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Abstract: Results of the impulse response analysis for a class
of dynamical systems, described by two weakly coupled linear partial
differential equations of hyperbolic type, defined on a one-dimensional
spatial domain are presented. For the case of two boundary inputs
of the Dirichlet type, the analytical expressions for the impulse re-
sponse functions are derived based on the inverse Laplace transform
of the 2×2 transfer function matrix of the system. The influence of
the boundary inputs configuration on the impulse response functions
is demonstrated. The considerations are illustrated with a practi-
cal example of a thin-walled double-pipe heat exchanger operating
in parallel- and countercurrent-flow modes, which correspond to the
analyzed boundary conditions.
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1. Introduction

The concept of the impulse response of a dynamical system is essential in many
areas, such as control, economics, electronic processing, electrical and mechani-
cal engineering or acoustic and audio applications (Bonelli and Radzicki, 2008;
Kociȩcki, 2010; Lee et al., 2007; Wu et al., 2012). For the continuous-time
systems, the impulse response can be considered as a response to the input
forcing in the form of a Dirac delta distribution. The usefulness of this kind of
mathematical representation lies in the fact that it completely characterizes the
dynamical properties of the system and can be used to determine its response
to arbitrary input signals.

In the case of distributed parameter systems (DPSs), i.e., dynamical systems
described by partial differential equations (PDEs), the impulse response function
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depends not only on time but also on the spatial variable(s), which represent(s)
the geometry of the system. This fact is very important from both practical
and technological points of view. The knowledge of the complete spatiotemporal
response of the plant allows not only to determine, e.g., the fluid temperature
variations at the outlet of a heat exchanger, the pressure variations at the out-
flow of a transportation pipeline or the voltage at the end point of an electrical
transmission line, but also enables the analysis of their distribution along the
respective geometrical axis (Baranowski and Mitkowski, 2012; Bartecki, 2009,
2015; Grabowski, 2007; Mitkowski, 2014; Wang et al., 2005). The response of
the system to the unit impulse can be interpreted as the Green’s function for the
given boundary value problem. In some cases, this function can be derived from
the first-principle knowledge. On the other hand, when the analytical Green’s
function is not available, it can be estimated from the input–output data. The
first approach is informally known as white box modeling, while the second—as
black box modeling, which obviously relates to the field of system identification
(Guo et al., 2010; Li and Qi, 2010; Uciński, 2012).

As is generally known, the notion of the impulse response of a dynamical
system is closely related with its transfer function representation. Assuming
linearity and time-invariance, the impulse response function g(t) is equal to
the inverse Laplace transform of the transfer function G(s). There exists a
plethora of literature concerning transfer function modeling and analysis, how-
ever, only a few of them take focus on the infinite-dimensional systems. Some
of them investigate the transfer functions of DPSs from a strictly mathemat-
ical, functional analysis–based viewpoint (see, e.g., Callier and Winkin, 1993;
Zwart, 2004), whereas some others to a greater extent take into account the
perspective of their practical applications. As an example one can mention,
e.g., the article by Rabenstein (1999), in which the concept of the transfer func-
tion model has been extended to the DPSs with bounded spatial domains, i.e.,
systems, which can be described as initial-boundary-value problems. In the tu-
torial paper by Curtain and Morris (2009), the rich variety of transfer functions
for the systems described by PDEs is illustrated by means of several examples
under various boundary conditions. Another valuable example is the work by
Jacob and Zwart (2012), which concerns the transfer function approach in a
general setting of the so-called Linear Port-Hamiltionian Systems, where the
authors skilfully combine the abstract functional analytical approach with the
physical-based modeling.

The current paper tries to fit into the second category, where the analytical
results are motivated by the practical examples. It deals with a certain class
of DPSs, in which the mass, heat and energy transport phenomena take place.
This class of systems, among which one can mention, e.g., heat exchangers,
transport pipelines, irrigation channels, or electrical transmission lines, is usu-
ally described by PDEs of hyperbolic type and known under the common name
of hyperbolic systems of conservation/balance laws (Bressan, 1999; Dafermos,
2010; Lax and Wendroff, 1960; Lasiecka and Triggiani, 2008; LeFloch, 2002;
Murawski and Lee, 2012; Ziółko, 2000). The present paper can be seen as a
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continuation of our works (Bartecki 2013 b and c), in which the steady-state
properties and the transfer functions of this class of DPSs have been analyzed,
respectively. As compared to the two above-mentioned previous papers, the
main contribution of the current study concerns the time-domain representa-
tion and includes derivation of analytical expressions for the impulse responses
of 2×2 hyperbolic systems of balance laws, assuming two different typical config-
urations of the Dirichlet boundary inputs. The present is organized as follows.
Section 2 presents a mathematical model of the considered class of DPSs in the
form of PDEs, then recalls its hyperbolicity conditions and transfer function rep-
resentation. In Section 3, analytical expressions for the impulse responses are
derived from the transfer functions of the system, based on the inverse Laplace
transform approach. In Section 4, the thin-walled double-pipe heat exchanger,
operating in parallel- and countercurrent-flow modes is introduced as a typical
example of the hyperbolic DPS with two different boundary input configura-
tions. Next, some of its impulse response functions are presented in the form
of two- and three-dimensional plots, representing their spatiotemporal profiles.
The paper concludes with Section 5, containing the summary of the presented
results.

2. Hyperbolic systems

2.1. Linear PDE representation

Dynamical properties of some of the above-mentioned DPSs can be described,
after possible linearization, by the following system of linear homogeneous PDEs
of the first order (see Bartecki, 2013b,c; Chentouf and Wang, 2009; Diagne et al.,
2012; Evans, 1998; Mattheij et al., 2005):

∂x (l, t)

∂t
+ Λ

∂x (l, t)

∂l
= Kx (l, t) , (1)

where x(l, t) : Ω×[0, +∞) → R
n is a vector function representing the spatiotem-

poral distribution of the n state variables

x(l, t) =
[

x1(l, t) x2(l, t) . . . xn(l, t)
]T

, (2)

with Ω = [0, L] ⊂ R being the domain of the spatial variable l; [0, +∞) – the
domain of the time variable t; K ∈ Rn×n – a matrix with constant entries and
Λ – a diagonal matrix of the following form:

Λ = diag (λ1, . . . , λp, λp+1, . . . , λn) , (3)

with λi ∈ R \ 0 and

λ1 > . . . > λp > 0 > λp+1 > . . . > λn, (4)

where p ≤ n represents the number of positive elements λi.
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Definition 1. The system (1) is said to be hyperbolic iff all diagonal entries of
Λ, given by (3), are real and different from zero, as assumed in (4). Additionally,
if they all are distinct, then the system (1) is said to be strictly hyperbolic.

Definition 2. The systems, described by (1) with K 6= 0, are commonly known
as systems of balance laws. In the special case when there is no “production”,
i.e., for K = 0, the system is usually called system of conservation laws (Dafer-
mos, 2010).

