
Control and Cybernetics

vol. 25 (1996) No. 1

Simulated annealing
applied to the total tardiness problem

by

Solomon R. Antony and Christos Koulamas

Department of Decision Sciences & Information Systems
College of Business, Florida International University

University Park, Miami, FL 33199, USA,
e-mail: koulamas@servms.fiu.edu

Abstract: In this paper the performance of Simulated Anneal­
ing (SA) as a heuristic on the well known total tardiness problem
is tested. The experimental results indicate that the applicability
of SA to the total tardiness problem is high. The authors found
that the performance of the SA heuristic is not very sensitive to the
starting solution and that slower cooling results in better solutions.
Another interesting finding of this study is that a random generation
of the neighborhood solutions results in better solutions more often
than other methods.

1. Introduction

Simulated Annealing (SA) was first applied to combinatorial optimization prob­
lems by Kirkpatrick, Gelatt and Vecchi (1983). Many papers have subsequently
reported successful applications. Van Laarhoven and Arts (1987) present a thor­
ough treatment of the theory of SA and describe various applications of SA. In
a recent survey Koulamas, Antony and Jaen (1994) present applications of SA
to solve various Operations Research problems. It is clear from the above pa­
pers that the main use of SA is as a heuristic for combinatorial optimization
problems. Necessary and sufficient conditions for SA to converge to a global op­
timum with probability 1 have been derived in Van Laarhoven and Aarts (1987).
Experimental results indicate that this requires a very slow cooling scheme and
a very large number of iterations; consequently this aspect of SA is primarily of
theoretical interest.

The purpose of this paper is to experimentally test the performance of SA as
a heuristic on a combinatorial optimization problem (the single machine total
tardiness problem, 1//T) which is known to be NP-hard. The 1//T problem
can be stated as follows: There are n jobs to be processed without preemption

mailto:koulamas@servms.fiu.edu

122 S.R. ANTONY &; C. KOULAMAS

on a continuously available single machine which can handle only one job at a
time. Job Ji(i = 1,2,... ,n) becomes available at time 0, requires a processing
time pi and has a due date di. The objective is to determine the processing
sequence of the jobs, so that the total tardiness 22 2= i Ti = 22 2= i max(0> Ci ~ di)
is minimized, where Ci is the completion time of job i. The above problem was
selected for two reasons. First, one of the authors studied the problem in detail
in a recent comprehensive survey (Koulamas, 1994) and proposed new heuristics
for it. Second, there is a fast efficient polynomial heuristic for the 1//T problem
(PSK heuristic by Panwalker, Smith and Koulamas 1993) which can be used to
compare the performance of SA.

The main objective of the paper is to experimentally test the effect of various
parameters on the performance of SA, namely

(i) initial solution (randomly generated versus provided by a fast heuristic)
(ii) selection of the neighborhood of the incumbent solution (switching two

jobs in the sequence that were selected (a) randomly, (b) a randomly
selected adjacent pair and (c) using complete enumeration)

(iii) cooling schemes (Given a temperature range, the number of distinct tem­
peratures selected is 50, 100, 150 and 200 respectively)

It is anticipated that the experimental results will indicate the most effective
combination of SA parameter which can lead to the appropriate decisions when
computational time is viewed as a limited resource. In the next section we
describe our implementation of the SA algorithm. In section 3 the experimental
setup and the problem generation procedure are described. In section 4, the
results of the experiment are discussed. In section 5, some concluding remarks
are made.

2. SA algorithm

The Simulated Annealing algorithm was implemented using FORTRAN 77 on
an Alpha series VAX mainframe computer. The pseudo-code of the algorithm
is shown next. The objective is to find a solution s 6 S', which minimizes f(s).
C is the number of temperatures to be used and I is the number of solutions to
be tested at each temperature T.

Select an initial solution s e S
Select an Initial (high) Temperature T > 0
Set temperature change counter t = 1
Repeat

Set iteration counter i = 1
Repeat

Generate neighbor solution snew
Calculate 5 — f ^Snew) f(j^)
If 6 < 0 then s = snew
else if random(0,1) < then

Simulated Annealing applied to the total tardiness problem 123

8 Snew
i = i 4-1

until i = I
t = t + 1
T = Cooling function (T, f)

until t — C

At each temperature the algorithm attempts to find the minimum value
for the objective function. It accepts wofse solutions with a certain probability,
which is computed as a function of the difference 5, and the current temperature
T. The best solution attained so far is stored. As the temperature is lowered,
the probability of accepting worse solution decreases and hence new minima are
discovered.

