗Submitted: December 2015; Accepted: August 2018
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where Y is a specified subset of Rm, f : Rn × Y → R, g : Rn × Y → R,
hj : Rn → R, j ∈ J = {1, ...,m}, are locally Lipschitz functions on Rn × Y .

Let D := {x ∈ Rn : hj(x) ≤ 0, j ∈ J} (assumed to be nonempty) denote the
set of all feasible solutions in the considered nonsmooth generalized fractional
programming problem (P). Further, we assume that f(x, y) ≥ 0 and g(x, y) > 0
for all (x, y) ∈ D × Y .

Throughout this paper, we also assume that Y is a compact set. This means
that, for every x̃ ∈ D, there exists ỹ ∈ Y with the following property:

f(x̃, ỹ)

g(x̃, ỹ)
= sup

y∈Y

f(x̃, y)

g(x̃, y)
.

We denote by J(x) the set of active constraints at x ∈ D, that is, J(x) :=
{j ∈ J : hj(x) = 0}. Further, let us denote

Y (x) :=

{
y ∈ Y :

f(x, y)

g(x, y)
= sup

z∈Y

f(x, z)

g(x, z)

}
.

Then note that Y (x) is a compact subset of Y in Rm. Therefore, for each x ∈ D,
the continuous function f (x, ·) on the compact set Y atains its maxima for at
most finite number of points, say α points.

Optimization problems, in which both a minimization and a maximization
process of fractional objectives are performed, are usually referred in the opti-
mization literature as generalized fractional minimax programming problems.
Recently, there has been an increasing interest in studying generalized convexity
for both differentiable and nondifferentiable generalized fractional minimax pro-
gramming (see, for example, Ahmad, 2003; Ahmad and Husain, 2006; Ahmed,
2004; Antczak, 2008; Chandra et al., 1986; Ho and Lai, 2014; Liang and Shi,
2003; Liu and Wu, 1998a, 1998b; Liu et al., 1997; Mishra, 1997; Mishra et al.,
2003; Mishra and Upadhyay, 2014; Upadhyay and Mishra, 2015; Yang and Hou,
2005; Zalmai, 1995, and others). For a bibliography of fractional programming,
see Stancu-Minasian (1999).

In this paper, we shall establish both parametric and non-parametric suffi-
cient optimality conditions and construct several parametric and non-parameter
duality models for a new class of nonconvex generalized fractional minimax prob-
lems involving locally Lipschitz functions. In order to prove the main results
in the paper, we define a new concept of generalized convexity. Namely, we
introduce the definition of a locally Lipschitz (b,Ψ,Φ, ρ)-univex function, which
generalizes both the definition of univex functions, Bector et al. (1994), and
the definition of a class of locally Lipschitz (Φ, ρ)-invex functions, see Antczak
and Stasiak (2011). Then, under nondifferentiable (b,Ψ,Φ, ρ)-univexity, we es-
tablish sufficient optimality conditions for the considered generalized fractional
minimax problem involving locally Lipschitz functions. Further, motivated by
Mond and Weir (1981), Bector et al. (1989), Schaible (1976), we define dual
models for the primal generalized fractional minimax problem (P). We prove
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several duality results under various (b,Ψ,Φ, ρ)-univexity hypotheses imposed
on the functions constituting the considered generalized fractional minimax pro-
gramming problem (P). In particular, it does not seem that the optimality and
duality results have been established previously in the literature for such a large
class of nonconvex nondifferentiable generalized fractional minimax problems.

2. Preliminaries

In this section, we introduce a new concept of generalized convexity, namely, a
nondifferentiable (b,Ψ,Φ, ρ)-univexity notion.

Definition 1 Let f : Rn → R be a locally Lipschitz function and u ∈ Rn. If
there exist functions Ψ : R → R, b : X ×X → R+\{0}, Φ : Rn × Rn × Rn ×
R → R and a real number ρ such that, for all x ∈ Rn, Φ(x, u; (·, ·)) is convex,
Φ(x, u; (0, a)) ≥ 0 for all a ∈ R+, such that the inequality

b(x, u)Ψ(F (x) − F (u)) ≥ Φ (x, u; (ξ, ρ)) (>) (1)

holds for each ξ ∈ ∂f(u) and all x ∈ Rn (x 6= u), then f is said to be locally
Lipschitz (strictly) (b,Ψ,Φ, ρ)-univex at u on Rn. If the inequality (1) is satisfied
at any u ∈ Rn, then f is said to be locally Lipschitz (strictly) (b,Ψ,Φ, ρ)-univex
on Rn. If the inequality (1) is satisfied for any x ∈ X, where X is a nonempty
subset of Rn, then f is said to be locally Lipschitz (strictly) (b,Ψ,Φ, ρ)-univex
on X.

Remark 1 In order to define an analogous class of (strictly) (b,Ψ,Φ, ρ)-unicave
functions, the direction of the inequality (1) should be reversed.

Remark 2 Note that the definition of a locally Lipschitz (b,Ψ,Φ, ρ)-univex
function generalizes and extends many other generalized convexity notions. In-
deed, from Definition 1, there are the following special cases:

i) If Φ (x, u, (ξ, ρ)) = ξT (x− u), Ψ (a) ≡ a and b (x, u) ≡ 1 for all x, u ∈ Rn,
then we obtain the definition of a (nondifferentiable) convex function.

ii) If Φ (x, u, (ξ, ρ)) = ξT (x− u) and Ψ (a) ≡ a, then we obtain the definition
of a (nondifferentiable) b-convex function.

iii) If Φ (x, u, (ξ, ρ)) = ξT η (x, u) for a certain mapping η : Rn × Rn → Rn,
Ψ (a) = a and b (x, u) ≡ 1 for all x, u ∈ Rn, then we obtain the definition
of a (locally Lipschitz) invex function (with respect to the function η); see
Reiland (1990) for the nonsmooth scalar case and, for the vectorial case,
Kim and Schaible (2004), Lee (1994).

iv) If Φ (x, u, (ξ, ρ)) = ξT η (x, u) for a certain mapping η : Rn × Rn → Rn,
then we obtain the definition of a (locally Lipschitz) univex function (with
respect to the function η); see Bector et al. (1994) for the differentiable
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scalar case.

v) If Φ (x, u, (ξ, ρ)) = 1
b(x,u)ξ

T η (x, u), Ψ (a) ≡ a, and η : Rn × Rn → Rn,

then we obtain the definition of a nondifferentiable b-invex function (with
respect to the function η); see Li et al. (1997).

vi) If Φ (x, u, (ξ, ρ)) = ξT (x− u) + ρ ‖x− u‖
2
, Ψ (a) ≡ a and b (x, u) ≡ 1

for all x, u ∈ Rn, then (b,Ψ,Φ, ρ)-univexity reduces to the definition of a
nonsmooth ρ-convex function defined by Vial (1983) in the scalar case; see
also Zalmai (1995) for the nondifferentiable case.

vii) If Φ (x, u, (ξ, ρ)) = ξT η (x, u) +ρ ‖θ (x, u)‖2, Ψ (a) ≡ a and b (x, u) ≡ 1 for
all x, u ∈ Rn, η : Rn×Rn → Rn, θ : Rn×Rn → Rn, θ (x, u) 6= 0, whenever
x 6= u, then (b,Ψ,Φ, ρ)-univexity reduces to the definition of a nonsmooth
ρ-invex function (with respect to η and θ) introduced by Jeyakumar (1988)
in the scalar case; see also Craven (2010) and Suneja and Lalitha (1993)
for the vectorial case.