Remark 1. Owing to the diagonal form of Λ, each equation of the system (1)
contains both temporal and spatial derivatives of the same state variable xi(l, t),
for i = 1, 2, . . . , n. Therefore, this system is commonly referred to as decoupled
or weakly coupled, i.e., coupled only through the terms that do not contain
derivatives. In the case of the hyperbolic PDEs, describing physical phenomena
mentioned in Section 1, the elements of Λ usually represent the mass and/or
energy transport rates.

Remark 2. Some of the physical hyperbolic systems are described directly by
the weakly coupled PDEs (1), while the others by the strongly coupled equations
with non-diagonal matrices at the derivative terms. In order to express them
in the general form (1), the decoupling (diagonalization) procedure has to be
carried out (Bartecki, 2013a).

2.2. Initial and boundary conditions

In order to obtain a unique solution of (1), the appropriate initial and boundary
conditions must usually be specified. The initial conditions represent the initial
(i.e., determined for t = 0) distribution of the values of all n state variables for
the whole set Ω

x(l, 0) = x0(l), (5)

where x0(l) : Ω → Rn is a given vector function.
On the other hand, the boundary conditions represent the requirements to

be met by the solution x(l, t) at the boundary points of Ω. They can express,
e.g., the boundary feedbacks and reflections, as well as the external boundary
inputs to the system. In general, these conditions may take the form of a linear
combination of the Dirichlet and Neumann boundary conditions, as the so-called
boundary conditions of the third kind (Ancona and Coclite, 2005; Dooge and
Napiorkowski, 1987). The boundary conditions of Dirichlet type, which are
often encountered for the considered class of hyperbolic systems, can be written
down in the following compact way (Diagne et al., 2012; Xu and Sallet, 2002):

[

x+(0, t)

x−(L, t)

]

=

[

P0L P00

PLL PL0

][

x+(L, t)

x−(0, t)

]

+

[

R0

RL

]

u (t) (6)

with

x+ =
[

x1 . . . xp

]T
, x− =

[

xp+1 . . . xn

]T
. (7)
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The vector function u(t) : [0, +∞) → Rr in (6) expresses the inhomogene-
ity of the boundary conditions which can be identified with r external inputs
to the system, including both control signals and external disturbances. The
constant matrices P0L ∈ Rp×p and PL0 ∈ R(n−p)×(n−p) express the feedbacks
from the boundary l = L to the boundary l = 0, and from l = 0 to l = L,
respectively. The matrices P00 ∈ Rp×(n−p) and PLL ∈ R(n−p)×p express the
boundary reflections for l = 0 and l = L, respectively. Finally, R0 ∈ Rp×r and
RL ∈ R(n−p)×r represent the effect of the external inputs u(t) on the boundary
conditions x+(0, t) and x−(L, t), respectively.

2.3. 2×2 hyperbolic systems

An important class of the considered DPSs is constituted by the systems which
can be described, under certain assumptions, by the system of two hyperbolic
PDEs including two main spatiotemporal state variables. The following are
some typical examples:

• Thin-walled double-pipe heat exchanger with distributed temperatures
ϑ1(l, t) and ϑ2(l, t) of the heating and the heated fluid (Bartecki, 2015;
Grabowski, 2007; Maidi et al., 2010).

• Electrical transmission line with distributed voltage u(l, t) and current
i(l, t) (Baranowski and Mitkowski, 2012; Wang et al., 2005).

• Transport pipeline with distributed pressure p(l, t) and flow q(l, t) of the
transported medium (Bartecki, 2009).

• Unidirectional open channel flow described by the linearized Saint-Venant
equations with the discharge q(l, t) and water depth h(l, t) (Bounit, 2003;
Litrico and Fromion, 2009; Strupczewski and Kundzewicz, 1979).

As stated in Remark 2, some of the considered systems, such as the above-
mentioned heat exchanger, are described directly by the weakly coupled hyper-
bolic PDEs (1), while the equations of the others are strongly coupled. After
possible decoupling, one obtains from (1) for n = 2 the following vector of the
characteristic state variables:

x(l, t) =
[

x1(l, t) x2(l, t)
]T

, (8)

as well as the following matrices of constant coefficients:

Λ =

[

λ1 0

0 λ2

]

, K =

[

k11 k12

k21 k22

]

. (9)

Throughout the rest of the paper we assume, according to Bartecki (2013b
and c), that neither boundary feedback nor reflection are present in the system,
i.e., P00 = P0L = PL0 = PLL = 0 in (6). Moreover, we consider here two
boundary input signals u1(t) and u2(t) (i.e., r = n = 2) with two different
typical input configurations. For the first configuration, both boundary inputs
are given for the same edge (l = 0) of the spatial domain Ω, whereas for the
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second one – the input functions u1(t) and u2(t) act on the two different edges,
l = 0 and l = L, respectively. Therefore, two definitions are introduced below
in order to distinguish between the two above-mentioned configurations.

Definition 3. The external inputs of the system (1) with n = 2 state variables
will be referred to as collocated Dirichlet boundary inputs, assuming p = r = 2
and R0 = I2×2 in (6), which for P00 = P0L = PL0 = PLL = 0 leads to the
following expression on the boundary input vector:

u+ (t) =

[

u+
1 (t)

u+
2 (t)

]

=

[

x1 (0, t)

x2 (0, t)

]

. (10)

Definition 4. The external inputs of the system (1) with n = 2 state variables
will be referred to as anti-collocated Dirichlet boundary inputs, assuming r = 2,
p = 1 and R0 = [1 0], RL = [0 1] in (6), which for P00 = P0L = PL0 = PLL = 0
leads to the following expression on the boundary input vector:

u± (t) =

[

u+
1 (t)

u−
2 (t)

]

=

[

x1 (0, t)

x2 (L, t)

]

. (11)

Remark 3. Taking into account (4), the collocated inputs will be imposed for
λ1 > 0 and λ2 > 0, while the anti-collocated ones – for λ1 > 0 and λ2 < 0.

Furthermore, we take into account in the system two output signals given
by the following equation

y (t) =

[

y1 (t)

y2 (t)

]

=

[

x1 (l, t)

x2 (l, t)

]

, (12)

where y(t) : [0, +∞) → R2, represents the vector of the point-wise observations
(measurements) performed for both state variables at the position l.

The above assumptions about the form of the boundary conditions repre-
senting the external influences on the system have some practical foundation.
For example, in the case of the above-mentioned double-pipe heat exchanger,
operating in the so-called parallel-flow mode (with λ1 > 0 and λ2 > 0), the
inlet temperatures of the heated and the heating medium are given for the same
geometric point of the exchanger. On the other hand, the inlet temperatures
of the fluids flowing into the exchanger, operating in the countercurrent-flow
mode (with λ1 > 0 and λ2 < 0), are to be specified for its two opposite sides.
In turn, the output signals y1(t) and y2(t) in (12) can be represented by the
outflow temperatures of the fluids, ϑ1(L, t) and ϑ2(L, t), respectively.

