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Abstract: In this paper the performance of Simulated Anneal­
ing (SA) as a heuristic on the well known total tardiness problem 
is tested. The experimental results indicate that the applicability 
of SA to the total tardiness problem is high. The authors found 
that the performance of the SA heuristic is not very sensitive to the 
starting solution and that slower cooling results in better solutions. 
Another interesting finding of this study is that a random generation 
of the neighborhood solutions results in better solutions more often 
than other methods.

1. Introduction

Simulated Annealing (SA) was first applied to combinatorial optimization prob­
lems by Kirkpatrick, Gelatt and Vecchi (1983). Many papers have subsequently 
reported successful applications. Van Laarhoven and Arts (1987) present a thor­
ough treatment of the theory of SA and describe various applications of SA. In 
a recent survey Koulamas, Antony and Jaen (1994) present applications of SA 
to solve various Operations Research problems. It is clear from the above pa­
pers that the main use of SA is as a heuristic for combinatorial optimization 
problems. Necessary and sufficient conditions for SA to converge to a global op­
timum with probability 1 have been derived in Van Laarhoven and Aarts (1987). 
Experimental results indicate that this requires a very slow cooling scheme and 
a very large number of iterations; consequently this aspect of SA is primarily of 
theoretical interest.

The purpose of this paper is to experimentally test the performance of SA as 
a heuristic on a combinatorial optimization problem (the single machine total 
tardiness problem, 1//T) which is known to be NP-hard. The 1//T problem 
can be stated as follows: There are n jobs to be processed without preemption 
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on a continuously available single machine which can handle only one job at a 
time. Job Ji(i = 1,2,... ,n) becomes available at time 0, requires a processing 
time pi and has a due date di. The objective is to determine the processing 
sequence of the jobs, so that the total tardiness 22 2= i Ti = 22 2= i max(0> Ci ~ di) 
is minimized, where Ci is the completion time of job i. The above problem was 
selected for two reasons. First, one of the authors studied the problem in detail 
in a recent comprehensive survey (Koulamas, 1994) and proposed new heuristics 
for it. Second, there is a fast efficient polynomial heuristic for the 1//T problem 
(PSK heuristic by Panwalker, Smith and Koulamas 1993) which can be used to 
compare the performance of SA.

The main objective of the paper is to experimentally test the effect of various 
parameters on the performance of SA, namely

(i) initial solution (randomly generated versus provided by a fast heuristic)
(ii) selection of the neighborhood of the incumbent solution (switching two 

jobs in the sequence that were selected (a) randomly, (b) a randomly 
selected adjacent pair and (c) using complete enumeration)

(iii) cooling schemes (Given a temperature range, the number of distinct tem­
peratures selected is 50, 100, 150 and 200 respectively)

It is anticipated that the experimental results will indicate the most effective 
combination of SA parameter which can lead to the appropriate decisions when 
computational time is viewed as a limited resource. In the next section we 
describe our implementation of the SA algorithm. In section 3 the experimental 
setup and the problem generation procedure are described. In section 4, the 
results of the experiment are discussed. In section 5, some concluding remarks 
are made.

2. SA algorithm

The Simulated Annealing algorithm was implemented using FORTRAN 77 on 
an Alpha series VAX mainframe computer. The pseudo-code of the algorithm 
is shown next. The objective is to find a solution s 6 S', which minimizes f(s). 
C is the number of temperatures to be used and I is the number of solutions to 
be tested at each temperature T.

Select an initial solution s e S
Select an Initial (high) Temperature T > 0
Set temperature change counter t = 1
Repeat

Set iteration counter i = 1
Repeat

Generate neighbor solution snew
Calculate 5 — f ^Snew) f(j^)
If 6 < 0 then s = snew
else if random(0,1) < then
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8 Snew
i = i 4-1

until i = I 
t = t + 1
T = Cooling function (T, f)

until t — C

At each temperature the algorithm attempts to find the minimum value 
for the objective function. It accepts wofse solutions with a certain probability, 
which is computed as a function of the difference 5, and the current temperature 
T. The best solution attained so far is stored. As the temperature is lowered, 
the probability of accepting worse solution decreases and hence new minima are 
discovered.

