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Abstract: This work aims to improve and simplify the proce-
dure used in the Control Adjoining Cell Mapping with Reinforce-
ment Learning (CACM-RL) technique, for the tuning process of
an optimal controller during the pre-learning stage (controller de-
sign), making easier the transition from a simulation environment to
the real world. Common problems, encountered when working with
CACM-RL, are the adjustment of the cell size and the long-term
evolution error. In this sense, the main goal of the new approach,
developed for CACM-RL that is proposed in this work (CACM-
RL*), is to give a response to both problems for helping engineers in
defining of the control solution with accuracy and stability criteria
instead of cell sizes. The new approach improves the mathematical
analysis techniques and reduces the engineering effort during the de-
sign phase. In order to demonstrate the behaviour of CACM-RL*,
three examples are described to show its application to real prob-
lems. In all the examples, CACM-RL* improves with respect to the
considered alternatives. In some cases, CACM- RL* improves the
average controllability by up to 100%.

Keywords: optimal control, cell mapping, state space, rein-
forcement learning, stability, nonlinear control, controllability

1. Introduction

Optimal control theory is a mathematical discipline with numerous applications
in both science and engineering. It deals with the problem of finding a control
law for a given system such that a certain optimality criterion is fulfilled. The
popularization of this discipline has also resulted in the need of using powerful
computational resources and the development of new mathematical methods in
order secure the implementation in the real world.
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Figure 1. Trajectory that reaches a specific goal. The orientation of each arrow
refers to the control action applied

In 1985, C. S. Hsu published the Cell-to-Cell methodology of global analy-
sis for nonlinear systems (see Hsu, 1985). In this work, C. S. Hsu introduced
the mathematical foundations to for translating the continuous space into the
discrete cell space. These techniques have been successfully applied in numer-
ous fields of mathematical analysis where the conventional methods have many
difficulties with finding a solution.

Cell Mapping, together with advancing digital control technologies, have
made possible the development of new controllers. In this sense, combining
C. S. Hsu’s powerful analysis techniques with dynamic programming theory
and Bellman’s Optimality Principle (see Barto, 1995, or Bellman, 2010), a new
field of research in optimal control has been opened using Cell Mapping (CM)
techniques as a baseline of control (see Zufiria, 2003, or 1993). Works such as
(see Gómez, 2007, 2012, or Papa, 1995, 1997) use Cell Mapping techniques for
control purposes. The basic idea is to encode one action per state in order to
obtain an optimal controller using state space analysis techniques. In Moore
(1995), using game theory and machine learning algorithms, Moore solves path
planning and control problems, obtaining optimal solutions. To illustrate how
the state-action pair can be used to solve a control problem, Fig. 1 shows a
simple 2-D example.

The grid represents a system with two dimensions and four different control
actions (arrows). By applying the specific control action in each state, the
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system optimally reaches the goal (represented as a X). With this control
model, the run time implementation is very simple and the controller complexity
is focused on the algorithms in charge of the analysis and definition of the control
action in each state. Therefore, the quality of the final controller will depend
on the analysis done by these algorithms.

Several authors have carried out modifications and improvements oriented
at the reduction of some constraints of CM analysis techniques. On the one
hand, errors associated with the state space discretization could be reduced by
means of Generalized Cell Mapping (GCM), which is based on a probabilistic
formulation for characterizing chaotic dynamic systems (see Mo-Hong, 1993,
or Wilhelmus, 1994). On the other hand, Interpolated Cell Mapping (ICM)
reduces the long-term evolution errors (Bursal, 1992). In this work, the proposed
CACM-RL* technique has been inspired by both, GCM and ICM.

Most of the systems that are subject to analysys in order to be optimally
controlled are continuous. The discretization techniques (see Hsu, 1985) are re-
sponsible for converting the continuous state space into the discrete state space.
The discretization process translates the continuous and multidimensional state
space into a discrete state space of dimensions, where K is the number of di-
mensions that describes the state space. Cell Mapping techniques consider the
central point of a cell as a reference for the analysis, and the cell size as the
minimum unit of movement. In this context, it is appropriate to introduce the
concept of transition. A transition is the change of system’s state (cell) when
applying a control action on the system during a defined period.