2.4. Transfer functions of 2×2 hyperbolic systems

In this section, the main results of our previous paper, Bartecki (2013b) are
recalled. The general closed-form expressions for the individual elements of the
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2×2 transfer function matrix are proposed here based on the canonical repre-
sentation of the hyperbolic system (1), assuming two different configurations of
boundary inputs, introduced in Section 2.3. Since the properties of the consid-
ered transfer functions have been already thoroughly examined in the above-
mentioned paper, we have limited ourselves to presenting below the ready-made
expressions, with y(s) and u(s) standing for the Laplace transforms Lt of y(t)
and u(t), respectively.

Proposition 1. (Bartecki, 2013b). The transfer function matrix of the system
(1) for n = 2 with the collocated boundary inputs (10) and pointwise outputs
(12) has the following form:

G+(l, s) =

[

G+
11(l, s) G+

12(l, s)

G+
21(l, s) G+

22(l, s)

]

, (13)

with

G+
11(l, s) =

y1(s)

u+
1 (s)

=
φ1(s)−p22(s)

φ1(s)−φ2(s)
eφ1(s)l − φ2(s)−p22(s)

φ1(s)−φ2(s)
eφ2(s)l, (14)

G+
21(l, s) =

y2(s)

u+
1 (s)

=
p21

φ1(s) − φ2(s)

(

eφ1(s)l − eφ2(s)l
)

, (15)

for u+
2 (s) = 0, and

G+
12(l, s) =

y1(s)

u+
2 (s)

=
p12

φ1(s) − φ2(s)

(

eφ1(s)l − eφ2(s)l
)

, (16)

G+
22(l, s) =

y2(s)

u+
2 (s)

=
φ1(s)−p11(s)

φ1(s)−φ2(s)
eφ1(s)l − φ2(s)−p11(s)

φ1(s)−φ2(s)
eφ2(s)l, (17)

for u+
1 (s) = 0, all for zero initial conditions, x1(l, 0) = x2(l, 0) = 0, where

p11(s), p12, p21 and p22(s) are elements of the matrix P (s) of the following
form:

P (s)=

[

p11(s) p12

p21 p22(s)

]

=







k11 − s

λ1

k12

λ1
k21

λ2

k22 − s

λ2






, (18)

and φ1(s), φ2(s) are its eigenvalues

φ1,2(s) = α(s) ± β(s), (19)

with

α(s) =
1

2
(p11(s) + p22(s)) (20)

and

β(s) =
1

2

√

(p11(s) − p22(s))
2

+ 4p12p21. (21)
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Figure 1. Block diagram of the transfer function model for the collocated bound-
ary inputs

A block diagram of the transfer function model given by Proposition 1 is
presented in Fig. 1.

Proposition 2. (Bartecki, 2013b). For the case of the anti-collocated boundary
inputs (11) and pointwise outputs (12) the transfer function matrix of the system
(1) for n = 2 takes the following form:

G±(l, s) =

[

G±
11(l, s) G±

12(l, s)

G±
21(l, s) G±

22(l, s)

]

, (22)

where

G±
11(l, s) =

y1(s)

u+
1 (s)

=
eφ2(s)Leφ1(s)l (φ1(s) − p22(s))

eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))

− eφ1(s)Leφ2(s)l (φ2(s) − p22(s))

eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))
,

(23)

G±
21(l, s) =

y2(s)

u+
1 (s)

=
p21

(

eφ2(s)Leφ1(s)l − eφ1(s)Leφ2(s)l
)

eφ2(s)L(φ1(s) − p22(s)) − eφ1(s)L(φ2(s) − p22(s))
, (24)

for u−
2 (s) = 0, and

G±
12(l, s) =

y1(s)

u−
2 (s)

=
p12

(

eφ2(s)l − eφ1(s)l
)

eφ2(s)L(φ2(s) − p11(s)) − eφ1(s)L(φ1(s) − p11(s))
, (25)

G±
22(l, s) =

y2(s)

u−
2 (s)

=
eφ2(s)l (φ2(s) − p11(s)) − eφ1(s)l (φ1(s) − p11(s))

eφ2(s)L (φ2(s) − p11(s)) − eφ1(s)L (φ1(s) − p11(s))
, (26)
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for u+
1 (s) = 0, all for zero initial conditions, x1(l, 0) = x2(l, 0) = 0, where

p11(s), p12, p21, p22(s) and φ1(s), φ2(s) are given by (18) and (19), respectively.

A block diagram of the transfer function model given by Proposition 2 is
presented in Fig. 2.

Figure 2. Block diagram of the transfer function model for the anti-collocated
boundary inputs

3. Impulse responses

This section presents the main contribution of the paper, which is the general
impulse response representation for the 2×2 hyperbolic systems, introduced in
Section 2.3. First, definition of the impulse response for the considered class of
DPSs with boundary inputs is presented. Next, based on the inverse Laplace
transform of the transfer functions discussed in Section 2.4, the analytical ex-
pressions describing the impulse response functions are derived, both for the
collocated and anti-collocated boundary inputs, adopted in Definitions 3 and 4,
respectively.

Definition 5. Let

G+(l, t) =

[

g+
11(l, t) g+

12(l, t)

g+
21(l, t) g+

22(l, t)

]

(27)

and

G±(l, t) =

[

g±
11(l, t) g±

12(l, t)

g±
21(l, t) g±

22(l, t)

]

(28)

represent the impulse response matrices of the system described by the transfer
function matrices, given by Proposition 1 and Proposition 2, respectively.
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The element g+
ij(l, t) of the matrix given by Eqn. (27) represents the impulse

response of the channel connecting the jth boundary input u+
j (t), j = 1, 2 from

Eqn. (10) with the ith pointwise output yi(t), i = 1, 2 given by Eqn. (12), i.e.,
the response due to the Dirac delta boundary condition u+

j (t) = xj(0, t) = δ(t),
assuming zero initial conditions and zero boundary condition for the other input
(see Fig. 1).

Similarly, the elements g±
ij(l, t) of the matrix in Eqn. (28) represent the

impulse responses of the channels connecting the anti-collocated boundary inputs
u±(t) in Eqn. (11) with the pointwise outputs y(t) from Eqn. (12) (see Fig. 2).

It is well known that the transfer function of a linear time-invariant system
is represented by the Laplace transform of its impulse response. Therefore, the
impulse response gij(l, t) given by Definition 5, can be calculated based on the
following formula expressing the inverse Laplace transform:

gij (l, t) = L−1
s {Gij (l, s)} =

1

2πi
lim

T →∞

γ+iT
∫

γ−iT

estGij (l, s) ds, (29)

where Gij(l, s) is the transfer function of the corresponding input–output chan-
nel given by (14)–(17) or (23)–(26). The integration in (29) is done along the
vertical line Re(s)=γ in the complex plane such that γ is greater than the real
part of all singularities of Gij(l, s).