3. Computational experiment

3.1. Problem generation

Individual test problems were generated as follows. For each job i(l < i < n), 
an integer processing timep^ is generated from the uniform distribution (1,100). 
Problem hardness is determined by two parameters: RDD, the relative range 
of due dates and TF, the tardiness factor. After P = ^?=iPi is computed, the 
RDD and TF values are selected from the {0.2, 0.4, 0.6, 0.8,1.0} set. Then, for 
each job ż, an integer due date di is generated from the uniform distribution 
[F(l TF - RDD/2,P(1 - TF + RDD/2)\. The values oi.RDD and TF 
provide a measure of problem hardness. Our preliminary experiments indicated 
that the hardest problems were generated when TF = 0.6 and RDD = 0.6. 
Consequently we conducted our main experiments using that TF, RDD value 
combination in order to sharpen the performance difference between the various 
alternatives. The number of jobs per problem is n = 30, 50 and 70 and fifty 
problem instances were generated for each n value.

3.2. Experimental design

We conducted three different experiments. Our objective is to determine.how to 
utilize the computational time, when it is viewed as a limited-resource. For ex­
ample, should we invest in computing an initial solution by a heuristic or rather 
invest this computational time in a slower cooling scheme and use a randomly 
generated initial solution. In order to make these decisions, we evaluate the ef­
fect of three parameters on the performance of SA, namely the initial solution, 
the neighborhood selection method and the cooling scheme. This is accom­
plished by freezing two of them at predetermined levels and studying the effect 
of the various levels of the third one on the SA performance. It is anticipated 
that the performance of the. SA algorithm is enhanced when the best level is se- 
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lected for each of the three parameters. However, the interdependencies among 
the three parameters are not explicitly considered.

The first experiment was to test the sensitivity of the SA algorithm to the 
initial solution, where we used (i) randomly generated initial solutions and (ii) 
solutions generated by a heuristic (PSK heuristic).

The second experiment was to compare the performance of different neigh­
borhood generation schemes. A neighborhood solution is generated by exchang­
ing the positions of two jobs in the sequence. The selection of the two jobs were 
done by (i) selecting two jobs randomly from the sequence, (ii) randomly select­
ing two consecutive jobs from the sequence and (iii) selecting all possible two 
job combinations from the sequence.

The third experiment was conducted to analyze the effect of different cooling 
schemes on the final solution. We adopted the system of performing a single 
iteration at each temperature. This has the advantage of reducing the number 
of parameters to be set. Intuitively, there is likely to be little difference between 
performing several iterations at the same temperature and performing these 
iterations at temperatures which do not vary significantly.

Our temperatures 7i,T2, ... ,7k where K is the total number of iterations 
(AT sequences are generated and evaluated), followed the pattern tk+i — E^3Tk 

which is proposed by Lundy and Mees (1986). Using the results of preliminary 
experiments, we propose = 100 as the initial temperature and Tr = 33 as 
the final temperature.

The different cooling schemes we used in these experiments are characterized 
by the total number of iterations K (which equals the total number of temper­
atures since we perform a single iteration at each temperature). We used four 
cooling schemes with K E {50,100,150, 200} in our experiments, where a slower 
cooling scheme corresponds to a higher K value. Having fixed JL, 7}, and 7k, 
the value of [3 is given by (3 = ’

For each of the above experiments, 50 problem instances were generated with 
n = 30, 50, 70 jobs. Each problem was solved by the PSK heuristic and various 
versions of the SA algorithm. The results of the experiments are presented next.

4. Results

The comparison of different methods is facilitated by a table which compares 
each method with all other methods. The square tabular representation enables 
us to compare the performance of a method on row i with the method in column 
j. For each comparison there are two square tables - one displaying the number 
of times method i outperformed method j (labeled as Dominance) and another 
displaying the number of times method i found the same solution as method j 
(labeled as Equal.)
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4.1. Different initial solutions

The performances of the PSK heuristic (PSK), SA with random initial solution 
{SARandom) and SA with PSK-given initial solution (SApsk) are compared in 
Table 1. In order to facilitate these comparisons, all SA experiments reported in 
table 1 utilize the same neighborhood generation scheme (random neighborhood 
generation) and the same cooling scheme (50 iterations). For problems involv­
ing 30 jobs, the SARandom heuristic outperformed PSK 24 out of 50 times. The 
SARandom heuristic outperformed the SApsk heuristic 11 times, whereas the 
SApsk heuristic outperformed the SApandom only two times. On almost half 
the problem instances, all three heuristics yielded the same solutions. The per­
formance of SARandom and SApsk with respect to PSK, improves as the prob­
lem size increases. However, the relative improvement of SApsk over SARandom 
increases as the problem size increases (SApsk outperformed SApandOm 14 
times in the 50 jobs problems and 19 times in the 70 jobs problems). Hence, we 
have reason to believe that the use of a random initial solution is good enough 
for small problems; however for large problems the use of an initial solution 
supplied by a quick polynomial heuristic would result in better solutions. This, 
however, involves more computations. We may also note that the SApandom 
heuristic does equally well or better than the PSK heuristic all the times.