viii) If Φ (x, u, (ξ, ρ)) = F (x, u, ξ), where F (x, u, ·) is a sublinear functional
on Rn, Ψ (a) ≡ a and b (x, u) ≡ 1 for all x, u ∈ Rn, then the definition
of a (b,Ψ,Φ, ρ)-univex function reduces to the definition of F -convexity
introduced by Hanson and Mond (1982) in the scalar case.

ix) If Φ (x, u, (ξ, ρ)) = F (x, u, ξ) + ρd2 (x, u), where F (x, u, ·) is a sublinear
functional on Rn, Ψ (a) ≡ a and b (x, u) ≡ 1 for all x, u ∈ Rn, then
the definition of a (b,Ψ,Φ, ρ)-univex function reduces to the definition of
(F, ρ)-convexity, considered by Mukherjee and Rao (1996) in the scalar
case, and by Bhatia and Jahn (1994), Craven (2010) in the vectorial case.

x) If Φ (x, u, (ξ, ρ)) = α (x, u) ξT η (x, u), where η : Rn × Rn → Rn, α :
Rn × Rn → R+\{0}, α (x, u) = 1

b(x,u) , then (b,Ψ,Φ, ρ)-univexity reduces

to the definition of a nonsmooth α-invex function (with respect to η), in-
troduced by Mishra et al. (2008), see also Jayswal et al. (2013).

xi) If Ψ (a) ≡ a and b (x, u) ≡ 1 for all x, u ∈ Rn, then we obtain the definition
of a locally Lipschitz (Φ, ρ)-invex function; see Antczak and Stasiak (2011)
for the scalar case, and Antczak (2014) for the nondifferentiable vectorial
case.

3. Optimality

In this section, for the considered nonsmooth generalized fractional minimax
programming problem, we prove sufficient optimality conditions under a variety
of (b,Ψ,Φ, ρ)-univexity hypotheses.

In the sequel, we shall use the following parametric necessary optimality
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conditions, established by Ho and Lai (2012).
First, we introduce the generalized Slater constraint qualification for a non-

smooth generalized fractional minimax programming problem, in which the in-
equality constraint functions are (bhj

,Ψh
j ,Φ, ρhj

)-univex.
The generalized Slater constraint qualification: It is said that the

generalized Slater constraint qualification is satisfied at x ∈ D for problem (P)
if there exists another feasible solution x̃ such that hj (x̃) < 0, j = 1, ...,m, and,
moreover, hj (·), j ∈ J (x), is (bhj

,Ψh
j ,Φ, ρhj

)-univex at x on D, where Ψh
j is

increasing and Ψh
j (0) = 0.

We now give the parametric necessary optimality conditions under the above
introduced generalized Slater constraint qualification.

Theorem 1 (Parametric necessary optimality conditions): Let x ∈ D be an
optimal solution of the considered nonsmooth generalized fractional minimax
programming problem (P) and the generalized Slater constraint qualification be
satisfied at x. Then, there exist a positive integer α such that 1 ≤ α ≤ n + 1,
scalars λi, i = 1, ..., α, scalars µj, j = 1, ...,m, vectors yi, i = 1, ..., α, and
scalar v, such that

0 ∈
α∑

i=1

λi

(
∂f

(
x, yi

)
− v∂g

(
x, yi

))
+

m∑

j=1

µj∂hj (x) , (2)

f
(
x, yi

)
− vg

(
x, yi

)
= 0, i = 1, ..., α, (3)

µjhj (x) = 0, j = 1, ...,m, (4)

y =
(
y1, ..., yα

)
, yi ∈ Y (x) , i = 1, ..., α, λi ≥ 0,

α∑

i=1

λi = 1, µj ≥ 0, j = 1, ...,m.

(5)

Now, we prove the following parametric sufficient optimality conditions un-
der various (b,Ψ,Φ, ρ)-univexity hypotheses, imposed on the functions, consti-
tuting the considered generalized minimax fractional optimization problem (P).

Theorem 2 Let x ∈ D be a feasible solution of the considered nonsmooth gen-
eralized fractional minimax programming problem (P) and, moreover, there exist
an integer α, 1 ≤ α ≤ n+1, scalars λi, i = 1, ..., α, scalars µj, j = 1, ...,m, and

vectors yi ∈ Y (x), i = 1, ..., α, such that the necessary optimality conditions
(2)-(5) are satisfied at x. Further, assume that either one of the following three
sets of hypotheses is satisfied:

a) (i) for each i = 1, ..., α, f
(
·, yi

)
− vg

(
·, yi

)
is (bi,Ψi,Φ, ρi)-univex at x

on D and a < 0 =⇒ Ψi(a) < 0;

(ii) for each j ∈ J (x) , hj (·) is (bhj
,Ψh

j ,Φ, ρhj
)-univex at x on D, Ψh

j is

increasing and Ψh
j (0) = 0;
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(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

b) for each i = 1, ..., α, f
(
·, yi

)
− vg

(
·, yi

)
+

∑m
j=1 µjhj (·) is (bi,Ψi,Φ, ρi)-

univex at x on D and a < 0 =⇒ Ψi(a) < 0;

c) the so-called α-reduced Lagrange function for problem (P), that is, the

function z → Lα

(
z, y, λ, µ, v

)
, where Lα

(
z, y, λ, µ, v

)
:=

∑α
i=1 λi(f(z, yi)−

vg(z, yi)) +
∑m

j=1 µjhj(z), is (b,Ψ,Φ, ρ)-univex at x on D, where ρ ≥ 0
and Ψ(a) ≥ 0 =⇒ a ≥ 0.

Then x is an optimal solution of the problem (P).

Proof. Let x be an arbitrary feasible solution of the considered nonsmooth
generalized fractional minimax programming problem (P). Furthermore, we as-
sume that there exist an integer number α, 1 ≤ α ≤ n + 1, scalars λi, vectors
yi ∈ Y (x), i = 1, ..., α, and scalars µj , j = 1, ...,m, such that the necessary
optimality conditions (2)-(5) are fulfilled at x. We proceed by contradiction.
Suppose, contrary to the result, that x is not optimal for (P). Then, there exists
a feasible solution x̃ of the problem (P) such that

v = sup
y∈Y

f(x, y)

g(x, y)
> sup

y∈Y

f(x̃, y)

g(x̃, y)
. (6)

Hence, (6) gives

f
(
x̃, yi

)
− vg

(
x̃, yi

)
< 0, i = 1, ..., α. (7)

Thus, by the necessary optimality conditions (3) and (5), (7) yields

f
(
x̃, yi

)
− vg

(
x̃, yi

)
< f

(
x, yi

)
− vg

(
x, yi

)
, i = 1, ..., α. (8)