The so-called Bromwich integral, given by (29), provides a very general ap-
proach for determining the impulse response of a dynamic system on the basis
of its transfer function. The calculations can be facilitated, e.g., by the use
of the Cauchy residue theorem. However, for practical reasons, this laborious
task can be replaced (when possible) by finding the expressions for the inverse
Laplace transforms in look-up tables and using various properties of the Laplace
transform (Polyanin and Manzhirov, 1998). Although the transfer functions of
the considered hyperbolic systems are given by relatively complex irrational ex-
pressions, the latter approach can still be applied in order to obtain analytical
formulas for the impulse responses g+

ij(l, t) and g±
ij(l, t), as this will be shown

later in this section.

3.1. Fully decoupled system and system of conservation laws

Since the general analytical expressions for the impulse responses of the con-
sidered hyperbolic systems with non-zero elements in the matrix K are quite
complex as it will be shown later in Subsection 3.2, we will start here with the
relatively simple cases of the fully decoupled hyperbolic system (k12 = k21 = 0)
and the hyperbolic system of conservation laws (k11 = k12 = k21 = k22 = 0).
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3.1.1. Collocated boundary inputs

Proposition 3. The elements of the impulse response matrix G+ (l, t) from
(27) for the case of the fully decoupled system with k12 = k21 = 0 are given by

G+ (l, t) =

[

κ+
1 (l)δ

(

t − τ+
1 (l)

)

0

0 κ+
2 (l)δ

(

t − τ+
2 (l)

)

]

, (30)

and for the system of conservation laws with k11 = k12 = k21 = k22 = 0 by

G+ (l, t) =

[

δ
(

t − τ+
1 (l)

)

0

0 δ
(

t − τ+
2 (l)

)

]

, (31)

where

κ+
1 (l) = e

k11
λ1

l, κ+
2 (l) = e

k22
λ2

l, (32)

represent the position-dependent gains, and

τ+
1 (l) =

l

λ1
, τ+

2 (l) =
l

λ2
, (33)

are the position-dependent time-delays of the system.

Proof. Assuming k12 = k21 = 0 in (9) we obtain the diagonal form of the
matrix P (s) in (18) and consequently the following greatly simplified form of
the transfer function matrix G+(l, s) from Proposition 1:

G+(l, s) =





e
k11−s

λ1
l 0

0 e
k22−s

λ2
l



 =

[

κ+
1 (l)e−sτ +

1
(l) 0

0 κ+
2 (l)e−sτ +

2
(l)

]

. (34)

The inverse Laplace transform of (34) results in (30).

For the system of conservation laws we obtain κ+
1 = κ+

2 = 1 in (32), which
leads to the pure time-delay system with the transfer function matrix

G+(l, s) =

[

e−sτ +

1
(l) 0

0 e−sτ +

2
(l)

]

, (35)

for which the impulse responses take the form given by (31). �

Remark 4. The response matrix in (31) contains the Dirac delta impulses
“traveling” between l = 0 and l = L with speeds λ1 and λ2. In the case given
by (30), the Dirac impulses are additionally scaled by the factor exponentially
depending on the spatial position l.
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3.1.2. Anti-collocated boundary inputs

Proposition 4. The elements of the impulse response matrix G± (l, t) from
(28) for the case of the fully decoupled system are given by

G± (l, t) =

[

κ+
1 (l)δ

(

t − τ+
1

)

0

0 κ−
2 (l)δ

(

t − τ−
2

)

]

, (36)

and for the system of conservation laws by

G± (l, t) =

[

δ
(

t − τ+
1

)

0

0 δ
(

t − τ−
2

)

]

, (37)

where

κ+
1 (l) = e

k11
λ1

l, κ−
2 (l) = e

k22
λ2

(l−L), (38)

represent the position-dependent gains and

τ+
1 (l) =

l

λ1
, τ−

2 (l) =
l − L

λ2
, (39)

are the position-dependent time-delays of the system.

Proof. Assuming k12 = k21 = 0 we obtain the following greatly simplified
form of the matrix G±(l, s) from Proposition 2:

G±(l, s) =





κ+
1 (l)e−sτ +

1
(l) 0

0 κ−
2 (l)e−sτ −

2
(l)



 . (40)

The inverse Laplace transform of (40) results in (36).
For the system of conservation laws we obtain κ+

1 = κ−
2 = 1 in (38) which

leads to the pure time-delay system with the transfer function matrix

G±(l, s) =





e−sτ +

1
(l) 0

0 e−sτ −

2
(l)



 , (41)

for which the impulse responses take the form given by (37). �

3.2. System of balance laws (K 6= 0)

For the non-zero elements of the matrix K, representing the case of the system of
balance laws (see Definition 2), the calculations are significantly more laborious.
Therefore, we will begin by introducing some notations, which will allow for
simplifying some complex expressions appearing throughout this subsection.
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3.2.1. Preliminary results

Let

η = 4k12k21λ1λ2, (42)

and

γ(s) = (k11 − s) λ2 − (k22 − s) λ1 = ρs + σ, (43)

with

ρ = λ1 − λ2, σ = k11λ2 − k22λ1, (44)

where λ1, λ2 and k11, k12, k21, k22 are elements of the matrices Λ and K in (9).

Lemma 1. Assuming η 6= 0, each of the following identities holds:

γ(s) +
√

γ2(s) + η = − η

γ(s) −
√

γ2(s) + η
, (45)

γ(s) −
√

γ2(s) + η = − η

γ(s) +
√

γ2(s) + η
. (46)

Proof. By dividing each of Eqns. (45) and (46) by their left-hand sides,
one obtains the above identities. �

Lemma 2. The eigenvalues φ1(s) and φ2(s) (19) of the matrix P (s) in (18) can
be expressed using γ(s) from (43) and η from (42) in the following way:

φ1(s) =
1

2λ1λ2

(

γ(s)+
√

γ2(s)+η
)

+p22(s)

= − 1

2λ1λ2

(

γ(s)−
√

γ2(s)+η
)

+p11(s),

(47)

and

φ2(s) =
1

2λ1λ2

(

γ(s)−
√

γ2(s)+η
)

+p22(s)

= − 1

2λ1λ2

(

γ(s)+
√

γ2(s)+η
)

+p11(s),

(48)

where p11(s) and p22(s) are the diagonal elements of P (s).