3. Computational experiment

3.1. Problem generation

Individual test problems were generated as follows. For each job i(l < i < n),
an integer processing timep^ is generated from the uniform distribution (1,100).
Problem hardness is determined by two parameters: RDD, the relative range
of due dates and TF, the tardiness factor. After P = ^?=iPi is computed, the
RDD and TF values are selected from the {0.2, 0.4, 0.6, 0.8,1.0} set. Then, for
each job ż, an integer due date di is generated from the uniform distribution
[F(l TF - RDD/2,P(1 - TF + RDD/2)\. The values oi.RDD and TF
provide a measure of problem hardness. Our preliminary experiments indicated
that the hardest problems were generated when TF = 0.6 and RDD = 0.6.
Consequently we conducted our main experiments using that TF, RDD value
combination in order to sharpen the performance difference between the various
alternatives. The number of jobs per problem is n = 30, 50 and 70 and fifty
problem instances were generated for each n value.

3.2. Experimental design

We conducted three different experiments. Our objective is to determine.how to
utilize the computational time, when it is viewed as a limited-resource. For ex­
ample, should we invest in computing an initial solution by a heuristic or rather
invest this computational time in a slower cooling scheme and use a randomly
generated initial solution. In order to make these decisions, we evaluate the ef­
fect of three parameters on the performance of SA, namely the initial solution,
the neighborhood selection method and the cooling scheme. This is accom­
plished by freezing two of them at predetermined levels and studying the effect
of the various levels of the third one on the SA performance. It is anticipated
that the performance of the. SA algorithm is enhanced when the best level is se-

124 S.R. ANTONY & C. KOULAMAS

lected for each of the three parameters. However, the interdependencies among
the three parameters are not explicitly considered.

The first experiment was to test the sensitivity of the SA algorithm to the
initial solution, where we used (i) randomly generated initial solutions and (ii)
solutions generated by a heuristic (PSK heuristic).

The second experiment was to compare the performance of different neigh­
borhood generation schemes. A neighborhood solution is generated by exchang­
ing the positions of two jobs in the sequence. The selection of the two jobs were
done by (i) selecting two jobs randomly from the sequence, (ii) randomly select­
ing two consecutive jobs from the sequence and (iii) selecting all possible two
job combinations from the sequence.

The third experiment was conducted to analyze the effect of different cooling
schemes on the final solution. We adopted the system of performing a single
iteration at each temperature. This has the advantage of reducing the number
of parameters to be set. Intuitively, there is likely to be little difference between
performing several iterations at the same temperature and performing these
iterations at temperatures which do not vary significantly.

Our temperatures 7i,T2, ... ,7k where K is the total number of iterations
(AT sequences are generated and evaluated), followed the pattern tk+i — E^3Tk

which is proposed by Lundy and Mees (1986). Using the results of preliminary
experiments, we propose = 100 as the initial temperature and Tr = 33 as
the final temperature.

The different cooling schemes we used in these experiments are characterized
by the total number of iterations K (which equals the total number of temper­
atures since we perform a single iteration at each temperature). We used four
cooling schemes with K E {50,100,150, 200} in our experiments, where a slower
cooling scheme corresponds to a higher K value. Having fixed JL, 7}, and 7k,
the value of [3 is given by (3 = ’

For each of the above experiments, 50 problem instances were generated with
n = 30, 50, 70 jobs. Each problem was solved by the PSK heuristic and various
versions of the SA algorithm. The results of the experiments are presented next.

4. Results

The comparison of different methods is facilitated by a table which compares
each method with all other methods. The square tabular representation enables
us to compare the performance of a method on row i with the method in column
j. For each comparison there are two square tables - one displaying the number
of times method i outperformed method j (labeled as Dominance) and another
displaying the number of times method i found the same solution as method j
(labeled as Equal.)

Simulated Annealing applied to the total tardiness problem 125

4.1. Different initial solutions

The performances of the PSK heuristic (PSK), SA with random initial solution
{SARandom) and SA with PSK-given initial solution (SApsk) are compared in
Table 1. In order to facilitate these comparisons, all SA experiments reported in
table 1 utilize the same neighborhood generation scheme (random neighborhood
generation) and the same cooling scheme (50 iterations). For problems involv­
ing 30 jobs, the SARandom heuristic outperformed PSK 24 out of 50 times. The
SARandom heuristic outperformed the SApsk heuristic 11 times, whereas the
SApsk heuristic outperformed the SApandom only two times. On almost half
the problem instances, all three heuristics yielded the same solutions. The per­
formance of SARandom and SApsk with respect to PSK, improves as the prob­
lem size increases. However, the relative improvement of SApsk over SARandom
increases as the problem size increases (SApsk outperformed SApandOm 14
times in the 50 jobs problems and 19 times in the 70 jobs problems). Hence, we
have reason to believe that the use of a random initial solution is good enough
for small problems; however for large problems the use of an initial solution
supplied by a quick polynomial heuristic would result in better solutions. This,
however, involves more computations. We may also note that the SApandom
heuristic does equally well or better than the PSK heuristic all the times.

