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Abstract: In this work a novel fuzzy system identification ap­
proach which identifies the input variables, the rule structure and 
the involved membership functions is introduced. In the main, the 
input variables are identified using neural networks and fuzzy logic, 
while the rule structure and the membership functions of the system 
are identified using a fuzzy-logic based sequential approach. 

1. Introduction 

The identification of linear models is by now a mature field and there exist a 
number of well-defined and very powerful identification algorithms. Yet, linear­
ity is a mathematical idealization which in some cases might be valid only as an 
approximation to the real system. Therefore, various types of nonlinear models 
have been studied in the past, e.g. bilinear models, threshold autoregressive 
models and exponential autoregressive models. Since basically those nonlinear 
models are extensions of linear models, they are related to one major problem: 
the model structure identification. While for a given input-output data set it 
is quite easy to detect the optimal structure of a linear model, due to the large 
amount of possible structures, the structure identification of nonlinear models 
is very difficult if no basic knowledge about the system is provided. 

Recently, new nonlinear modeling approaches based on neural networks, 
Narendra, Parthasarathy (1990), and/or fuzzy logic, Takagi, Sugeno (1985), 
have been proposed. Those approaches are not application dependent and al­
low an easy introduction of even high nonlinearities to the model. It should 
be noted, that while neural networks have better learning and representation 
capabilities, fuzzy models allow user knowledge based adjustments and model 
validation. An important work in this field is the fuzzy model structure identi­
fication method proposed by Sugeno and Kang (1988). In their approach, input 
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variables are partitioned and added one by one to the model until certain criteria 
can not be improved any more. Although very practical, this approach has two 
main limitations. The first one is that related variables can not always be sep­
arated. Take for instance the input-output relation Y = cos(X1)(1 - cos(X1)). 
The available data set is (X1, X2, Y), where the inputs X1 and X2 are related 
as follows: X 2 = cos(X1). It is obvious that only X 1 or X2 are needed to model 
the system. Yet, this fact can not always be identified by the Sugeno-Kang 
approach. This is partially also due to the modeling approach itself, which is 
the second limitation mentioned above. Since the representation capability of 
a fuzzy model depends strongly on the amount of rules and the partitioning 
of the input variables, the importance of an input variable can actually only 
be evaluated by comparing models with and without that input, if it can be 
guaranteed that the optimal fuzzy model for the present input variables can be 
constructed. Unfortunately, such a guarantee can not be given. 

For the last reason, for the input variable identification, some authors used 
neural networks as the modeling tool instead, e.g. Takagi, Hayashi (1991), 
Horikawa, Furuhashi, Uchikawa, Tagawa (1991). Yet, the problem of identify­
ing related input variables still existed. Therefore, Bastian and Gasos (1994A;B) 
proposed REIGN, an input identification approach which separates related vari­
ables by using a combined Bottom-Up and Top-Down approach based on the 
generalization ability of neural networks. The decision whether a variable should 
be used as an input or not is made based on a fixed threshold value. Since re­
cent applications showed that this threshold depends on the data quality, in 
this work REIGN is extended by a fuzzy logic decision maker which adjusts the 
threshold. 

In the second part of this paper, a novel approach named sequential fuzzy 
system identification which identifies the fuzzy rules and the involved member­
ship functions is introduced. 

This paper is organized as follows: in Section 2 the modified REIGN algo­
rithm is briefly described and the fuzzy logic decision maker is introduced. In 
Section 3 the sequential identification approach is introduced, followed by two 
experimental results. Finally outlook and conclusions are provided in Section 4. 

2. Input variable identification 

2.1. Theoretical background of REIGN 

Let X = (X1, ... , Xn) be a vector of n input variables with x = (x1, ... , xn) 
being an instance of this vector, and let Y be the output variable with y being 
an instance of it. Let us assume that, given a bounded subset Y in the one 
dimensional Euclidean space and a bounded subset X in the n-dimensional 
Euclidean space, there exists a function f: Rn ---+ R with Y = f(X). The 
goal is to obtain the bounded subset Z <;;: X in the m-dimensional Euclidean 
space so that there exists a function g: Rm ---+ R with Y = g(Z) where Z has 
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mm1mum cardinality. In other words, Z is the smallest set of variables that 
contains enough information to represent the output Y. 

For this purpose, the influence of removing input variables from X is ob­
served. Since for a functional relation Y = f (X) all instances of X with a 
constant value are bound to have the same output value Y, the removal of a 
variable Xp of X implies that all outputs Y = f(X), where all instances of X, 
except those of Xp, have a constant value, have to be represented by a single 
value y; = h(x1, ... , Xp+l, ... , xn), The index pat y; denotes that Xp has been 
removed from X. 