Proof. Based on (20) and (43) it is straightforward to show that

α(s) =
1

2λ1λ2
γ(s) + p22(s) = − 1

2λ1λ2
γ(s) − p11(s). (49)

Similarly, from (21), (42) and (43) one obtains

β(s) =
1

2λ1λ2

√

γ2(s) + η. (50)

By combining expressions (19), (49) and (50) one obtains (47) and (48). �
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Remark 5. Based on (47) and (48), the following relationships can easily be
derived:

φ1(s) − φ2(s) =
1

λ1λ2

√

γ2(s) + η. (51)

Lemma 3. For any τ, µ, η, σ, ρ ∈ R such that τ ≥ 0, η > 0, ρ 6= 0 and for n ∈ N,
γ(s) ∈ C, the following identity holds:

L−1
s







exp (−sτ)
exp

(

µ
(

γ(s)−
√

γ2(s) + η
))

(

γ(s)+
√

γ2(s)+η
)n√

γ2(s)+η







=H (t−τ) exp

(

σ

ρ
(t−τ)

)(

t − τ

t−τ +2µρ

)n/2

(52)

·
√

η−n

ρ
Jn

(√
η

ρ

√

(t − τ) (t − τ + 2µρ)

)

,

where L−1
s represents the inverse Laplace transform in the variable s, H is the

Heaviside function given by

H(t) =

{

0 for t < 0,

1 for t > 0,
(53)

and Jn denotes the Bessel function of the first kind of order n, i.e. the function
given by the following formula:

Jn(t) =

∞
∑

k=0

(−1)k

k! Γ (k + n + 1)

(

t

2

)2k+n

, (54)

with Γ being the gamma function

Γ (x) =

∞
∫

0

yx−1e−ydy. (55)

Proof (see Friedly, 1975, formulas (9.2-22)-(9.2.24)). By combining the
following properties of the inverse Laplace transform:

L−1
s







( √
η

s +
√

s2 + η

)n exp
(

ν
(

s −
√

s2 + η
))

√

s2 + η







=

(

t

t + 2ν

)n/2

Jn

(√
η
√

t (t + 2ν)
)

, η > 0,

(56)

L−1
s {f (βs + α)} =

1

β
exp

(

−αt

β

)

f

(

t

β

)

, β 6= 0, (57)
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and

L−1
s {exp (−sτ) f (s)} = H (t − τ ) f (t − τ ) , τ ≥ 0, (58)

where f(t) denotes a given function and f(s) its Laplace transform, one obtains
the identity (52). �

Lemma 4. For any τ, µ, η, σ, ρ ∈ R such that τ ≥ 0, η > 0, ρ 6= 0 and for n ∈ N,
γ(s) ∈ C, the following identity holds:

L−1
s







exp (−sτ)
exp

(

µ
(

γ(s) −
√

γ2(s) + η
))

(

γ(s) +
√

γ2(s) + η
)n







= H (t − τ) exp

(

σ

ρ
(t − τ )

)

1

t − τ
(59)

{

µ
√

η−n+1

(

t − τ

t − τ + 2µρ

)(n+1)/2

Jn+1

(√
η

ρ

√

(t − τ ) (t − τ + 2µρ)

)

+ n
√

η
−n

(

t − τ

t − τ + 2µρ

)n/2

Jn

(√
η

ρ

√

(t − τ) (t − τ + 2µρ)

)

}

.

Proof (see Friedly, 1975, formulas (9.5-6)-(9.5.7)). By combining the fol-
lowing identity:

exp
(

µ
(

γ −
√

γ2 + η
))

(

γ +
√

γ2 + η
)n =

∞
∫

γ

exp
(

µ
(

g−
√

g2+η
))

(

g+
√

g2+η
)n√

g2+η

(

µη

g+
√

g2+η
+n

)

dg (60)

with the well-known property of the Laplace transform

L−1
s







∞
∫

s

f(σ)dσ







=
1

t
f(t), s > α, (61)

which remains valid for any function f(t) piecewise continuous on [0, +∞] of
exponential order α and such that limt→0+ f(t)/t exists, and then using Lemma
3, one obtains (59). �

Remark 6. For η < 0, all η appearing on the right-hand sides of (52), (56)
and (59) should be replaced with −η and the Bessel function of the first kind Jn

– with the modified Bessel function of the first kind In.
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3.2.2. Collocated boundary inputs

Proposition 5. The elements of the impulse response matrix G+(l, t) from
(27) take the following general form:

g+
ij (l, t) = ε+

ij

{

H
(

t − τ+(1)(l)
)

κ+(1)(l)χ
+(1)
ij (l, t)

−H
(

t − τ+(2)(l)
)

κ+(2)(l)χ
+(2)
ij (l, t)

}

,

(62)

where i = 1, 2 and j = 1, 2 represent the output and the input number, respec-
tively, the factor εij has the following form for the corresponding input–output
channels:

ε+
11 = ε+

22 = −
√

η

2ρ
, ε+

12 =
k12λ2

ρ
, ε+

21 =
k21λ1

ρ
, (63)

τ+(1)(l) and τ+(2)(l) are time delays of the response

τ+(1)(l) =
l

λ1
, τ+(2)(l) =

l

λ2
, (64)

κ+(1)(l) and κ(2)(l) are functions of the spatial variable l

κ+(1)(l) = exp

(

k11
l

λ1

)

, κ+(2)(l) = exp

(

k22
l

λ2

)

, (65)

and χ
+(1)
ij (l, t), χ

+(2)
ij (l, t) represent the parts of the response, which depend both

on the time and the spatial variables:

χ
+(m)
ij (l, t) = exp

(

−σ

ρ

(

t−τ+(m)(l)
)

)(

t−τ+(1)(l)

t−τ+(2)(l)

)c

· J2|c|

(√
η

ρ

√

(

t−τ+(1)(l)
)(

t−τ+(2)(l)
)

)

,

(66)

with

c =











− 1
2 for i = j = 1,

0 for i 6= j,
1
2 for i = j = 2.

(67)

Proof. The transfer function G+
11(l, s), given by (14), can be transformed,

using Lemma 2 and Remark 5, into the following form:

G+
11(l, s) =

1

2

γ(s) +
√

γ2(s) + η
√

γ2(s) + η
(68)

· exp

(

− l

2λ1λ2

(

γ(s)−
√

γ2(s)+η
)

)

exp

(

k11
l

λ1

)

exp

(

− l

λ1
s

)
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+
1

2

η
(

γ(s) +
√

γ2(s) + η
)

√

γ2(s) + η

· exp

(

l

2λ1λ2

(

γ(s) −
√

γ2(s) + η
)

)

exp

(

k22
l

λ2

)

exp

(

− l

λ2
s

)

.

Next, based on Lemma 3, assuming n = −1 for the first and n = 1 for the second
term of the transfer function (68), one obtains its inverse Laplace transform in
the form expressed by (62) for i = j = 1.

Similarly, the transfer function G+
12(l, s) from (16) can be expanded as fol-

lows:

G+
12(l, s) =

k12λ2
√

γ2(s) + η
(69)

·
{

exp

(

− l

2λ1λ2

(

γ(s) −
√

γ2(s) + η
)

)

exp

(

k11
l

λ1

)

exp

(

− l

λ1
s

)

− exp

(

l

2λ1λ2

(

γ(s) −
√

γ2(s) + η
)

)

exp

(

k22
l

λ2

)

exp

(

− l

λ2
s

)

}

.