Proof of this theorem under hypothesis a).
By hypothesis a) (i) - (ii), f

(
·, yi

)
− vg

(
·, yi

)
, i ∈ I, is (bi,Ψi,Φi, ρi)-univex

at x on D and hj (·), j ∈ J (x), is (bhj
,Ψ,Φh

j , ρhj
)-univex at x on D. Then, by

Definition 1, the following inequalities

bi(x, x)Ψi

(
f
(
x, yi

)
− vg

(
x, yi

)
−
[
f
(
x, yi

)
− vg

(
x, yi

)])
≥

Φ (x, x, (ξi, ρi)) , i = 1, ..., α,
(9)

and

bhj
(x, x)Ψh

j (hj(x) − hj(x)) ≥ Φh
j

(
x, x,

(
ζj , ρhj

))
, j ∈ J (x) (10)

hold for all x ∈ D and for each ξi ∈ ∂
(
f
(
x, yi

)
− vg

(
x, yi

))
, i ∈ I, and for each

ζj ∈ ∂ (hj(x)), j ∈ J (x), respectively. Therefore, so for x = x̃ ∈ D. Thus, (9)
and (10) yield

bi(x̃, x)Ψi

(
f
(
x̃, yi

)
− vg

(
x̃, yi

)
−
[
f
(
x, yi

)
− vg

(
x, yi

)])

≥ Φ (x̃, x, (ξi, ρi)) , i = 1, ..., α,
(11)
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bhj
(x̃, x)Ψh

j (hj(x̃) − hj(x)) ≥ Φ
(
x̃, x,

(
ζj , ρhj

))
, j = 1, ...,m. (12)

Using hypothesis a < 0 =⇒ Ψi(a) < 0, i = 1, ..., α, together with bi(x̃, x) > 0,
i = 1, ..., α, we deduce that inequalities (8) imply

bi(x̃, x)Ψi

(
f
(
x̃, yi

)
− vg

(
x̃, yi

)
−
[
f
(
x, yi

)
− vg

(
x, yi

)])
< 0, i = 1, ..., α. (13)

Combining (11) and (13), we obtain the inequalities

Φ (x̃, x, (ξi, ρi)) < 0, i = 1, ..., α (14)

hold for all x ∈ D and for each ξi ∈ ∂
(
f
(
x, yi

)
− vg

(
x, yi

))
, i = 1, ..., α. Since

λi ≥ 0,
∑α

i=1 λi = 1, (14) gives

α∑

i=1

λiΦ (x̃, x, (ξi, ρi)) < 0. (15)

By x̃ ∈ D, x ∈ D and by the definition of J (x), we have

hj (x̃) − hj(x) ≤ 0, j ∈ J (x) . (16)

Since Ψh
j is an increasing functional with Ψh

j (0) = 0 and bhj
(x̃, x) > 0,

j ∈ J (x), (13) yields

bhj
(x̃, x)Ψh

j (hj(x̃) − hj(x)) ≤ 0, j ∈ J (x) . (17)

By combining (16) and (17), we get

Φ
(
x̃, x,

(
ζj , ρhj

))
≤ 0, j ∈ J (x) .

Thus,

∑

j∈J(x)

µjΦ
(
x̃, x,

(
ζj , ρhj

))
≤ 0. (18)

Let us denote

ϑi =
λi∑α

i=1 λi +
∑m

j=1 µj

, i = 1, ..., α, (19)

δj =
µj∑α

i=1 λi +
∑m

j=1 µj

, j ∈ J (x) . (20)

By (19) and (20), it follows that 0 ≤ ϑi ≤ 1, i = 1, ..., α, but, for at least one
i ∈ {1, ..., α}, ϑi > 0, 0 ≤ δj ≤ 1, j ∈ J (x) and, moreover,

α∑

i=1

ϑi +
∑

j∈J(x)

δj = 1. (21)
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Taking into account (19) and (20) in (15) and (18), and then adding both
sides of the obtained inequalities, we get

α∑

i=1

ϑiΦ (x̃, x, (ξi, ρi)) +
∑

j∈J(x)

δjΦ
(
x̃, x,

(
ζj , ρhj

))
< 0. (22)

By Definition 1, Φ(x̃, x; (·, ·)) is convex. Since (21) holds, by the definition of
convexity, (22) yields

Φ



x̃, x,

α∑

i=1

ϑi (ξi, ρi) +
∑

j∈J(x)

δj
(
ζj , ρhj

)


 < 0. (23)

Taking into account the Lagrange multipliers as being equal to 0, we have

Φ



x̃, x,
α∑

i=1

ϑiξi +
m∑

j=1

δjζj ,
α∑

i=1

ϑiρi +
m∑

j=1

δjρhj



 < 0. (24)

Using (19) and (20) in (24), we obtain

Φ



x̃, x,
1

∑α

i=1 λi +
∑m

j=1 µj




α∑

i=1

λiξi +

m∑

j=1

µjζj ,

α∑

i=1

λiρi +
m∑

j=1

µjρhj







 < 0. (25)

By the necessary optimality condition (2), it follows that

Φ



x̃, x,
1

∑α

i=1 λi +
∑m

j=1 µj



0 ,
α∑

i=1

λiρi +
m∑

j=1

µjρhj







 < 0. (26)

By Definition 1, Φ(x̃, x; (0, a)) ≥ 0 for all a ∈ R+. Then, by hypothesis (iii), the
following inequality

Φ


x̃, x,

1
∑α

i=1 λi +
∑m

j=1 µj


0 ,

α∑

i=1

λiρi +

m∑

j=1

µjρhj




 ≥ 0

holds, contradicting (26). This completes the proof of this theorem under hy-
pothesis (a).

Proof of the theorem under hypothesis b) is similar to the one under hypothesis
a) and, therefore, it has been omitted in the paper.
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Proof of theorem under hypothesis c).
By assumption, the α-reduced Lagrangian z → Lα

(
z, y, λ, µ, v

)
is (b,Ψ,Φ, ρ)-

univex at x on D. Hence, by Definition 1, the following inequality

b(x, x)Ψ
(
Lα

(
x, y, λ, µ, v

)
− Lα

(
x, y, λ, µ, v

))
≥ Φ (x, x, (ξ, ρ)) (27)

holds for all x ∈ D and for each ξ ∈ ∂Lα

(
x, y, λ, µ, v

)
. Since (27) is satisfied

for each ξ ∈ ∂Lα

(
x, y, λ, µ, v

)
, by the definition of the α-reduced Lagrangian, it

is fulfilled for each ξ ∈ ∂
(∑α

i=1 λi

(
f(x, yi) − vg(x, yi)

)
+
∑m

j=1 µjhj(x)
)

. By

Corollary 2, for Proposition 2.3.3 (see, Clarke, 1983), it follows that

ξ ∈




α∑

i=1

λi

(
∂f(x, yi) − v∂g(x, yi)

)
+

m∑

j=1

µj∂hj(x)



 .

Hence, by the necessary optimality condition (2), (27) gives

b(x, x)Ψ
(
Lα

(
x, y, λ, µ, v

)
− Lα

(
x, y, λ, µ, v

))
≥ Φ (x, x, (0, ρ)) . (28)

Since Φ (x, x, (0, a)) ≥ 0 for any a ≥ 0, by hypothesis ρ ≥ 0, (28) implies

b(x, x)Ψ
(
Lα

(
x, y, λ, µ, v

)
− Lα

(
x, y, λ, µ, v

))
≥ 0. (29)

By definition, b(x, x) > 0 for all x ∈ D. Then, (29) yields

Ψ
(
Lα

(
x, y, λ, µ, v

)
− Lα

(
x, y, λ, µ, v

))
≥ 0.