A measure for the loss of function accuracy due to the removal of the variable 
Xp is the so-called loss of information: 

Having removed the input variable Xp from the vector of input variables, 
there exists an almost infinite number of possible functions h: Rn-l ------, R of 
the remaining input variables. Yet, given a criterion to measure the error, there 
exists a function h1: Rn-l------, R, with Y; = h1(X1, ... ,Xp-1,Xp+l,···,Xn), 
which has a minimum loss of information. 

Since the size of the data vector is finite, the problem is to identify the 
smallest set of input variables needed to approximate a bounded function f: 
A C Rn ------, R from a bounded subset A of a n-dimensional Euclidean space to 
a bounded subset f (A) in an one dimensional Euclidean space by means of ex­
amples (x1,y1),(x2,y2), ... ,(xk,yk),yk = f(xk). We can define the minimum 
loss of information for the discrete case: 

k 

MLip = ~ jyi -y~il (2) 
i=O 

where y; = h1 (x1 , ... , Xp-l, Xp+l, ... , xn) has the smallest representation error 
due to the removal of the variable Xp from the vector of input variables X. 

Since due to noise and outliers in the data the theoretical ideal set of inputs 
can not always be identified, we concentrate on finding the set of input variables 
with minimum cardinality that contains enough information to model the input­
output relation with a required precision E instead. 

THEOREM 2.1 Given an input-output data set: (x1,y1),(x2,y2), ... ,(xk,yk) 
and given a modeling method that approximates the input-output relation with a 
precision E, it is possible to determine the set of input variables with minimum 
cardinality that contains eno11,gh information to approximate the output y with 
a prec1.swn E. 

Proof: Given a modeling method that approximates the input-output re­
lation with a precision E, the importance of input variables can be investigated 
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by removing them one at a time while watching the corresponding representa­
tion errors. The effect of removing a set of input variables P can be shown by 
computing the representation error of the model 

k 

REp = L [yi - Yil:::; E (3) 
i=O 

where Yi? is the output of the model with the set of input variables {X - P}. 
Take, for instance, the influence of removing the variable Xp from the data 

set 

• if REP > E then the removed variable Xp is important and has to be 
included in the final set. 

• if REP s; E then the remaining variables contain enough information to 
model the system without the removed variable Xp, However, such a vari­
able can not be discarded right away since related variables will be found 
unimportant when considered independently. Instead, such a variable has 
to be classified as dubious. Consequently, the set of input variables Z 
with minimum cardinality which causes RE{X-Z} S: E can be found by 
removing all possible combinations of dubious variables while watching 
the RE-values. Ill 

2.2. The basic idea of REIGN 

In order to identify the input variables based on a given input-output data set, 
the importance of an input variable may be judged by watching the representa­
tion error due to its absence, as shown in the proof of Theorem 2.1. Unfortu­
nately, removing input variables and their combinations to find the smallest set 
of input variables can be very time consuming. Recall that for n input variables 
the amount of possible combinations is: 

possible combinations= 2n - 1, (4) 

assuming that there exists always at least one important input variable. 
Therefore, a combined Top-Down and Bottom-Up approach is used by 

REIGN to find the smallest set of input variables. The basic idea of REIGN is as 
follows: first the system is modeled using all available input variables. The rep­
resentation error may be viewed as an estimation of the smallest error to which 
the system can be modeled. This initial representation error is henceforth called 
the reference error. If this reference error is larger than a pre-defined threshold 
E, it means that the quality of the input-output data is too low or the modeling 
method cannot approximate the functional relation. In such cases, a new set 
of data, a different modeling method or different model parameters have to be 
employed. If the reference error is smaller than E, the importance of a set of 
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inputs can be investigated by removing combinations of them as indicated in 
the proof of Theorem 2.1. 

The selecting logic employed to avoid the necessity of removing all possible 
combinations of dubious variables consists of two basic parts: 

• First the influence of each input variable is observed independently by re­
placing it with a random noise signal. If the model error increases sharply, 
then this particular input variable is important. If the error is small, then 
this input variable is classified as dubious. 