The discretization concept and the use of the central point of the cell as
the origin of state transitions are responsible for two kinds of undesired effects,
both locally and globally. Locally, the accuracy is constrained by the cell size.
The resulting error can be reduced as much as desired, just reducing the cell
size. The long-term evolution error is associated with the cumulative undesired
effects along trajectories. In this later case, the reduction of the cell size does
not reduce the error propagation.

Adjoining Cell Mapping (ACM) (Zufiria, 2003, 1993, or Guttalu, 1993), is
based on the definition of an adjoining condition between cells. In general, the
adjoining property opens new possibilities for developing efficient algorithms
in optimal control to be applied to dynamic and non-linear systems. In this
way, it contributes to the reduction of the long-term error evolution. Although
techniques based on ACM optimally solve control problems, they have a high
computational cost due to the reduction of cell size in order to increase the
adjoining distance.

To illustrate the long-term error evolution, the trajectory AB of Fig. 2
represents the evolution of a generic trajectory in a continuous system. In a
discretized controller, the problem arises because the real transitions that begin
at the central point do not finish at the central point of the image cell. In Fig.
2, we can see two vectors: V1 and V2. They show two discrete transitions of
the system’s real response considering the central point of the cell as the origin.
On the basis of these two vectors, a new vector, K (dashed line), is defined. It
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Figure 2. Long-term evolution error in the state space discretization process

represents the transition of the system in time interval t1+t2 when discretization
is considered. However, R, represents another vector (solid line) that finishes
in the trajectory line AB and, therefore, is a vector that falls in the right final
state in t1 + t2. In this way, we can see the error, ǫ, which is generated in the
discretization process (vector K). This error, produced by the discretization
process, grows when long trajectories are covered.

One approach to solve this problem consists in adjusting the cell size with
the aim of bringing the transition from (V1, t1) closer to the centre of the cell and
thus securing that the discrete approach approximates the continuous solution.
This technique can be useful when working with linear systems, but it is not very
appropriate for non-linear systems. Adjusting the cell size in non-linear systems
requires a lot of time, so that, a trade-off between accuracy and performance
must be considered.

The goal of this work is to improve the analytic and mathematical process
during the pre-learning stage (controller design) to solve the restrictions asso-
ciated with the discretization process. As a result, we provide a new method
of state space discretization and exploration, which is non-sensitive to the dis-
cretization and to the sample period (Ts). The method presented in this work,
CACM-RL*, is fully compliant with Cell Mapping and reinforcement learning
techniques (Barto, 1998, or Watkins, 1992) and helps engineers in defining the
control solution with accuracy and stability criteria instead of cell sizes.
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2. Relevant characteristics of CACM-RL*

CACM-RL* is a new optimal control technique based on CACM-RL (see Gómez,
2007, 2012, or 2009) which gives a solution to the issues of the discretization
process errors and the long-term evolution error. In the further course of the
paper, a specific example of applying CACM-RL with a DC motor is given
in order to show up these errors. When using CACM-RL, it is not necessary
to take into account the mathematical model of the motor since the method
learns from the experience. However, in order to carry out a theoretical analysis
of the arising errors, we have introduced the differential equations that define
the behaviour of a DC motor (2.1). In this case, we need two state variables
(angular position, X1, and angular velocity, X2) and therefore, a 2-D map,
where the different control actions per state can be represented (see Fig. 3).
The objective in this example is to reach the goal at the origin of the coordinates
in minimum time from any initial state.

The equations that govern a DC motor are specified in (2.1), with exemplary
time constant, τ = 0.6, motor constant, k = 0.35 and a voltage, V that has a
range between -10 and +10 volts:

θ = ω

ω′ = −ω+(k·v)
τ

.
(1)

When applying CACM-RL (Gómez, 2007, 2012, or 2009) using the dynamic
model specified in (1), we obtain an optimal control surface with three control
actions (10v, 0v, -10v). We can define a control surface as a representation of
the discretization of the state space, where each area or region is associated with
a specific control action. In this case, the optimal control surface is represented
in Fig. 3 in two areas (10v –left area–, -10v –right area–).