4.2. Neighborhood selection

The three neighborhood selection methods are (i) random selection of two jobs
(SARandom)i (ii) random selection of two adjacent jobs (SAAdj) and (iii) con­
sideration of all two-job combinations (SAcom)- In order to facilitate these
comparisons and sharpen the effect of neighborhood selection methods on the
final solutions, all SA experiments reported in Table 2 utilize the same initial so­
lution (randomly generated) and the same cooling scheme (50 iterations). The
results in Table 2 indicate that the performance of SApandom is consistently
better than the other heuristics (the zeros under the SARandom column reveal
this). As problem size increases (from 30 to 50 to 70 jobs) SARandom increas­
ingly outperforms SA Adj (24, 35 and 41 times respectively) and SAcOm (21, 33
and 32 times respectively). When we compare SAcom and SAAdj, we find that
SAcom consistently outperformed SAAdj (23 versus 1 in 30 job-problems, 35
versus 0 in 50-job problems and 41 versus 0 in 70-job problems). It can also be
noted that the PSK heuristic did not do better than any other heuristic in any
of the problems (zeros in the PSK rows reveal this). From the above findings,
we can conclude that for the problem sizes considered, random neighborhood
solution is more efficient in finding better solutions than other neighborhood se­
lection methods. Although, intuitively we may expect SAcom do better than
other two heuristics, we did not confirm it in our experiment. A possible reason
for this is that the SAcom heuristic selects the first ’better’ solution it comes
across as the next base solution, and proceeds afresh from that base solution.

126 S.R. ANTONY & C. KOULAMAS

30 Jobs
Dominance PSK SARan SApsk
PSK 0 0 0
SARan 24 0 11
SApsk 24 2 0
Equal
PSK 0 26 26
SARan 26 0 37
SApsk 26 37 0

50 Jobs
Dominance PSK SApan SApsk
PSK 0 0 0
SARan 35 0 14
SApsk 35 14 0
Equal
PSK 0 15 15
SARan 15 0 22
SApsk 15 22 0

70 Jobs
Dominance PSK SARan SApsk
PSK 0 0 0
SAruti 41 0 12
SApsk 41 19 0
Equal
PSK 0 9 9
SARan 9 0 19
SApsk 9 19 0

Table 1. Different initial solutions

Simulated Annealing applied to the total tardiness problem 127

30 Jobs
Dominance PSK S Amandom SA Adj S A (j orn
PSK 0 0 0 0

^-Random 24 0 24 21
SA Adj 1 0 0 1
SA(jorn 24 0 23 0
Equal
PSK 0 26 49 26
SAjdandom 26 0 26 29
SA Adj 49 26 0 26
SAcom 26 29 26 0

50 Jobs
Dominance PSK S Ajdandom SA Adj SA(Jom
PSK 0 0 0 0
S Ajdandom 35 0 35 33
SA Adj 0 . 0 0 0
SA(Jom 35 1 35 0
Equal
PSK 0 15 50 15
SARandom 15 0 15 16
SA Adj 50 15 0 15
SA(jom 15 16 15 0

70 Jobs
Dominance PSK S Ajftandom SA Adj SA(jom
PSK 0 0 0 0
SAjdcmdom 41 0 41 32
SA Adj 0 0 0 0
SAcom 41 3 41 0
Equal
PSK 0 9 50 9
S A Random 9 0 9 15
SA Adj 50 9 0 9
SA(jorn 9 15 9 0

Table 2. Neighborhood selection methods

128 S.R. ANTONY &; C. KOULAMAS

Hence, it might have missed out on other solutions that are potentially better
than the ’first better’ solution.