• In the second step all dubious input variables are investigated by remov­
ing combinations of them. This step is removing all nonlinear related 
variables. In order to save computing time, a recursive algorithm is used 
(sec Appendix A). Roughly described, this algorithm works as follows: the 
first dubious variable is declared as the starting variable. Consequently, 
other dubious variables are replaced additionally by noise signals until the 
representation error exceeds a pre-defined threshold. In this case, the last 
replaced dubious variable, D;, is returned to the input set (this algorithm 
step is henceforth named stepping back), and the next dubious variable, 
D;+i, is additionally replaced. The algorithm also steps back if no new 
possible combination can be replaced. If the algorithm steps back until 
the starting variable, it is excluded from the set of dubious variables, and 
the next dubious variable is employed as the new starting variable. Since 
the goal of the algorithm is to remove as many variables as possible, so­
lutions with a smaller number of variables than the present best set are 
never considered. 

Notice that input variables arc replaced by random signals, and not simply 
deleted. This measure ensures that the modeling/learning task is kept at a 
constant level. The following example highlights the way REIGN functions. 

EXAMPLE 2.1 Consider a set of five variables (X1 , ... , X 5 ). Let v,s assvme that 
after removing inpvt variables independently (first step of the algorithm) fom· 
dvbi011,s inp11,ts, denoted D = (D 1 ,D2,D3 ,D4), are fovnd. Conseqvently, those 
variables have to be investigated. 

Ass11,med that the replacement of the combination D 1 - D2 yields a small 
representation error, in the following step the combination D1 - D2 - D3 is 
replaced. Let's say that in this case the error is big. Thv,s, the algorithm goes 
one step back and replaces D1 - D2 - D4. As mentioned, sol11,tions with a 
smaller rmmber of variables than the present best set are never considered. So if 
the algorithm has fov,nd a good solv,tion by removing 3 variables, combinations 
of 2 variables, e.g. D 1 - D 3 , are no longer considered. 

2.3. Applying REIGN using feedforward neural networks 

Although this algorithm can be employed with any nonlinear modeling method, 
feedforward backpropagation neural networks Rumelhart, Hinton and Williams 
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(1986) are employed for the following reasons: 

1. they are v,niversal approximates. 
It was proved by Hornik, Stinchcomb, White (1989) that any continuous 
mapping over a compact domain can be accurately approximated by a 
three-layered feedforward neural network. Thus for a given error E > 0 a 
function f (X) defined on [0, lt for all x E [0, l]n can be approximated so 
that 

f'(x) t, "'" (t w,;xj - e,) < ,, (5) 

where o-() is a bounded sigmoidal function, and vi, wi.i and ei are real 
numbers. 

2. no knowledge abov,t the model strv.cture is needed. 

In this study, fixed parameters of the backpropagation algorithm are through­
out used in order to enable a fair comparison of the models. The learning rate 
is set to 0. 7, while the momentum factor is set to 0.3. 

It is well known that the mapping capability of a network depends on the 
number of layers and hidden units. An oversized network will loose its general~ 
ization ability and memorizes the training data instead, while a small network 
with few hidden layers and processing elements might not be adequate for a com­
plex problem. Thus, the size of the network and its learning capability should 
be kept close to the complexity of the problem to be solved. Since there is no 
formal way for computing the network structure as a function of the complexity 
of the problem, the network structure is often selected by trial and error or by 
using algorithms that dynamically modify the structure of the network based on 
some penalty functions, e.g. estimating the sensitivity of the error function to 
the removal of an element, or rewarding the net for choosing efficient solutions. 

In this study, the structure of the neural networks are dynamically config­
ured using the algorithm proposed by the author, Bastian (1994), where feature 
extraction of the data by employing the Fuzzy C-Means (FCM) clustering algo­
rithm, Bezdek (1981), was proposed to determine the initial number of hidden 
units. Having determined the initial network size, a hidden neuron is added. If 
the modeling performance increases, then neurons are recursively added until 
the representation capability of the network does not increase significantly. If 
the representation capability of the net does not increase after adding the first 
hidden neuron, then neurons are going to be deleted recursively from the hidden 
layer until a large decrease of the representation error occurs. The main advan­
tage of this pruning algorithm is the small computing time. Since this algorithm 
was already published and explained in Bastian (1994), the interested reader is 
referred to that publication. The algorithm itself is given in Appendix B. 
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EA/Eli Big Medium Small Very Small 
Big very small very small small medium 

Medium very small medium quite big quite big 
Small small quite big big big 

Very Small medium quite big big very big 

Table 1. Rule base 

2.4. The fuzzy logic decision maker 

In the REIGN-algorithm the decision whether a variable should be classified as 
important or not depends on a fixed threshold value T which is obtained by 
comparing the actual RC-value, which is a measure of the model accuracy, with 
the RC-value of the initial model, the so-called reference value RCref. Yet, 
a fixed threshold T is connected with some problems. Consider the following 
example: the first obtained reference value RCref is 0.00001, which is actually 
a quite good representation. The removal of one input causes a RC-value of 
0.00002, which is also very low. However the ratio RC / RCref is 2.0 which is 
quite high and would indicate that this input is decisive if the threshold T is 
set to values below 2.0. 