We can see in Fig. 3 how a trajectory reaches the goal (X1=0, X2=0) from
the origin located at the lower left corner. The goal is reached as follows: first,
a maximum acceleration is performed (left area) until reaching the maximum
angular velocity. Before reaching the goal, an inverse maximum acceleration
(right area) is applied. In all cases, the goal is reached with a null velocity and
no oscillations. The two areas in the graph represent the control action value
for each state (on the left side: V=10, on the right side: V=-10). The vertical
axis is the angular velocity and the horizontal axis is the angular position.

The optimal control surface, obtained in Fig., 3 is a representative example
with a perfectly tuned optimal controller. The discretization size used has been
tuned after an iterative trial and error process, concerning the adjustment of the
cell sizes of the angular velocity and the angular position. However, the more
common results obtained are like those 25 surfaces shown in Fig. 4-a. Each of
these surfaces is obtained with different cell sizes.

The cell size tuning process consists in the identification of anomalies de-
tected in the optimal control surface. When detecting faults or control surfaces
not well shaped, as Fig. 4-a, the cell size that is causing the problem is slightly
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Figure 3. Example of a trajectory that goes from a specific initial state (position,
velocity) to the origin of coordinates (0, 0)

adjusted in order to avoid the propagation of the anomalies to other state vari-
ables. Fig. 4-a shows a set of 25 faulty control planes. In this sense, we can see
the differences with respect to the single control plane shown in Fig. 3.

The different optimal control surfaces of Fig. 4-a show several imperfections
due to the long-term evolution error, illustrated in Fig. 2. From the Optimality
Principle (see Bellman, 2010), when transiting to the same image cell from the
same initial cell for different control actions, the fastest transition is chosen.
Choosing the fastest control action is not equivalent obtaining the greatest re-
ward. Therefore, it is important to know the system position inside the image
cell because otherwise, some bands and patterns, such as the ones contained
in some surfaces in Fig. 4-a, could reduce the controllability and performance.
Furthermore, the cell size affects the softness of the frontier regions.

The errors and imperfections, mentioned above, can be solved by means of
the implementation of CACM-RL*. The most relevant advantage of CACM-
RL*, if compared with CACM-RL, is in the discretization process where after
the identification and establishment of the boundaries of each state variable, it
is necessary to set the cell size per variable as a function of the needed accuracy
and available resources (memory and processing power). It is in this step that
the CACM-RL* shows its strength because it removes any constraint associated
with the cell sizes. In Fig. 5-a, three transitions from the same initial cell (we
suppose to begin from the centre of the cell) for three different control actions
(a1, a2, a3) are shown. The lengths of the subsequent transitions are, as it is
shown in Fig. 5(a): t1 = 0.2, t2 = 0.1 and t3 = 0.3.

In (2), the overall expression for the reward, acquired by each state when
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(a) (b)

Figure 4. Controllability maps of the position control problem of a DC motor
using CACM-RL (a) and CACM-RL* (b). The ranges of X1 [10 - 20], X2 [10/s
- 20/s] are covered in five steps with a sample period of 5 ms

applying a specific control action, is defined. This expression is used in CACM-
RL in the interaction with the environment.

Q (st, at) = Q (st, at) + α (rt+1 + γQmax(st+1, a)−Q (st, at)). (2)

CACM-RL updates the current reward, Q(st, at), in an iterative way, ac-
cording to (2). The reward concept is used to search iteratively for the optimal
control action associated to each state. Following (3), the formulation specified
in (2) converges to (4). CACM-RL considers only the centre of the cell in the
reward evaluator (2). With these prerequisites, Fig. 5-a shows how the (a2,
t2)-pair obtains the maximum reward because the associated transition is the
fastest.