Using hypothesis Ψ(a) ≥ 0 =⇒ a ≥ 0, we get

Lα

(
x, y, λ, µ, v

)
≥ Lα

(
x, y, λ, µ, v

)
.

Hence, by the definition of the α-reduced Lagrange function, we have

α∑

i=1

λi

(
f(x, yi) − vg(x, yi)

)
+

m∑

j=1

µjhj(x) ≥

α∑

i=1

λi

(
f(x, yi) − vg(x, yi)

)
+

m∑

j=1

µjhj(x). (30)

By the necessary optimality conditions (3) and (4), (30) yields

α∑

i=1

λi

(
f(x, yi) − vg(x, yi)

)
+

m∑

j=1

µjhj(x) ≥ 0.

From the feasibility of x in (P) and µj ≥ 0, j = 1, ...,m, we obtain that the
inequality

α∑

i=1

λi

(
f(x, yi) − vg(x, yi)

)
≥ 0
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holds for all x ∈ D. Since λi ≥ 0 for i = 1, ..., α, then there exists i∗ such that
the inequality

f(x, yi
∗

) − vg(x, yi
∗

) ≥ 0

holds for all x ∈ D. Thus,

sup
y∈Y

f(x, y)

g(x, y)
≥ v.

Since sup
y∈Y

f(x,y)
g(x,y) = v, the following inequality

sup
y∈Y

f(x, y)

g(x, y)
≥ sup

y∈Y

f(x, y)

g(x, y)

holds for all x ∈ D. This means that x is optimal of the problem (P).

Remark 3 Note that in the proof of this theorem under hypothesis c), we have
not used the assumption that the functional Φ(x, x; (·, ·)) is convex for all x ∈ D.

In order to discuss various nonparametric dual models for the considered gen-
eralized fractional minimax programming problem (P), we state another version
of the necessary optimality conditions, formulated in Theorem 1. This can be
accomplished by simply replacing the parameter v with f(x, yi)/g(x, yi) and
rewriting the multiplier functions, associated with the inequality constraints.
Hence, the nonparametric necessary optimality conditions can be formulated as
follows:

Theorem 3 (Nonparametric necessary conditions): Let x be an optimal solu-
tion in (P) and the generalized Slater constraint qualification be satisfied at x.
Then there exist a positive integer α, scalars λi ≥ 0, i = 1, ..., α, scalars µj ≥ 0,

j = 1, ...,m, and vectors yi, i = 1, ..., α, such that

0 ∈

α∑

i=1

λi

(
∂f

(
x, yi

)
g
(
x, yi

)
− f

(
x, yi

)
∂g

(
x, yi

))
+

m∑

j=1

µj∂hj (x) = 0, (31)

µjhj (x) = 0, j = 1, ...,m, (32)

λi ≥ 0,
α∑

i=1

λi = 1, yi ∈ Y (x) , i = 1, ..., α, µj ≥ 0, j = 1, ...,m. (33)

4. Duality

In this section, let Q denote the set of triples (α, λ, y), where α ranges over the
integers such that 1 ≤ α ≤ n + 1, λ ∈ Rα

+,
∑α

i=1 λi = 1, and y =
(
y1, ..., yα

)

is an mα-dimensional vector with yi ∈ Y (x) for all i = 1, ..., α and for some
x ∈ Rn.



Optimality and duality for fractional minimax programming 15

4.1. Schaible type dual

Now, for the nonsmooth generalized fractional minimax problem (P), we con-
sider a dual problem (SD) in the sense of Schaible as follows:

max
(α,λ,y)∈Q

sup
(u,µ,v)∈W1(α,λ,y)

v (34)

where W1 (α, λ, y) is the set of all triples (u, µ, v) ∈ X × Rm
+ × R+, satisfying

the following conditions:

0 ∈

α∑

i=1

λi (∂fi(u) − v∂gi(u)) +

m∑

j=1

µj∂hj(u), (SD) (35)

f
(
u, yi

)
− vg

(
u, yi

)
≥ 0, i = 1, ..., α, (36)

µjhj(u) ≥ 0, j = 1, ...,m, (37)

λi ≥ 0,

α∑

i=1

λi = 1, y =
(
y1, ..., yα

)
, yi ∈ Y (u) , i = 1, ..., α, µj ≥ 0,

j = 1, ..., k. (38)

If, for a triplet (α, λ, y) ∈ Q, the set W1 (α, λ, y) is empty, then we define
the supremum over it to be −∞.

Let ΩSD denote the set of all feasible solutions for the dual problem (SD),
that is, the set of (α, λ, y, u, µ, v) satisfying the constraints (35)-(38). Further,
we denote by SSD the set SSD = {u ∈ X : (α, λ, y, u, µ, v) ∈ ΩSD} and, for
u ∈ SSD, J(u) = {j ∈ J : hj(u) ≥ 0}.

Theorem 4 (Weak Duality). Let x and (α, λ, y, u, µ, v) be feasible solutions for
problems (P) and (SD), respectively. Further, assume that one of the following
two sets of hypotheses is satisfied:

(a) (i) f
(
·, yi

)
− vg

(
·, yi

)
, i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at u on D ∪

SSD and a < 0 =⇒ Ψi(a) < 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SSD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f
(
·, yi

)
− vg

(
·, yi

)
+
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at
u on D ∪ SSD and a < 0 =⇒ Ψi(a) < 0.

Then

sup
y∈Y

f(x, y)

g(x, y)
≥ v.
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Proof. We prove this theorem under hypothesis (a).
Suppose, contrary to the result, that there exist x ∈ D and (α, λ, y, u, µ, v) ∈
ΩSD such that

sup
y∈Y

f(x, y)

g(x, y)
< v. (39)

Hence, (39) gives

f(x, yi) − vg(x, yi) < 0, i = 1, ..., α.

By the constraint (36), it follows that

f(x, yi) − vg(x, yi) < f
(
u, yi

)
− vg

(
u, yi

)
, i = 1, ..., α. (40)

By hypothesis (i), f
(
·, yi

)
− vg

(
·, yi

)
, i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at

u on D ∪ SSD. Using hypothesis (i) again, by (40), we conclude that

Ψi

(
f(x, yi) − vg(x, yi) −

[
f
(
u, yi

)
− vg

(
u, yi

)])
< 0, i = 1, ..., α. (41)

Since bi (x, u) > 0, i = 1, ..., α, the inequalities (41) yield

bi (x, u) Ψi

(
f(x, yi) − vg(x, yi) −

[
f
(
u, yi

)
− vg

(
u, yi

)])
< 0, i = 1, ..., α. (42)

Hence, by Definition 1, inequalities (42) imply that the following inequalities

Φ (x, u, (ξi, ρi)) < 0, i = 1, ..., α (43)

hold for each ξi ∈ ∂
(
f
(
u, yi

)
− vg

(
u, yi

))
, i = 1, ..., α.