4.2. Neighborhood selection

The three neighborhood selection methods are (i) random selection of two jobs 
(SARandom)i (ii) random selection of two adjacent jobs (SAAdj) and (iii) con­
sideration of all two-job combinations (SAcom)- In order to facilitate these 
comparisons and sharpen the effect of neighborhood selection methods on the 
final solutions, all SA experiments reported in Table 2 utilize the same initial so­
lution (randomly generated) and the same cooling scheme (50 iterations). The 
results in Table 2 indicate that the performance of SApandom is consistently 
better than the other heuristics (the zeros under the SARandom column reveal 
this). As problem size increases (from 30 to 50 to 70 jobs) SARandom increas­
ingly outperforms SA Adj (24, 35 and 41 times respectively) and SAcOm (21, 33 
and 32 times respectively). When we compare SAcom and SAAdj, we find that 
SAcom consistently outperformed SAAdj (23 versus 1 in 30 job-problems, 35 
versus 0 in 50-job problems and 41 versus 0 in 70-job problems). It can also be 
noted that the PSK heuristic did not do better than any other heuristic in any 
of the problems (zeros in the PSK rows reveal this). From the above findings, 
we can conclude that for the problem sizes considered, random neighborhood 
solution is more efficient in finding better solutions than other neighborhood se­
lection methods. Although, intuitively we may expect SAcom do better than 
other two heuristics, we did not confirm it in our experiment. A possible reason 
for this is that the SAcom heuristic selects the first ’better’ solution it comes 
across as the next base solution, and proceeds afresh from that base solution.
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30 Jobs
Dominance PSK SARan SApsk
PSK 0 0 0
SARan 24 0 11
SApsk 24 2 0
Equal
PSK 0 26 26
SARan 26 0 37
SApsk 26 37 0

50 Jobs
Dominance PSK SApan SApsk
PSK 0 0 0
SARan 35 0 14
SApsk 35 14 0
Equal
PSK 0 15 15
SARan 15 0 22
SApsk 15 22 0

70 Jobs
Dominance PSK SARan SApsk
PSK 0 0 0
SAruti 41 0 12
SApsk 41 19 0
Equal
PSK 0 9 9
SARan 9 0 19
SApsk 9 19 0

Table 1. Different initial solutions
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30 Jobs
Dominance PSK S Amandom SA Adj S A (j orn
PSK 0 0 0 0

^-Random 24 0 24 21
SA Adj 1 0 0 1
SA(jorn 24 0 23 0
Equal
PSK 0 26 49 26
SAjdandom 26 0 26 29
SA Adj 49 26 0 26
SAcom 26 29 26 0

50 Jobs
Dominance PSK S Ajdandom SA Adj SA(Jom
PSK 0 0 0 0
S Ajdandom 35 0 35 33
SA Adj 0 . 0 0 0
SA(Jom 35 1 35 0
Equal
PSK 0 15 50 15
SARandom 15 0 15 16
SA Adj 50 15 0 15
SA(jom 15 16 15 0

70 Jobs
Dominance PSK S Ajftandom SA Adj SA(jom
PSK 0 0 0 0
SAjdcmdom 41 0 41 32
SA Adj 0 0 0 0
SAcom 41 3 41 0
Equal
PSK 0 9 50 9
S A Random 9 0 9 15
SA Adj 50 9 0 9
SA(jorn 9 15 9 0

Table 2. Neighborhood selection methods



128 S.R. ANTONY &; C. KOULAMAS

Hence, it might have missed out on other solutions that are potentially better 
than the ’first better’ solution.