However, if we consider the possibility of transit to an area that covers sev-
eral cells and we associate a specific probability of occurrence to each transition,
we can obtain a transition structure as shown in Fig. 5-b. In this way, we have a
surface image per control action. For example, the (a1, t1)-pair in Fig. 5-b may
lead to several transitions to different adjoining cells, each with different prob-
ability: pQ2 = 0.1, pQ3 = 0.4, pQ5 = 0.1, pQ6 = 0.4. Taking into account this
new way of proceeding with respect to CACM-RL, it is possible to reformulate
(2) with a statistical approach (5) and thereby implement CACM-RL*:

Q (st, at) = Q (st, at) (1− α) + α (rt+1 + γQmax (st+1, a)) (3)

lim
t→∞

Q (st, at) = (rt+1 + γQmax (st+1, a)) (4)

−
Q (st, at) =

n
∑

i=1

pi · [Q (st, at) + α (rt+1 + γQmax (st+1, a)−Q (st, at))] (5)

where
−
Q is the average weighted value of Q, n is the number of states reachable

from the initial state, and pi is the probability of transition.
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(a) (b)

Figure 5. Multiple transitions from an initial cell to the same image cell (a) and
to different image cells (b)

Table 1 specifies the transition evaluation when applying (2) and (5) for
purposes of comparing CACM-RL and CACM-RL*. It allows to see the con-
vergence of Q(s, a). In this example, the parameters α and γ are equal to 0.6
and 1, respectively.

In (6) and (7) the evaluation of Q(st, at) and Q(st, at)
∗ is performed. In (7),

the transition probability is considered according to the overlapping regions,
shown in Fig. 5-b. As it can be noted in Table 1, the control action with the
highest reward in CACM-RL is a2 while in CACM-RL* it is a1.

lim
t→∞

Q (5, a1) = (−0.2 + 94) = 93.8

lim
t→∞

Q (5, a2) = (−0.1 + 94) = 93.9

lim
t→∞

Q (5, a3) = (−0.3 + 94) = 93.7 (6)

lim
t→∞

Q (5, a1)
∗ = (−0.2 + 0.1 · 98 + 0.4 · 100 + 0.1 · 93 + 0.4 · 94) = 96.4

lim
t→∞

Q (5, a2)
∗ = (−0.1 + 0.01 · 93 + 0.99 · 94) = 93.89

lim
t→∞

Q (5, a3)
∗ = (−0.3 + 0.15 · 93 + 0.05 · 84 + 0.45 · 94 + 0.35 · 85) = 89.9.

(7)

There are several methods for evaluating the transition probability from
each state-action pair. One approach consists in quantifying the probability of
transition by sampling uniformly each cell as it is shown in Fig. 5-b. By doing
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this, we can know the number of transitions that fall in each of the different
image cells and consequently calculate the probability. The Monte Carlo method
could be also used, although it is more appropriate when working with systems
characterized by a high number of dimensions.

Table 1: CACM-RL vs CACM-RL*

γQmax rt+1 Q (st, at)

CACM-RL

Q(5, a1) 94.00 -0.2 93.80

Q(5, a2) 94.00 -0.1 93.90

Q(5, a3) 94.00 -0.3 93.70

CACM-RL∗

Q(5, a1)
∗

96.60 -0.2 96.40

Q(5, a2)
∗ 93.99 -0.1 93,89

Q(5, a3)
∗

90.20 -0.3 89.90

According to the statistical process, described previously, CACM-RL* drives
us to consider non-critical adjoining distances, that is to say, we do not need
to set a specific adjoining distance in an explicit way during the learning stage,
as was the case with CACM-RL (see Gómez, 2007, 2012, or 2009). CACM-
RL* implicitly adapts the adjoining distance in an automatic way, taking into
account the sample period and the system’s dynamics. In Fig. 6, we can see two
trajectories obtained with CACM-RL*, from the same origin to the same goal,
for the same motor position control problem, described previously. In order to
appreciate the non-uniformity of the adjoining distance, the white trajectory has
been traced in a theoretical way, always using the cell centre as the start of any
transition. We can see by means of the white points that the adjoining distance
is not constant for each state, in order to achieve an adaptation to the system’s
dynamics. However, the dark trajectory is generated in a real way, starting each
new transition just in the previously reached state. If we compare both paths,
we can see that the real trajectory tracks the white path and, therefore, it tends
to the optimal solution.