Since λi ≥ 0,
∑α

i=1 λi = 1, inequalities (43) yield

α∑

i=1

λiΦ (x, u, (ξi, ρi)) < 0. (44)

By x ∈ D and (α, λ, y, u, µ, v) ∈ ΩSD, it follows that hj(x) ≤ hj (u), j ∈ J (u).
By hypothesis (ii), it follows that

Ψh
j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (45)

By Definition 1, we have that bhj
(x, u) > 0, j ∈ J (u). Thus, (45) gives

bhj
(x, u) Ψh

j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (46)

Using hypothesis (ii) again, by Definition 1, we get that the inequalities

Φ
(
x, u,

(
ζj , ρhj

))
≤ 0, j ∈ J (u)

hold for each ζj ∈ ∂ (hj (u)), j ∈ J (u). Since µj ≥ 0, j ∈ J , the above
inequalities yield

∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
≤ 0. (47)
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Combining (44) and (47), we get

α∑

i=1

λiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (48)

Let us denote

ϑi =
λi∑α

i=1 λi +
∑m

j=1 µj

, i = 1, ..., α, (49)

δj =
µj∑α

i=1 λi +
∑m

j=1 µj

, j ∈ J (u) . (50)

As it follows from (49) and (50), 0 ≤ ϑi ≤ 1, i = 1, ..., α, but for at least one
i ∈ {1, ..., α}, ϑi > 0, 0 ≤ δj ≤ 1, j ∈ J (u), and, moreover,

α∑

i=1

ϑi +
∑

j∈J(u)

δj = 1. (51)

Using (49) and (50) together with (48), we obtain

α∑

i=1

ϑiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

δjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (52)

By Definition 1, Φ(x, u; (·, ·)) is convex. Since (51) is satisfied, then, by the
definition of convexity, (52) implies

Φ


x, u,

α∑

i=1

ϑi (ξi, ρi) +
∑

j∈J(u)

δj
(
ζj , ρhj

)

 < 0.

Taking into account the Lagrange multipliers as being equal to 0, by (49) and
(50), we have that the inequality

Φ



x, u,
1∑α

i=1 λi +
∑m

j=1 µj




α∑

i=1

λiξi +

m∑

j=1

µjζj ,

α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj







<0

(53)

holds for each ξi ∈ ∂
(
f
(
u, yi

)
− vg

(
u, yi

))
, i = 1, ..., α, and for each ζj ∈

∂hj (u), j ∈ J . By the constraint (35), inequality (53) yields

Φ



x, u,
1∑α

i=1 λi +
∑m

j=1 µj



0 ,

α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj







 < 0. (54)
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By Definition 1, Φ(x, u, (0, a)) ≥ 0 for all a ∈ R+. Due to hypothesis (iii), the
following inequality

Φ


x, u,

1∑α

i=1 λi +
∑m

j=1 µj


0 ,

α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj




 ≥ 0

holds, contradicting (54). This completes the proof of this theorem under hy-
pothesis (a).

Proof of this theorem under hypothesis (b) is similar to the one under hy-
pothesis (a) and, therefore, it has been omitted in the paper.

Theorem 5 (Strong Duality). Let x ∈ D be an optimal point of the considered
generalized fractional minimax problem (P) and the generalized Slater constraint
qualification be satisfied at x. Then, there exist

(
α, λ, y

)
∈ Q and (x, µ, v) ∈

W1

(
α, λ, y

)
such that

(
α, λ, y, x, µ, v

)
is optimal for (SD). If also all hypotheses

of Theorem 4 are fulfilled, then the corresponding optimal values of (P) and
(SD) are the same.

Proof. By assumption, x ∈ D is an optimal point of (P) and the generalized
Slater constraint qualification is satisfied at x. Hence, by Theorem 1, there exist
a positive integer α, scalars λi ≥ 0, i = 1, ..., α, scalars ξj ≥ 0, j = 1, ..., k, and

vectors yi ∈ Y (x), i = 1, ..., α, such that
(
α, λ, y, x, µ, v

)
is feasible for (SD).

Since

v =
f(x, y)

g(x, y)
,

using the weak duality theorem (Theorem 4), we conclude that
(
α, λ, y, x, ξ, v

)

is optimal for (SD). Hence, the corresponding optimal values of (P) and (SD)
are the same.

Theorem 6 (Converse Duality). Let
(
α, λ, y, u, µ, v

)
be an optimal point of

(SD) such that u ∈ D. Further, assume that one of the following two sets of
hypotheses is satisfied:

(a) (i) f
(
·, yi

)
− vg

(
·, yi

)
, i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at u on D ∪

SSD and a < 0 =⇒ Ψi(a) < Ψi(0) = 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SSD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f
(
·, yi

)
− vg

(
·, yi

)
+
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at
u on D ∪ SSD and a < 0 =⇒ Ψi(a) < 0;

Then u is optimal for the generalized fractional minimax problem (P).

Proof. The proof of this theorem follows directly from weak duality (The-
orem 4).
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Theorem 7 (Strict Converse Duality). Let x and
(
α, λ, y, u, µ, v

)
be optimal

points of the problems (P) and (SD), respectively, and the generalized Slater
constraint qualification be satisfied at x. Assume, furthermore, that one of the
following two sets of hypotheses is fulfilled:

(a) (i) f
(
·, yi

)
− vg

(
·, yi

)
, i = 1, ..., α, is strictly (bi,Ψi,Φ, ρi)-univex at u

on D ∪ SSD and Ψi is strictly increasing and Ψi(0) = 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SSD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f
(
·, yi

)
− vg

(
·, yi

)
+

∑m

j=1 µjhj (·), i = 1, ..., α, is strictly (bi,Ψi,Φ, ρi)-
univex at u on D ∪ SSD and a < 0 =⇒ Ψi(a) < 0.

Then x = u and v = f(u,y)
g(u,y) .

Proof. We prove this theorem under hypothesis a).
Suppose, contrary to the result, that x 6= u. Hence,

v 6=
f(u, y)

g(u, y)
.

From the strong duality theorem (Theorem 5), we have

v =
f(x, y)

g(x, y)
. (55)

Thus, (55) gives

f(x, yi) − vg(x, yi) = 0, i = 1, ..., α. (56)

Since
(
α, λ, y, u, µ, v

)
∈ ΩSD, using the constraint (36) together with (56) and

v 6=
f(u, y)

g(u, y)
,

we get

f(x, yi) − vg(x, yi) ≤ f
(
u, yi

)
− vg

(
u, yi

)
, i = 1, ..., α, (57)

f(x, yi)−vg(x, yi) < f
(
u, yi

)
−vg

(
u, yi

)
for at least one i ∈ {1, ..., α} . (58)

By hypothesis (i), f
(
·, yi

)
− vg

(
·, yi

)
, i = 1, ..., α, is (bi,Ψi,Φ, ρi)-univex at u

on D ∪ SSD. Since a < 0 =⇒ Ψi(a) < Ψi(0) = 0, by Definition 1, inequalities
(57) and (58) imply

Ψi

(
f(x, yi) − vg(x, yi) −

[
f
(
u, yi

)
− vg

(
u, yi

)])
< 0, i = 1, ..., α. (59)

Since bi (x, u) > 0, i = 1, ..., α, inequalities (41) yield

bi (x, u) Ψi

(
f(x, yi) − vg(x, yi) −

[
f
(
u, yi

)
− vg

(
u, yi

)])
< 0, i = 1, ..., α. (60)
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Hence, by Definition 1, inequalities (42) imply that the following inequalities