Then, the use of Lemma 3 for n = 0 results in the inverse Laplace transform
of (69), representing the impulse response (62) for i = 1 and j = 2. Due to
the symmetry, one can obtain impulse responses g+

21(l, t) and g+
22(l, t) from the

transfer functions (15) and (17) in a similar manner. �

3.2.3. Anti-collocated boundary inputs

Proposition 6. The elements of the impulse response matrix G±(l, t) from
(28) take the following general form:

g±
ij (l, t) = ε±

ij

∞
∑

m=0

{

H
(

t − τ
±(1)
j,m (l)

)

κ
±(1)
j,m (l) χ

±(1)
ij,m (l, t)

−H
(

t − τ
±(2)
j,m (l)

)

κ
±(2)
j,m (l) χ

±(2)
ij,m (l, t)

}

,

(70)

where the kth term of the infinite series represents the number of the wave
appearing in the response, i = 1, 2 and j = 1, 2 are the output and the input
number, respectively, the values of ε±

ij are given as follows:

ε±
11 = ε±

22 = 1, ε±
12 = −2k12λ2√−η

, ε±
21 =

2k21λ1√−η
, (71)
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τ
±(1)
j,m (l) and τ

±(2)
j,m (l) are time delays for the mth wave and the jth input equal

to

τ
±(1)
1,k (l) =

kL + l

λ1
− kL

λ2
, τ

±(2)
1,k (l) =

(k + 1) L

λ1
− (k + 1) L − l

λ2
,

τ
±(1)
2,k (l) =

kL

λ1
− (k + 1) L − l

λ2
, τ

±(2)
2,k (l) =

kL + l

λ1
− (k + 1) L

λ2
,

(72)

κ
±(1)
j,k (l) and κ

±(2)
j,k (l) are functions of the spatial variable l

κ
±(1)
1,k (l) = exp

(

k11
kL + l

λ1
− k22

kL

λ2

)

,

κ
±(2)
1,k (l) = exp

(

k11
(k+1) L

λ1
−k22

(k+1) L−l

λ2

)

,

κ
±(1)
2,k (l) = exp

(

k11
kL

λ1
− k22

(k + 1) L − l

λ2

)

,

κ
±(2)
2,k (l) = exp

(

k11
kL + l

λ1
− k22

(k + 1) L

λ2

)

,

(73)

and χ
±(1)
ij,k (l, t), χ

±(2)
ij,k (l, t) represent the parts of the response, which depend both

on the time and the spatial variable:

χ
±(m)
ij,k (l, t) =

1

t − τ
±(m)
j,k (l)

exp

(

−σ

ρ

(

t − τ
±(m)
j,k (l)

)

)







µ
±(m)
j,k (l)

√−η

(

t − τ
±(m)
j,k (l)

t − τ
±(m)
j,k (l) + 2µ

±(m)
j,k (l) ρ

)c+ 1
2

(74)

· I2c+1

(√−η

ρ

√

(

t − τ
±(m)
j,k (l)

)(

t − τ
±(m)
j,k (l) + 2µ

±(m)
j,k (l) ρ

)

)

+ 2c

(

t − τ
±(m)
j,k (l)

t − τ
±(m)
j,k (l) + 2µ

±(m)
j,k (l) ρ

)c

·I2c

(√−η

ρ

√

(

t − τ
±(m)
j,k (l)

)(

t − τ
±(m)
j,k (l) + 2µ

±(m)
j,k (l) ρ

)

)











,

where m = 1, 2,

c =

{

k + m − 1 for i = j,

k + 1
2 for i 6= j,

, (75)
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and

µ
±(1)
1,k (l) = −2kL+l

2λ1λ2
, µ

±(2)
1,k (l) = −2 (k+1) L−l

2λ1λ2
,

µ
±(1)
2,k (l) = − (2k+1) L−l

2λ1λ2
, µ

±(2)
2,k (l) = −2 (k+1) L+l

2λ1λ2
.

(76)

Proof. After dividing both the numerator and the denominator of the
transfer function G±

11(l, s) in (23) by the expression exp(φ2(s)L)(φ1(s) − p22(s))
and then using Lemmas 1 and 2 together with Remark 5, one obtains:

G±
11(l, s) = exp

(

− l

2λ1λ2

(

γ(s)−
√

γ2(s) + η
)

)

exp

(

k11
l

λ1

)

exp

(

− l

λ1
s

)

·






1+exp

(

L−l

λ1λ2

√

γ2(s)+η

)

η
(

γ(s)+
√

γ2(s)+η
)2







·






1+exp

(

L

λ1λ2

√

γ2(s)+η

)

η
(

γ(s)+
√

γ2(s)+η
)2







−1

.

(77)

Since we assume boundedness of the considered transfer function and, moreover,
we have L > 0, λ1 > 0 and λ2 < 0, we can express the denominator (i.e., the
last factor) of (77) in the form of a convergent infinite series:






1 − exp

(

L

λ1λ2

√

γ2(s) + η

) −η
(

γ(s) +
√

γ2(s) + η
)2







−1

=

=
∞
∑

k=0







−η
(

γ(s) +
√

γ2(s) + η
)2







k

exp

(

kL

λ1λ2

√

γ2(s) + η

)

= (78)

=

∞
∑

k=0







−η
(

γ(s) +
√

γ2(s) + η
)2







k

· exp

(

− kL

λ1λ2

(

γ(s) −
√

γ2(s) + η
)

)

exp

(

k
ρL

λ1λ2
s

)

exp

(

k
σL

λ1λ2

)

.

By multiplying the series in (78) by the numerator of the transfer function (77)
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one obtains

G±
11(l, s) =

∞
∑

k=0















κ
±(1)
1,k (l) exp

(

−sτ
±(1)
1,k (l)

)







−η
(

γ +
√

γ2 + η
)2







k

exp
(

µ
±(1)
1,k (l)

(

γ(s) −
√

γ2(s) + η
))

(79)

− κ
±(2)
1,k (l) exp

(

−sτ
±(2)
1,k (l)

)







−η
(

γ(s) +
√

γ2(s) + η
)2







k+1

exp
(

µ
±(2)
1,k (l)

(

γ(s) −
√

γ2(s) + η
))















,

where τ
±(m)
j,k (l), κ

±(m)
j,k (l) and µ

±(m)
j,k (l) are given by (72), (73) and (76), respec-

tively. Then, based on Lemma 4 we can take the inverse Laplace transforms
of the series in (79) term by term, obtaining, as a result, the impulse response
g±

11(l, t) in the form given by (70). For the remaining transfer functions, the
procedure can be performed in a similar way, resulting in the corresponding
impulse responses. �

4. Examples

For a practical illustration of the above-discussed theoretical framework, this
section performs impulse response analysis of a thin-walled double-pipe heat
exchanger, which can be considered as a typical DPS, whose mathematical de-
scription takes the form of the equation (1) with n = 2 state variables repre-
senting spatiotemporal distribution of the fluid temperatures. The study in-
cludes both the exchanger operating in the parallel-flow mode, for which the
boundary inputs have the collocated form, specified in the Definition 3, and
the countercurrent-flow mode, which corresponds to the anti-collocated bound-
ary inputs, adopted in Definition 4. After having obtained, based on equations
(14)–(17) and (23)–(26), the transfer functions of the exchanger, selected im-
pulse responses for the parallel- and countercurrent-flow modes are presented,
both in the form of three-dimensional graphs and as classical two-dimensional
plots, determined for a given spatial position.