In order to analyse how system’s controllability evolves when applying CACM-
RL* and with due account of the clarity of its results, the previous motor po-
sition control problem has been solved using different sample periods, so that
we get different controllability maps: TS1 = 5 ms, TS2 = 10 ms, TS3 = 20 ms
and TS4 = 30 ms (see Fig. 7). All controllers, generated for each period, are
perfectly valid since the lower the sample period is, the closer the controller is
to the optimal solution. On the contrary, when the sample period increases, the
frontier between the two control regions becomes wider. This means that the
response time of the system is longer because the motor has to begin to brake
well in advance, before reaching the goal.
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Figure 6. CACM-RL* adaptive adjoining trajectory with Ts equal to 20 ms

3. Results

In order to evaluate CACM-RL*, two examples have been considered: position
control of a DC motor, which has been compared with CACM-RL and PID
controllers, and the “Car on the Hill” problem (see Moore, 1995, or 1990), for
which the comparison with CACM-RL has been performed. In both examples,
one can observe the feasibility and stability of the solution over the entire range
of cell sizes, making CACM-RL* a robust solution in comparison with CACM-
RL or PID controllers. CACM-RL* allows the engineer to focus only on the
accuracy required to solve a control problem when establishing the cell size.

3.1. CACM-RL* vs CACM-RL in the position control of a real DC

motor

To show the feasibility of CACM-RL*, a 2-D controllability map with 25 control
planes has been calculated. We have selected the angular velocity and angular
position as state variables. In Fig. 4-a, the 2-D map is shown for position control
of a DC motor using CACM-RL and in Fig. 4-b the same map for CACM-RL*
with a TS1 = 5 ms.

The quality of a controller can be quantified by several criteria like controlla-
bility (see Song, 2002), stability, reliability or feasibility. When the controllabil-
ity achieved by the two controllers is similar, one indicator used to compare the
quality is the “time to goal” (see Papa, 1995, 1997). In this way, a histogram
test is performed for each controller. It quantifies the average time spent on
transiting from controllable cells to the objective cell. The dispersion associ-
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(a) TS1 = 5 ms (b) TS2 = 10 ms

(c) TS3 = 20 ms (d) TS4 = 30 ms

Figure 7. Controllability maps of the position control problem of a DC motor,
where controllability equals 83% in all cases and four sample periods: Ts1=5
ms, Ts2=10 ms, Ts3=20 ms, Ts4=30 ms, are accounted

ated to the histogram graph is an indicator of the quality of the controller. The
smaller the dispersion, the better the quality controller. Fig. 8 shows the two
histograms, one for CACM-RL and the other one for CACM-RL*.

Fig. 4-a shows several controllability maps, where the frontier between dif-
ferent control actions is not well formed and some random effects are generated
due to the mutual influence of the two variables. Therefore, this adversely af-
fects the quality of the controller in terms of controllability and stability. Worse
even, these effects make it difficult to find a suitable combination of cells. How-
ever, the results achieved with CACM-RL*, as shown in Fig. 4-b, are perfectly
defined by a clear frontier, obtaining in all cases an optimal solution with a
constant controllability, and where the accuracy just depends on the cell size.
In this sense, the flexibility of CACM-RL* shown in Fig. 4-b allows to discretize
the variables without any kind of constraint and perform an automatic adjoining
process between cells.

According to Fig. 8, CACM-RL* provides the best solution for both the
high resolution case and for the low resolution case. Another remarkable char-
acteristic of CACM-RL* is that the memory resources can be reduced thanks
to its cell size tolerance. As an example, with the lowest resolution and using
50% of the memory resources needed by the highest resolution case, we obtain
the same controllability.