Φ (x, u, (ξi, ρi)) < 0, i = 1, ..., α (61)

hold for each ξi ∈ ∂
(
f
(
u, yi

)
− vg

(
u, yi

))
, i = 1, ..., α. From the feasibility

of
(
α, λ, y, u, ξ, v

)
in the Schaible dual problem (SD), we have that λi ≥ 0,∑α

i=1 λi = 1. Hence, inequalities (61) yield

α∑

i=1

λiΦ (x, u, (ξi, ρi)) < 0. (62)

Using x ∈ D and
(
α, λ, y, u, ξ, v

)
∈ ΩSD, together with the assumptions that

Ψh
j is increasing and Ψh

j (0) = 0, we obtain

Ψh
j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (63)

Since bhj
(x, u) > 0, j ∈ J (u), by Definition 1, we get that the inequalities

Φ
(
x, u,

(
ζj , ρhj

))
≤ 0, j ∈ J (u)

hold for each ζj ∈ ∂ (hj (u)), j ∈ J (u). Therefore, by µj ≥ 0, j ∈ J , the above
inequalities yield

∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
≤ 0. (64)

By (62) and (64), it follows that

α∑

i=1

λiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (65)

The rest of this proof is similar to the proof of Theorem 4.

4.2. Weir duality

Now, following the lines of Weir (1986), we consider a dual problem (WD) to
(P) as follows:

max
(α,λ,y)∈Q

sup
(u,ξ)∈W2(α,λ,y)

H(u) =
f(u, y)

g(u, y)
,

where the set W2 (α, λ, y) is the set of all (u, µ) ∈ X × Rm
+ , satisfying the

following conditions:

0 ∈
α∑

i=1

λi

(
∂f(u, yi)g(u, yi) − f(u, yi)∂g(u, yi)

)
+

m∑

j=1

µj∂hj(u), (WD) (66)
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µjhj(u) ≥ 0, j = 1, ...,m, (67)

λi ≥ 0,

α∑

i=1

λi = 1, y =
(
y1, ..., yα

)
, yi ∈ Y (u) , i = 1, ..., α, µj ≥ 0, j = 1, ..., k.

(68)

If, for a triplet (α, λ, y) ∈ Q, the set W2 (α, λ, y) is empty, then we define
the supremum over it to be −∞.

Let ΩWD denote the set of all feasible solutions for problem (WD), and

SWD := {u ∈ X : (α, λ, y, u, µ) ∈ ΩWD}

and, for u ∈ SWD,

J(u) := {j ∈ J : hj(u) ≥ 0} .

Theorem 8 (Weak Duality). Let x and (α, λ, y, u, µ) be feasible solutions of
the problems (P) and (WD), respectively. Assume, furthermore, that one of the
following two sets of hypotheses is satisfied:

(a) (i) f(·, yi)g(u, yi) − f(u, yi)g(·, yi) is (bi,Ψi,Φ, ρi)-univex at u on D ∪
SWD and a < 0 =⇒ Ψi(a) < 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SWD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f(·, yi)g(u, yi)−f(u, yi)g(·, yi)+
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-
univex at u on D ∪ SWD and a < 0 =⇒ Ψi(a) < 0;

Then

sup
y∈Y

f(x, y)

g(x, y)
≥ H(u). (69)

Proof. We prove theorem under hypothesis (a).
We proceed by contradiction. Suppose, contrary to the result, that there exist
x ∈ D and (α, λ, y, u, µ) ∈ ΩWD such that

sup
y∈Y

f(x, y)

g(x, y)
< H(u).

Hence, we have

f(x, y)

g(x, y)
<

f(u, y)

g(u, y)
.

Thus,

f(x, yi)g(u, yi) − f(u, yi)g(x, yi) < 0, i = 1, .., α. (70)
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By hypothesis (i), we have that a < 0 =⇒ Ψi(a) < 0. By (70), this implies
that

Ψi(f(x, yi)g(u, yi) − f(u, yi)g(x, yi)−[
f(u, yi)g(u, yi) − f(u, yi)g(u, yi)

]
) < 0, i = 1, .., α.

(71)

Again using hypothesis (i), we have that bi(x, u) > 0, i = 1, ..., α. Thus, by
Definition 1, inequalities (71) imply that the following inequalities

Φ (x, u, (ξi, ρi)) < 0, i = 1, ..., α (72)

hold for each ξi ∈ ∂f(u, yi)g(u, yi) − f(u, yi)∂g(u, yi), i = 1, ..., α. By the
constraint (68), we have λi ≥ 0,

∑α
i=1 λi = 1. This implies, by inequalities (72),

that the following inequalities

α∑

i=1

λiΦ (x, u, (ξi, ρi)) < 0. (73)

hold for each ξi ∈ ∂f(u, yi)g(u, yi)−f(u, yi)∂g(u, yi), i = 1, ..., α. By x ∈ D and
(α, λ, y, u, µ, v) ∈ ΩWD, we get that hj(x) ≤ hj (u), j ∈ J (u). By hypothesis
(ii), it follows that

Ψh
j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (74)

By Definition 1, we have that bhj
(x, u) > 0, j ∈ J (u). Therefore, inequalities

(74) yield

bhj
(x, u) Ψh

j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (75)

Using hypothesis (ii), by Definition 1, we conclude that the inequalities

Φ
(
x, u,

(
ζj , ρhj

))
≤ 0, j ∈ J (u)

hold for each ζj ∈ ∂hj (u), j ∈ J (u). Since µj ≥ 0, j ∈ J , the above inequalities
yield

∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
≤ 0. (76)

By (73) and (76), it follows that

α∑

i=1

λiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (77)

The rest of this proof is similar to the proof of Theorem 4.

Theorem 9 (Strong Duality). Let x ∈ D be an optimal point of the consid-
ered nonsmooth generalized fractional minimax problem (P) and the generalized
Slater constraint qualification be satisfied at x. Then there exist

(
α, λ, y

)
∈ Q

and (x, µ) ∈ W2

(
α, λ, y

)
such that

(
α, λ, y, x, µ

)
is optimal in (WD). If also the

hypotheses of Theorem 8 are fulfilled, then the corresponding optimal values of
(P) and (WD) are equal.
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Proof. By assumption, x ∈ D is an optimal point of (P) and the general-
ized Slater constraint qualification is satisfied at x. Hence, by the nonparametric
necessary optimality conditions (15)-(17), we conclude that

(
α, λ, y, x, µ

)
is fea-

sible in the Weir dual problem (WD). Since

H (x) = sup
y∈Y

f(x, y)

g(x, y)
,

then, using the weak duality theorem (Theorem 8), we conclude that
(
α, λ, y, x, µ

)

is optimal for (WD). Hence, the corresponding optimal values of (P) and (WD)
are equal.

Theorem 10 (Converse Duality). Let
(
α, λ, y, u, µ

)
be an optimal point of

(WD) such that u ∈ D. Assume, furthermore, that one of the following two
sets of hypotheses is satisfied:

(a) (i) f(·, yi)g(u, yi) − f(u, yi)g(·, yi) is (bi,Ψi,Φ, ρi)-univex at u on D ∪
SWD and a < 0 =⇒ Ψi(a) < 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SWD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f(·, yi)g(u, yi)−f(u, yi)g(·, yi)+
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-
univex at u on D ∪ SWD and a < 0 =⇒ Ψi(a) < 0;

Then u is optimal for the problem (P).