4.1. Parallel-flow heat exchanger

Under some simplifying assumptions, the dynamic properties of the double-pipe
heat exchanger with negligible thermal capacitance of the wall can be described,
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based on the thermal energy balance equations, by the following hyperbolic
PDEs (Bagui et al., 2004; Bartecki, 2015; Maidi et al., 2010):

∂ϑ1(l,t)

∂t
+v1

∂ϑ1(l,t)

∂l
=α1

(

ϑ2(l,t)−ϑ1(l,t)
)

, (80)

∂ϑ2(l,t)

∂t
+v2

∂ϑ2(l,t)

∂l
=α2

(

ϑ1(l,t)−ϑ2(l,t)
)

, (81)

where the 1- and 2- sub-indexed figures represent tube-side and shell-side fluid
variables/coefficients, respectively; specifically: ϑ1(l, t) and ϑ2(l, t) – tempera-
tures, v1 and v2 – velocities, α1 and α2 – generalized parameters including: heat
transfer coefficients, fluid densities, specific heats, and geometric dimensions of
the exchanger.

Upon comparing (80) and (81) with the general equation (1), one obtains
the following vector of the state variables:

x(l, t) =
[

ϑ1(l, t) ϑ2(l, t)
]T

. (82)

Assuming the following parameter values: v1 = 1 m · s−1, v2 = 0.5 m · s−1,
α1 = α2 = 0.5 s−1, one obtains the following matrices of the system (1):

Λ =

[

1 0

0 0.5

]

, K =

[

−0.5 0.5

0.5 −0.5

]

, (83)

with λ1 = v1 = 1, λ2 = v2 = 0.5 being the characteristic speeds and K sym-
metric and negative definite, which makes the system dissipative.

The fluid inlet temperatures ϑ1i, ϑ2i can be taken as the input signals,
which, in the considered case of the parallel-flow, corresponds to the following
collocated boundary inputs (see Definition 3):

u+ (t) =

[

u+
1 (t)

u+
2 (t)

]

=

[

ϑ+
1i (t)

ϑ+
2i (t)

]

=

[

ϑ1 (0, t)

ϑ2 (0, t)

]

. (84)

The transfer functions of the heat exchanger are given directly by the equa-
tions (14)–(17) and represent the ratio of the Laplace transform of the fluid
temperature at the given point l to the Laplace transform of the fluid temper-
ature in the inlet section (l = 0) of the exchanger:

ϑ1(l, s) = G+
11(l, s)ϑ+

1i(s) + G+
12(l, s)ϑ+

2i(s), (85)

ϑ2(l, s) = G+
21(l, s)ϑ+

1i(s) + G+
22(l, s)ϑ+

2i(s), (86)

where ϑ(l, s) = Lt{ϑ(l, t)} is the Laplace transform of the function representing
the fluid temperature.

Based on the results presented in Section 3.2.2, it is possible to calculate the
impulse responses of the exchanger for the above-mentioned flow configuration.
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From the practical point of view, these responses represent the spatiotemporal
temperature profiles of both fluids involved in the heat exchange caused by
the impulse temperature change of one of the fluids at the exchanger inlet (see
Definition 5). For the sake of brevity, later in this section we only present
the results obtained for one of the input–output channels, represented by the
transfer function G+

21(l, s).

Figure 3 shows the three-dimensional graph of the impulse response g+
21(l, t)

determined on the basis of Proposition 5 for the assumed parameter values (83).
Next, Figs. 4 and 5 show classical, two-dimensional plots of g+

21(t). The first
one shows the temperature changes over time, evaluated for l = 3, assuming
three different parameter configurations. One can observe here the influence
of the parameters, such as fluid velocity or heat transfer coefficient, on the
overall shape of the response. On the other hand, Fig. 5 displays three impulse
responses for the same parameter values, evaluated at three different spatial
positions: l = 0.5, l = 2.5 and l = 4.5. It can be easily noticed that this graph
contains three different cross-sections of the spatiotemporal plot of Fig. 3.

As seen from the plots, the solution contains jump discontinuities, which can
evolve even from smooth initial data. This behavior is typical for hyperbolic
systems of balance laws (see Bressan, 1999; Evans, 1998; Mattheij et al., 2005).
The plots of the impulse responses for the other input–output channels of the
heat exchanger can be obtained in a similar way on the basis of the results
presented in Section 3.2.2.

Figure 3. Impulse response g+
21(l, t) of the parallel-flow heat exchanger
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Figure 4. Impulse responses g+
21(t) of the parallel-flow heat exchanger for l = 3

Figure 5. Impulse response g+
21(t) of the parallel-flow heat exchanger for v1 = 1,

v2 = 0.5 and α1 = α2 = 0.5

4.2. Countercurrent-flow heat exchanger

For the exchanger operated in the countercurrent mode, the fluids involved in
the heat exchange enter the plant from its opposite ends. The PDEs describing
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the dynamics of the exchanger, have the same form (80)–(81) as for the parallel-
flow configuration, and the difference in the mathematical description consists in
the opposite signs of fluid velocities (v1 > 0 and v2 < 0), as well as in different
boundary conditions. The transfer functions of the heat exchanger are given
now by the equations (23)–(26) and describe the following input–output model:

ϑ1(l, s) = G±
11(l, s)ϑ+

1i(s) + G±
12(l, s)ϑ−

2i(s), (87)

ϑ2(l, s) = G±
21(l, s)ϑ+

1i(s) + G±
22(l, s)ϑ−

2i(s), (88)

with the anti-collocated boundary inputs (see Definition 4):

u± (t) =

[

u+
1 (t)

u−
2 (t)

]

=

[

ϑ+
1i (t)

ϑ−
2i (t)

]

=

[

ϑ1 (0, t)

ϑ2 (L, t)

]

. (89)

The impulse responses of the heat exchanger for the above input config-
uration have been evaluated based on the results presented in Section 3.2.3.
Figure 6 shows the three-dimensional graph of the impulse response g±

21(l, t),
obtained on the basis of Proposition 6 for v1 = 1 m · s−1, v2 = −0.5 m · s−1 and
α1 = α2 = 0.2 s−1. As in the case of the parallel-flow configuration, the two sub-
sequent figures show classical, two-dimensional plots for the same input–output
channel.

Figure 6. Impulse response g±
21(l, t) of the countercurrent-flow heat exchanger
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Figure 7. Impulse responses g±
21(t) of the countercurrent-flow heat exchanger

for l = 3

Figure 8. Impulse response g±
21(t) of the countercurrent-flow heat exchanger for

v1 = 1, v2 = −0.5 and α1 = α2 = 0.5

Figure 7 shows the plots of the impulse responses g±
21(t), evaluated for l = 3

assuming three different parameter configurations given in the figure legend.
Figure 8 displays impulse responses evaluated at three different spatial positions:
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l = 0.5, l = 2.5 and l = 4.5, which can be considered as three “spatial snapshots”
of Fig. 6.