Table 2 shows the higher controllability with CACM-RL* than with CACM-
RL (100% vs 72% in the best case).
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(a)

(b)

Figure 8. Histograms for the position control of a DC motor: using high reso-
lution cells (a) and low resolution cells (b)

Table 2 CACM-RL vs CACM-RL* in the position control of a real DC motor

Controllability Histogram

CACM-RL high res 72% dashed line - Figure 8a

CACM-RL low res 5% dashed line - Figure 8b

CACM-RL∗ high res 100% solid line - Figure 8a

CACM-RL∗ low res 95% solid line - Figure 8b
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3.2. CACM-RL* vs CACM-RL in the “Car on the Hill” problem

The “Car on the Hill” problem, shown in Fig. 9 and defined in Moore (1995,
1990), is a 2-D problem, where the state variables are: X1 is the position (m)
and X2 is the velocity (m/s). The control action vector is composed of only
three values, F=[-4, 0, +4] N. The goal of the problem is to reach the goal of
X1=1 and X2=0. The difficulty of this control problem is that the force does
not suffice to drive the vehicle to the goal from the valley to the hill, and the
controller has to increment the kinetic energy of the vehicle iteratively, up to
exactly reach the goal on the hill.

It is important to emphasize here that the “Car on the Hill” problem is a
theoretical non-linear problem, which aims to verify the performance of con-
trollers. Because of its difficulty, it is a good example for comparing CACM-RL
with CACM-RL*.

The dynamics equations that define the behaviour of the problem are the
following:

x′ = v

H ′ =

{

x (x+ 1) ;x < 0
K1x√

1+K2x2
;x ≥ 0

}

, (8)

where x is the car position, v is the car velocity that can be written as:

v =
F

M

√

(

1 +H ′2
)

−
gH ′

1 +H ′2
(9)

Figure 9. “Car on the Hill” problem

M is the car mass, and g is gravity. K1, K2 and M are constants whose values
are 1, 5 and 1, respectively.

In Fig. 10, an optimal control surface of the problem is shown. A random
subset of 1000 trajectories has been generated from different initial cells. The
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Figure 10. Optimal trajectories from different initial cells to the goal in the
“Car on the Hill” problem

triangle-shaped regions at the top right and at the bottom left corners are the
non-controllable areas. In these zones close to the frontier of the state space,
the velocity is so high that the system is not able to stop the car and to lead
the vehicle to the attractor. This is the reason why this problem is not 100%
controllable in the entire state space.

As we did with the previous example, which was focused on the position
control of a DC motor, in order to compare the results achieved with CACM-
RL and CACM-RL*, a set of 25 controllability maps (using different cell sizes
in each one) has been generated. Fig. 11-a shows the controllability maps for
CACM-RL and Fig. 11-b for CACM-RL*. In this case, the comparison is clear:
when using any cell size with CACM-RL, the achieved controllability maps are
non-continuous and non-uniform. At the CACM-RL*, as shown in Fig. 11-b,
the maps are perfectly defined with a marked frontier between control actions
areas.

In the histograms of Fig. 12, we obtain a better controllability and better
average time to reach the goal when applying CACM-RL* than with CACM-
RL. The narrower the histogram, the better the controller from the optimality
point of view. Furthermore, the more cells reach the goal in the average time,
the narrower histogram is and therefore, the controller is closer to its optimal
implementation.

In general, the “Car on the Hill” problem, when solved with CACM-RL*,
shows a better controllability than when solved with CACM-RL (74% vs 64%
in the best case, see Table 3). It is also important to highlight that CACM-
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(a) (b)

Figure 11. Controllability maps of the “Car on the Hill” problem using CACM-
RL (a) and CACM-RL* (b). The ranges of X1 [0.05m - 0.1m], X2 [0.16m/s -
0.32m/s] are covered in five steps with a sample period of 5ms

RL* provides the same controllability in all the studied cases (independently
of the cell sizes). This means that for the proposed problem it is not needed
to increase the resolution in order to improve the controllability. According to
Table 3, CACM-RL* obtains not only the highest controllability, but also it is
constant despite the changes in the grid resolution.