Proof. Proof follows directly from weak duality (Theorem 8).

Theorem 11 (Strict Converse Duality). Let x and
(
α, λ, y, u, µ

)
be optimal

solutions of the problems (P) and (WD), respectively, and the generalized Slater
constraint qualification be satisfied at x. Assume, furthermore, that one of the
two following sets of hypotheses is satisfied:

(a) (i) f(·, yi)g(u, yi)−f(u, yi)g(·, yi) is strictly (bi,Ψi,Φ, ρi)-univex at u on
D ∪ SWD, Ψi is strictly increasing and Ψi(0) = 0;

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SWD, Ψh

j is

increasing and Ψh
j (0) = 0;

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0.

(b) f(·, yi)g(u, yi) − f(u, yi)g(·, yi) +
∑m

j=1 µjhj (·), i = 1, ..., α, is strictly
(bi,Ψi,Φ, ρi)-univex at u on D ∪ SWD and a < 0 =⇒ Ψi(a) < 0;

Then x = u and the optimal values of (P) and (WD) are the same.

Proof. We proceed by contradiction. Suppose, contrary to the result, that
x 6= u. Since x is optimal for (P), there exist a positive integer α∗, scalars

λ
∗

i ≥ 0, i = 1, ..., α∗, scalars ξ
∗

j ≥ 0, j = 1, ..., k, and vectors y∗i, i = 1, ..., α∗,
such that the nonparametric necessary optimality conditions are satisfied. This



24 T. Antczak, S. K. Mishra and B. B. Upadhyay

means that
(
α∗, λ

∗

, y∗, x, ξ
∗
)

is feasible in Weir dual problem (WD) and, more-

over, by strong duality (Theorem 13), it is optimal for (WD). Now, proceeding
as in the proof of weak duality theorem (Theorem 8) (replacing x by x and
(α, λ, y, u, µ) by

(
α, λ, y, u, µ

)
, using strictly (b,Ψ,Φ, ρ)-univexity in place of

(b,Ψ,Φ, ρ)-univexity), we obtain that the inequality

α∑

i=1

λiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
< 0.

holds for each ξi ∈ ∂f(u, yi)g(u, yi)− f(u, yi)∂g(u, yi), i = 1, ..., α, and for each
ζj ∈ ∂hj (u), j ∈ J (u). The rest of this proof is similar to the proof of Theorem
8.

4.3. Bector duality

Now, following the lines of Bector (1989), we define for the considered non-
smooth generalized fractional minimax problem (P) its dual problem in the
sense of Bector as follows:

max
(α,λ,y)∈Q

sup
(u,µ)∈W3(α,λ,y)

∑α

i=1 λif
(
u, yi

)
∑α

i=1 λig (u, yi)
,

where W3 (α, λ, y) is the set of all (u, µ) ∈ X × Rm
+ , satisfying the following

conditions:

0 ∈ G(u)

α∑

i=1

λi∂f
(
u, yi

)
−F (u)

α∑

i=1

λi∂g
(
u, yi

)
+

m∑

j=1

µj∂hj(u), (BD) (78)

G(u)f(u, yi) − F (u)g(u, yi) ≥ 0, i = 1, ..., α, (79)

µjhj(u) ≥ 0, j = 1, ...,m, (80)

λi ≥ 0,

α∑

i=1

λi = 1, y =
(
y1, ..., yα

)
, yi ∈ Y (u) , i = 1, ..., α, µj ≥ 0, j = 1, ...,m,

(81)

where, for the sake of convenience, we use the following denotations:

F (u) :=

α∑

i=1

λif
(
u, yi

)
, (82)

G(u) :=

α∑

i=1

λig
(
u, yi

)
. (83)
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If, for a triplet (α, λ, y) ∈ Q, the set W3 (α, λ, y) is empty, then we define
the supremum over it to be −∞.

Let ΩBD denote a set of all feasible solutions for the problem (BD). Further,
SBD ={u ∈ X : (α, λ, y, u, µ)∈ΩBD}, and, for u∈SBD, J(u)={j ∈ J :hj(u) ≥0}.

Theorem 12 (Weak Duality). Let x and (α, λ, y, u, µ) be feasible solutions for
problems (P) and (BD), respectively. Assume, furthermore, that one of the
following two sets of hypotheses is satisfied:

a) (i) G(u)f(·, yi) − F (u)g(·, yi) is (bi,Ψi,Φ, ρi)-univex at u on D ∪ SBD

and a < 0 =⇒ Ψi(a) < 0,

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SBD, Ψh

j is

increasing and Ψh
j (0) = 0,

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0,

b) f(·, yi)G(u) − F (u)g(·, yi) +
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-

univex at u on D ∪ SWD, a < 0 =⇒ Ψi(a) < 0 and
∑α

i=1 λiρi ≥ 0.

Then

sup
y∈Y

f(x, y)

g(x, y)
≥

∑α

i=1 λif
(
u, yi

)
∑α

i=1 λig (u, yi)
.

Proof. Proof of theorem under hypothesis a).
We proceed by contradiction. Suppose, contrary to the result, that

sup
y∈Y

f(x, y)

g(x, y)
<

∑α

i=1 λif
(
u, yi

)
∑α

i=1 λig (u, yi)
.

By (82) and (83), we have

sup
y∈Y

f(x, y)

g(x, y)
<

F (u)

G(u)
.

Thus, the above inequality gives

f(x, y)

g(x, y)
<

F (u)

G(u)
. (84)

Hence, (84) can be rewritten as follows:

G(u)f(x, yi) − F (u)g(x, yi) < 0, i = 1, .., α.

Then, the constraint (79) yields

G(u)f(x, yi)−F (u)g(x, yi)−
[
G(u)f(u, yi) − F (u)g(u, yi)

]
< 0, i = 1, .., α. (85)

By hypothesis (i), we have that a < 0 =⇒ Ψi(a) < 0. Therefore, (85) gives

Ψi

(
G(u)f(x, yi) − F (u)g(x, yi) −

[
G(u)f(u, yi) − F (u)g(u, yi)

])
< 0,

i = 1, .., α. (86)
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As it follows from hypothesis (ii), bi(x, u) > 0, i = 1, ..., α. Thus, by Defini-
tion 1, inequalities (86) imply that the following inequalities

Φ (x, u, (ξi, ρi)) < 0, i = 1, ..., α (87)

hold for each ξi ∈ G(u)∂f(u, yi) − F (u)∂g(u, yi), i = 1, ..., α. By the constraint
(81), we have λi ≥ 0,

∑α

i=1 λi = 1. This implies, by inequalities (87), that the
following inequalities

α∑

i=1

λiΦ (x, u, (ξi, ρi)) < 0 (88)

hold for each ξi ∈ G(u)∂f(u, yi) − F (u)∂g(u, yi), i = 1, ..., α. By x ∈ D and
(α, λ, y, u, µ, v) ∈ ΩBD, it follows that hj(x) ≤ hj (u), j ∈ J (u). By hypothesis
(ii), we have that Ψh

j is increasing, and Ψh
j (0) = 0. Thus,

Ψh
j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (89)

By Definition 1, bhj
(x, u) > 0, j ∈ J (u). Hence, inequalities (74) yield

bhj
(x, u) Ψh

j (hj(x) − hj (u)) ≤ 0, j ∈ J (u) . (90)