4.3. Cooling schemes

The cooling rate was controlled by the number of iterations to be done between 
the starting temperature and the ending temperature. In order to facilitate these 
comparisons and sharpen the effect of cooling scheme on the final solutions, all 
SA experiments reported in Table 3 utilize the same initial solution method 
(randomly generated) and the same neighborhood selection method (randomly 
generated). We considered 50, 100, 150 and 200 iterations in this experiment 
according to the guidelines presented in Section 3.2. These methods are SA50, 
5AioO) and SA200 respectively. The results in Table 3 indiacate that all
four SA heuristics outperformed PSK in all the problems. The results confirm 
the well known principle that slower cooling improves the final solution. For the 
30-job problems 5Aioo outperforms 5A50 in 9 cases while 5Ai5o outperforms 
SAioo in 12 cases and SA200 outperforms SA^q in 7 cases. In the 50-job prob­
lems SA100 outperforms STUo in 30 cases, while S*Ai5o outperforms 5*Aioo in 19 
cases and 5*^200 outperforms SAiso in 21 cases. In the 70-job problems 554ioo 
outperforms SA$q in 17 cases, while SAiso outperforms SA^oo in 29 cases and 
SA200 outperforms SA150 in 13 cases. This trend suggests that as the problem 
size increases, there is no corresponding improvement in the slower cooling al­
gorithms. It may also be noted that the faster cooling schemes outperformed 
the slower ones in a number of cases. If we compare the performance a cooling 
scheme with the next slower scheme we find that their performance overlap to 
some extent. For example in the 30-job problems, SA50 outperforms 5*Aioo in 
9 cases and is outperformed by S-Aloo in 9 cases. The corresponding numbers 
for 5Aioo and 5A150 are 3 and 12 respectively, for 5*A.2oo and 57Li5o are 6 and 
7 respectively. However, this comparability of performance does not diminish 
as the problem size increases. For the 50-job problems, the numbers for SA$q 
and SA100 are 2 and 30 respectively; for 5*Aloo and 5Ai5o they are 12 and 19 
respectively and for 5*Ai5o and 5A2oo they are 9 and 21 respectively. For the 
70-job problems, the numbers for SA50 and 5*Aioo are 18 and 17 respectively; 
for 5*t4ioo and 5*71150 they are 6 and 29 respectively and for 5*Ai5o and SA200 
they are 12 and 13 respectively. Overall, slower cooling schemes improve the 
solution quality (as expected) but the improvement is not drastic.

5. Conclusions

Our findings with respect to the performance of SA on the single machine total 
tardiness problem can be summarized as follows: With respect to the initial 
solution, we found that for smaller problems, use of randomly selected initial 
solution yields good results, but for larger problems use of initial solutions pro­
vided by a quick heuristic yields better results than random initial solution.
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30 Jobs
Dominance PSK £4oso SAioo £4150 £41.200

PSK 0 0 0 0 0
£4o5o 24 0 9 4 3
£4ioo 24 9 0 3 1
SAi5o 24 14 12 0 6
£42oo 24 16 14 7 0
Equal
PSK 0 26 26 26 26
£4o5O 26 0 32 32 31
aSAioo 26 32 0 35 35
SAi5o 26 32 35 0 37
5TL200 26 31 35 37 0

50 Jobs
Dominance PSK £4O5o £4ioo £4150 £4200

PSK 0 0 0 0 0
£4O5o 37 0 2 5 3
571100 37 30 0 12 8
£4Li50 37 29 19 0 9
£41200 37 31 22 21 0
Equal
PSK 0 13 13 13 13
£4.050 13 0 18 16 16
£4ioo 13 18 0 19 20
£4150 13 16 19 0 20
£4200 13 16 20 20 0

70 Jobs
Dominance PSK £4O5o £4ioo £4150 £42oo
PSK 0 0 0 0 0
£4o5O 37 0 18 7 5
£4ioo 37 17 0 6 5
£4150 37 28 29 0 12
£4200 37 31 22 13 0
Equal
PSK 0 13 13 13 13
£4O5o 13 0 15 15 14
£4ioo 13 15 0 15 14
£4150 13 15 15 0 16
£42oo 13 14 14 16 0

Table 3. Cooling schemes
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With respect to the generation of neighborhood solutions, we found that ran­
dom generation is superior to the other methods. With respect to the cooling 
schemes, we found that slower cooling results in better solutions more often, 
but the improvement is not drastic. The findings from this experimental study 
suggest that for single machine tardiness problems, SA heuristic is a strong 
alternative to other heuristics.
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