Table 3: CACM-RL vs CACM-RL* in the “Car on the Hill” problem

Controllability Histogram

CACM-RL high res 64% dashed line - Figure 12a

CACM-RL low res 54% dashed line - Figure 12b

CACM-RL∗ high res 74% solid line - Figure 12a

CACM-RL∗ low res 64% solid line - Figure 12b

3.3. CACM-RL* vs PID in the position control of a real DC motor

In order to study CACM-RL* in a real scenario, we have chosen the position
control problem of a DC motor and a PID controller for comparing results.
According to Section 3.1, the position control of a DC motor requires the use
of two state variables in order to ensure the optimal control: angular position
(X1) and angular velocity (X2). In this case and for CACM-RL*, the grid used
has been of 21 x 21 cells, obtaining cell sizes of 17.14◦ and 47.6◦/s, respectively.

The main goal during the learning stage of CACM-RL* is to select and try
control actions. CACM-RL* has to try actions that have not been selected
before (see Gómez, 2012, 2009, 2011). In this sense, exploration is the key to
learning the optimal control action. In order to secure a good learning, it is
necessary that all control actions for each cell (state) be applied during the
exploration. The more times the controller chooses a control action, the better
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(a)

(b)

Figure 12. Histograms for the “Car on the Hill” problem: using high resolution
cells and low resolution cells

the learning will be. There are several strategies used for exploration. In our
case, we use random selection, because it gives good performance; all actions
are chosen enough number of times for achieving the best long-term effect from
the real plant (see Gómez, 2011).

After about 60 seconds of exploration, the DC motor completes the learning
stage. With this learning, the controllability is 96.8% (the cells located at the
top-right and bottom-left corners are not controllable) as it can be seen in
Fig. 13. Also, Fig. 13 shows an optimal control surface together with a set
of trajectories generated from different initial cells, after finishing the learning
stage.

The PID controller, in comparison with CACM-RL*, requires a critical tun-
ing and always will be working between the overdamped and underdamped
behaviours. Furthermore, the static or stationary error associated with PID
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Figure 13. Optimal trajectories, leading from different initial cells to the goal
(centre coordinate) in the position control problem of a DC motor using CACM-
RL*

Figure 14. CACM-RL* vs PID responses to the position control of a DC motor
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cannot be efficiently reduced in time. Also, PID is not as accurate as CACM-
RL*. On the other hand, as it can be seen in Fig. 14, with CACM-RL*, the
instabilities and the static error are avoided.

4. Conclusions

In this work, a new algorithm called CACM-RL*, derived from CACM-RL, has
been presented. CACM-RL* is a robust and efficient technique that reduces the
engineering effort, required to achieve an optimal controller, when compared
with CACM-RL. With CACM-RL*, the memory resources can be considerably
reduced thanks to its flexibility in supporting any cell size. This property allows
for avoiding increase of the number of cells to achieve the accuracy requirements.
For this reason, CACM-RL* lets us discretize the state variables without any
kind of constraint, and, implemented as a part of the internal behaviour, also
the automation of the performed adjoining distances.

The sample period and the time-delay control loop are very influential pa-
rameters for the controllability of a system. With the use of CACM-RL, the
controllability of a system may happen to be reduced due to a bad cell size selec-
tion. However, CACM-RL* adapts the adjoining distance to the sample period
and, in this way, the controllability is not affected by the design parameter
constraints.

With CACM-RL*, the design problems derived from the state space dis-
cretization and the critical relationship between dimensions have been satisfac-
torily resolved. In addition, the optimality and efficiency of performance rely
exclusively on the cell size and dedicated resources. The tedious trial and error
process meant to adjust the cell size in CACM-RL has been overcome. With this
new algorithm, engineers only have to focus on accuracy and stability criteria,
instead of the cell sizes.
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GÓMEZ, M., ARRIBAS, T. and SÁNCHEZ, S. (2012) Optimal Control based
on CACM-RL in a Two-Wheeled Inverted Pendulum. International Jour-
nal of Advanced Robotic Systems, 9 (1), 1-8.



Optimal control of dynamic systems using a new adjoining cell mapping method with RL 387
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