4.3. Cooling schemes

The cooling rate was controlled by the number of iterations to be done between
the starting temperature and the ending temperature. In order to facilitate these
comparisons and sharpen the effect of cooling scheme on the final solutions, all
SA experiments reported in Table 3 utilize the same initial solution method
(randomly generated) and the same neighborhood selection method (randomly
generated). We considered 50, 100, 150 and 200 iterations in this experiment
according to the guidelines presented in Section 3.2. These methods are SA50,
5AioO) and SA200 respectively. The results in Table 3 indiacate that all
four SA heuristics outperformed PSK in all the problems. The results confirm
the well known principle that slower cooling improves the final solution. For the
30-job problems 5Aioo outperforms 5A50 in 9 cases while 5Ai5o outperforms
SAioo in 12 cases and SA200 outperforms SA^q in 7 cases. In the 50-job prob­
lems SA100 outperforms STUo in 30 cases, while S*Ai5o outperforms 5*Aioo in 19
cases and 5*^200 outperforms SAiso in 21 cases. In the 70-job problems 554ioo
outperforms SA$q in 17 cases, while SAiso outperforms SA^oo in 29 cases and
SA200 outperforms SA150 in 13 cases. This trend suggests that as the problem
size increases, there is no corresponding improvement in the slower cooling al­
gorithms. It may also be noted that the faster cooling schemes outperformed
the slower ones in a number of cases. If we compare the performance a cooling
scheme with the next slower scheme we find that their performance overlap to
some extent. For example in the 30-job problems, SA50 outperforms 5*Aioo in
9 cases and is outperformed by S-Aloo in 9 cases. The corresponding numbers
for 5Aioo and 5A150 are 3 and 12 respectively, for 5*A.2oo and 57Li5o are 6 and
7 respectively. However, this comparability of performance does not diminish
as the problem size increases. For the 50-job problems, the numbers for SA$q
and SA100 are 2 and 30 respectively; for 5*Aloo and 5Ai5o they are 12 and 19
respectively and for 5*Ai5o and 5A2oo they are 9 and 21 respectively. For the
70-job problems, the numbers for SA50 and 5*Aioo are 18 and 17 respectively;
for 5*t4ioo and 5*71150 they are 6 and 29 respectively and for 5*Ai5o and SA200
they are 12 and 13 respectively. Overall, slower cooling schemes improve the
solution quality (as expected) but the improvement is not drastic.

5. Conclusions

Our findings with respect to the performance of SA on the single machine total
tardiness problem can be summarized as follows: With respect to the initial
solution, we found that for smaller problems, use of randomly selected initial
solution yields good results, but for larger problems use of initial solutions pro­
vided by a quick heuristic yields better results than random initial solution.

Simulated Annealing applied to the total tardiness problem 129

30 Jobs
Dominance PSK £4oso SAioo £4150 £41.200

PSK 0 0 0 0 0
£4o5o 24 0 9 4 3
£4ioo 24 9 0 3 1
SAi5o 24 14 12 0 6
£42oo 24 16 14 7 0
Equal
PSK 0 26 26 26 26
£4o5O 26 0 32 32 31
aSAioo 26 32 0 35 35
SAi5o 26 32 35 0 37
5TL200 26 31 35 37 0

50 Jobs
Dominance PSK £4O5o £4ioo £4150 £4200

PSK 0 0 0 0 0
£4O5o 37 0 2 5 3
571100 37 30 0 12 8
£4Li50 37 29 19 0 9
£41200 37 31 22 21 0
Equal
PSK 0 13 13 13 13
£4.050 13 0 18 16 16
£4ioo 13 18 0 19 20
£4150 13 16 19 0 20
£4200 13 16 20 20 0

70 Jobs
Dominance PSK £4O5o £4ioo £4150 £42oo
PSK 0 0 0 0 0
£4o5O 37 0 18 7 5
£4ioo 37 17 0 6 5
£4150 37 28 29 0 12
£4200 37 31 22 13 0
Equal
PSK 0 13 13 13 13
£4O5o 13 0 15 15 14
£4ioo 13 15 0 15 14
£4150 13 15 15 0 16
£42oo 13 14 14 16 0

Table 3. Cooling schemes

130 S.R. ANTONY & C. KOULAMAS

With respect to the generation of neighborhood solutions, we found that ran­
dom generation is superior to the other methods. With respect to the cooling
schemes, we found that slower cooling results in better solutions more often,
but the improvement is not drastic. The findings from this experimental study
suggest that for single machine tardiness problems, SA heuristic is a strong
alternative to other heuristics.

Acknowledgment: We would like to thank the anonymous referee for his
useful comments which improved an earlier version of this paper.

References

Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P. (1983) Optimiza­
tion by simulated annealing. Science, 220, 671-679.

Koulamas, C., Antony, S.R. and Jaen, R. (1994) A survey of simulated
annealing applications to operations research problems. Omega, 22, 41-56.

KOULAMAS, C. (1994) The total tardiness problem: Review and Extensions.
Operations Research, 42, 1025-1041.

LUNDY, M., Mees, A. (1986) Convergence of an annealing algorithm. Math­
ematical Programming, 34, 111-124.

Panwalker, S.S., Smith, M.L. and Koulamas, C. (1993) A heuristic for
the single machine tardiness problem. European Journal of Operations
Research, 70, 304-310.

VAN LAARHOVEN, P.J.M. and Aarts, E.H.L. (1987) Simulated Annealing:
Theory and Applications, Reidel, Dordrecht.