The spatiotemporal impulse responses of the double-pipe heat exchanger,
presented here, are consistent with the existing ones, obtained on the basis of
both analytical and numerical solutions (see Jaswon, 1954; Gvozdenac, 1990).
Since it is impossible to obtain the input signal in the form of the Dirac delta
function in the case of the real plant, the here presented results might appear at
first sight of little use from the practical point of view. However, as mentioned
in Section 1, it is possible to calculate the plant response to an arbitrary input
signal by convolving this signal with the impulse response of the system. For
example, the unit step responses, commonly used as test inputs for many real
plants, can be obtained directly by integration of the impulse responses.

5. Summary

The paper has addressed the problem of the impulse response representation for
a class of distributed parameter systems of hyperbolic type with Dirichlet bound-
ary inputs and pointwise outputs/observations. The results presented here can
be regarded as a continuation of the analysis performed in Bartecki (2013b),
which has been related to the transfer function representation of the considered
class of dynamical systems. The analytical expressions for the impulse response
functions have been derived based on the inverse Laplace transform of the trans-
fer functions. The influence of the boundary inputs configuration on the form
of the impulse responses, which can be identified with the Green’s function of
the system, has been also demonstrated.

The considerations have been illustrated with the example of a double-pipe
heat exchanger operating in parallel- and countercurrent-flow modes, corre-
sponding to the two different boundary inputs configurations. The impulse re-
sponse functions have been presented both in the form of the three-dimensional
graphs, taking into account the spatiotemporal dynamics of the system, as well
as the classical two-dimensional plots obtained for a fixed value of the spatial
variable, representing the system output. As shown in the paper, the spatiotem-
poral dynamics of the considered class of systems significantly affects the form
of their impulse response functions. As concluded in Bartecki (2013b), their
irrational transfer functions manifest some peculiarities, which do not appear
in the rational-form case, such as, e.g., fractional order or infinite number of
poles and/or zeros. Consequently, the impulse responses, considered here, are
described by the relatively complex formulas containing infinite series such as
Bessel special functions, which additionally depend on the boundary input con-
figuration.

References

Ancona, F. and Coclite, G. M. (2005) On the boundary controllability
of first-order hyperbolic systems. Nonlinear Analysis: Theory, Methods &



Impulse response analysis for hyperbolic systems of balance laws 353

Applications, 63(5-7), e1955–e1966.
Bagui, F., Abdelghani-Idrissi, M.A. and Chafouk, H. (2004) Heat ex-

changer Kalman filtering with process dynamic acknowledgement. Computers
& Chemical Engineering, 28(8), 1465–1473.

Baranowski, J. and Mitkowski, W. (2012) Stabilisation of LC ladder net-
work with the help of delayed output feedback. Control and Cybernetics,
41(1), 13–34.

Bartecki, K. (2009) Frequency- and time-domain analysis of a simple pipeline
system. In: Proceedings of the 14th IEEE IFAC International Confer-
ence on Methods and Models in Automation and Robotics. IFAC, www.ifac-
papersonline.net/Detailed/41106.html, 366–371.

Bartecki, K. (2013a) Computation of transfer function matrices for
2×2 strongly coupled hyperbolic systems of balance laws. In: Proceed-
ings of the 2nd Conference on Control and Fault-Tolerant Systems. IEEE,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6693813, 578–
583.

Bartecki, K. (2013b) A general transfer function representation for a class of
hyperbolic distributed parameter systems. International Journal of Applied
Mathematics and Computer Science, 23(2), 291–307.

Bartecki, K. (2013c) Steady-state analysis for a class of hyperbolic systems
with boundary inputs. Archives of Control Sciences, 23(3), 295–310.

Bartecki, K. (2015) Transfer function–based analysis of the frequency-domain
properties of a double pipe heat exchanger. Heat and Mass Transfer, 51(2),
277–287.

Bonelli, S. and Radzicki, K. (2008) Impulse response function analysis of
pore pressures in earthdams. European Journal of Environmental and Civil
Engineering, 12(3), 243–262.

Bounit, H. (2003) The stability of an irrigation canal system. International
Journal of Applied Mathematics and Computer Science, 13(4), 453–468.

Bressan, A. (1999) Hyperbolic systems of conservation laws. Revista
Matemática Complutense, 12(1), 135–200.

Callier, F. M. and Winkin, J. (1993) Infinite dimensional system transfer
functions. In: Curtain, Bensoussan, Lions, (eds), Analysis and Opti-
mization of Systems: State and Frequency Domain Approaches for Infinite-
Dimensional Systems. Lecture Notes in Control and Information Sciences,
185. Springer, Berlin – Heidelberg.

Chentouf, B. and Wang, J. M. (2009) Boundary feedback stabilization
and Riesz basis property of a 1-d first order hyperbolic linear system with
L∞-coefficients. Journal of Differential Equations, 246(3), 1119–1138.

Curtain, R. and Morris, K. (2009) Transfer functions of distributed param-
eters systems: A tutorial. Automatica, 45(5), 1101–1116.

Dafermos, C. M. (2010) Hyperbolic Conservation Laws in Continuum Physics.
Comprehensive Studies in Mathematics. Springer, Berlin – Heidelberg.

Diagne, A., Bastin, G. and Coron, J.-M. (2012) Lyapunov exponential
stability of 1-D linear hyperbolic systems of balance laws. Automatica, 48(1),



354 K. Bartecki

109–114.
Dooge, J. C. I. and Napiorkowski, J. J. (1987) The Effect of the Down-

stream Boundary Conditions in the Linearized St Venant Equations. The
Quarterly Journal of Mechanics and Applied Mathematics, 40(2), 245–256.

Evans, L. C. (1998) Partial Differential Equations. American Mathematical
Society, Providence, USA.

Friedly, J. C. (1975) Dynamic Behaviour of Processes (Polish edition).
Wydawnictwa Naukowo-Techniczne, Warszawa.

Grabowski, P. (2007) Stability of a heat exchanger feedback control system
using the circle criterion. International Journal of Control, 80(9), 1388–1403.

Guo, L.Z., Billings, S. A. and Coca, D. (2010) Identification of partial dif-
ferential equation models for a class of multiscale spatio-temporal dynamical
systems. International Journal of Control, 83(1), 40–48.

Gvozdenac, D. D. (1990) Transient response of the parallel flow heat ex-
changer with finite wall capacitance. Archive of Applied Mechanics, 60(7),
481–490.

Jacob, B. and Zwart, H. J. (2012) Linear Port-Hamiltonian Systems on
Infinite-dimensional Spaces. Operator Theory: Advances and Applications,
223. Springer, Basel.

Jaswon, M.A. (1954) Countercurrent transfer processes in the non-steady
state. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 225(1161), 226–244.
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