Using hypothesis (ii), by Definition 1, we conclude that the inequalities

Φ
(
x, u,

(
ζj , ρhj

))
≤ 0, j ∈ J (u)

hold for each ζj ∈ ∂hj (u), j ∈ J (u). Since µj ≥ 0, j ∈ J , the above inequalities
imply

∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
≤ 0. (91)

By combining (88) and (91), we get

α∑

i=1

λiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

µjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (92)

Let us denote

ϑi =
λi∑α

i=1 λi +
∑m

j=1 µj

, i = 1, ..., α, (93)

δj =
µj∑α

i=1 λi +
∑m

j=1 µj

, j ∈ J (u) . (94)

By (93) and (94), we have that 0 ≤ ϑi ≤ 1, i = 1, ..., α, but for at least one
i ∈ {1, ..., α}, ϑi > 0, 0 ≤ δj ≤ 1, j ∈ J (u), and, moreover,

α∑

i=1

ϑi +
∑

j∈J(u)

δj = 1. (95)
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Taking into account (93) and (94) in (92), we obtain

α∑

i=1

ϑiΦ (x, u, (ξi, ρi)) +
∑

j∈J(u)

δjΦ
(
x, u,

(
ζj , ρhj

))
< 0. (96)

By Definition 1, Φ(x, u; (·, ·)) is convex. Since (95) holds, therefore, by the
definition of convexity, (96) gives

Φ


x, u,

α∑

i=1

ϑi (ξi, ρi) +
∑

j∈J(u)

δj
(
ζj , ρhj

)

 < 0.

Taking into account the Lagrange multipliers as being equal to 0 and again
using (93) and (94), we get that the inequality

Φ


x, u,

1∑α
i=1 λi +

∑m
j=1 µj




α∑

i=1

λiξi +

m∑

j=1

µjζj ,

α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj







 < 0 (97)

holds for each ξi ∈ G(u)∂f(u, yi) − F (u)∂g(u, yi), i = 1, ..., α, and for each
ζj ∈ ∂hj (u), j ∈ J . Then, by the constraint (78), inequality (97) implies

Φ



x, u,
1∑α

i=1 λi +
∑m

j=1 µj



0 ,
α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj







 < 0. (98)

By Definition 1, Φ(x, u, (0, a)) ≥ 0 for all a ∈ R+. Then, by hypothesis (iii), the
following inequality

Φ


x, u,

1∑α
i=1 λi +

∑m
j=1 µj


0 ,

α∑

i=1

λiρi +
∑

j∈J(u)

µjρhj




 ≥ 0

holds, contradicting (98). This completes the proof of this theorem under hy-
potheses (a).

Proof of this theorem under hypothesis b) is similar to the one under hy-
pothesis a) and, therefore, it has been omitted in the paper.

Theorem 13 (Strong Duality). Let x ∈ D be an optimal solution of the consid-
ered nonsmooth generalized fractional minimax problem (P) and the generalized
Slater constraint qualification be satisfied at x. Then, there exist

(
α, λ, y

)
∈ Q

and (x, µ) ∈ W3

(
α, λ, y

)
such that

(
α, λ, y, x, µ

)
is an optimal solution of (BD).

If also the hypotheses of Theorem 12 hold, then the corresponding optimal values
of (P) and (BD) are equal.
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Proof. By assumption, x ∈ D is an optimal solution of (P) and the general-
ized Slater constraint qualification is satisfied at x. Then, by the nonparametric
necessary optimality conditions (15)-(17), we conclude that

(
α, λ, y, x, µ

)
is fea-

sible for (BD). Since

∑α

i=1 λif
(
x, yi

)
∑α

i=1 λig
(
x, yi

) = sup
y∈Y

f(x, y)

g(x, y)
,

therefore, using weak duality (Theorem 12), we get that
(
α, λ, y, x, µ

)
is optimal

for (BD). Hence, the corresponding optimal values of (P) and (BD) are the same.

Theorem 14 (Converse Duality). Let
(
α, λ, y, u, µ

)
be an optimal solution of

(BD) such that u ∈ D. Further, assume that one of the following two sets of
hypotheses is satisfied:

(a) (i) G(u)f(·, yi) − F (u)g(·, yi) is (bi,Ψi,Φ, ρi)-univex at u on D ∪ SBD

and a < 0 =⇒ Ψi(a) < 0,

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SBD, Ψh

j is

increasing and Ψh
j (0) = 0,

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0,

(b) f(·, yi)G(u) − F (u)g(·, yi) +
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-

univex at u on D ∪ SWD, a < 0 =⇒ Ψi(a) < 0 and
∑α

i=1 λiρi ≥ 0.

Then u is optimal for the problem (P).

Proof. Proof of this theorem follows directly from weak duality (see The-
orem 12).

Theorem 15 (Strict Converse Duality). Let x and
(
α, λ, y, u, µ

)
be optimal

solutions of (P) and (BD), respectively, and the generalized Slater constraint
qualification be satisfied. Assume, furthermore, that one of the following two
sets of hypotheses is satisfied:

(a) (i) G(u)f(·, yi) − F (u)g(·, yi) is (bi,Ψi,Φ, ρi)-univex at u on D ∪ SBD

and a < 0 =⇒ Ψi(a) < 0,

(ii) hj (·), j ∈ J (u) , is (bhj
,Ψh

j ,Φ, ρhj
)-univex at u on D ∪ SBD, Ψh

j is

increasing and Ψh
j (0) = 0,

(iii)
∑α

i=1 λiρi +
∑m

j=1 µjρhj
≥ 0,

(b) f(·, yi)G(u) − F (u)g(·, yi) +
∑m

j=1 µjhj (·), i = 1, ..., α, is (bi,Ψi,Φ, ρi)-

univex at u on D ∪ SWD, a < 0 =⇒ Ψi(a) < 0 and
∑α

i=1 λiρi ≥ 0.

Then x = u, that is, u is optimal for the problem (P).

Proof. Proofs of this theorem under hypotheses a) and b) are similar to
the proofs of Theorem 12 and, therefore, they have been omitted in the paper.
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5. Conclusion

In this paper, the optimality conditions and several parametric and non-para-
metric duality results have been established for a new class of nonconvex nondif-
ferentiable generalized fractional minimax programming problems. This paper
extends highly significantly the earlier works, in which optimality conditions
and duality results have been obtained for a generalized fractional minimax
problem by applying a convexity assumption or under several generalized con-
vexity notions, previously defined in the literature (see Remark 2). The results
established here can be used also in the case of such a nonconvex nondifferen-
tiable generalized fractional minimax programming problem, in which not all
functions, constituting it, possess a fundamental property of convexity and most
classes of generalized convex functions - namely, such that a stationary point
of such a function is also its global minimizer. Evidently, all the optimality
conditions and duality results, established in this paper for the considered gen-
eralized fractional minimax programming problem, extend earlier results for this
type of optimization problems, for example, the results of Chandra and Kumar
(1995), Zalmai (1995) and Antczak (2008). Furthermore, in the case when Y is
a singleton, the considered generalized fractional minimax programming prob-
lems (P) becomes the standard fractional problem and duals reduce to the well
known duals of Schaible (1976), Chandra and Bector (1989), and Weir (1986),
respectively.
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