Further experiments showed that if the REIGN algorithm was applied to 
data with varying noise, in order to identify the inputs correctly, the threshold 
T should vary between 1.2 and 5.4 depending on the noise. It also turned out 
that the individual representation error of a network is also decisive. Thus, 
taking the average of the network errors to judge the model performance is not 
adequate in cases where the difference between the network errors is big. 

Therefore fuzzy logic rules are employed to determine the threshold T. The 
inputs of the rules are the representation errors of the networks MA and MB: 

kA 

EA = "'[)yf - yfB) 2 / kA (6) 
i=l 

and 

kB 

EB = L(Yf -yf3A)2/kB (7) 
i=l 

where kA and kB are, respectively, the numbers of data in the training sets A 
and B of the networks, yA and yB are the desired outputs, yAB is the output 
obtained for the data set A using the trained network MB, and yBA is the 
output of the network MA using the data set B. 
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The consequent of the rules is the threshold T. Table 1 shows the rule base. 
One rule is for example: 

IF (EA is small) AND (EB is small) THEN (T is big) (8) 

Figure 1 shows the membership functions of the linguistic values used in the 
rules. 

In this study the max-prod inference method is used. The degree of match 
in the premises derived for the i.th rule of the type 

IF (x is A) AND (y is B) THEN (z is C), (9) 

with 1 :::; i :::; m, is given by 

(10) 

where x, y and z are linguistic variables representing the inputs and output of 
the model, x 0 and y0 are the crisp inputs, and A, B and C are the terms of the 
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linguistic variables x, y, and z in the universes of discourse X, Y and Z. The 
final consequence from all rules is obtained by taking the union: 

µo• (z) = µc; (z) V µc{ (z) V µc; (z) V ... V µc;,. (z) (11) 

where V stands for the maximum. The representative crisp value 2 for the 
resulting fuzzy set C is obtained by using the center of gravity defuzzification 
strategy: 

(12) 

To adjust the threshold T to the initial reference value, the inferred output 
T is multiplied with the function t(RCref ): 

0.00001 
t(RCref) = 1.0 + RC . 

ref 
(13) 

EXAMPLE 2. 2 The new REIGN is applied to identify the inp'/1.ts of the nonlinear 
f'/1.nction: 

z = 0.5xf + l.2x~ + X3 (14) 

300 data sets with the following five inp'/1.ts were presented to the algorithm: 

(15) 

Notice the d'/1.mmy inp'/1.ts x4 and x 5 , with x 5 being related to x 2 . Table 2 
shows the res'/1.lt after the .first steps {RCref ~val'/1.e of 0. 00014). Only the removal 
of x 1 and x 3 ca'/1.ses a big representation error. Th'/1.s, those variables are classi­
fied as important, while the dv,bio'/1.s variables x 2 , x 4 and x 5 have to be observed 
in the next steps. 

Table 3 shows that a removal of x2 and x 4 ca'/1.ses a small error. Removing 
additionally x5 ca'/1.ses an error bigger than the threshold T = 1.501, which 
means that all three variables can not be removed. Th'/1.s, in the next step the 
combination x 2 - x 5 is removed which yields a big error. Finally the inpv,ts 
x4 - x 5 are removed. Since the removal of the combination x2 - x4 ca'/1.ses a 
smaller error than the removal of x 4 - x 5, the ident~fied inp'/1.t set is x1, X3 and 

X5. 

Notice that the algorithm identified x 5 instead of xz. Yet, this result is also 
correct. Important is, that the algorithm succeeded in separating the inputs x2 

and X5. 
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Replaced variable RC/RCref Threshold 
X1 325.8 1.212 
X2 0.7151 1.598 
X3 3.4094 1.605 
X4 0.4092 2.177 

X5 1.1219 1.585 

Table 2. Result after the first steps 

Replaced variables RC/RCre.f Threshold 
X2 -X4 0.5031 1.951 

X2 - X4 - X5 1.6031 1.561 
X2 -X5 2.0422 1.560 
X4 -X5 0.9462 1.586 

Table 3. Final result 

EXAMPLE 2.3 In this example we identify the inputs of the fv.nction: 

Z = 0.5xf + ,Ti + X5 

with the inpv,ts: 

0 ~ X1 ~ 5; 0 ~ X2 = xf; 'X3 = xf; 0 ~ X4, X5 ~ 2 

(16) 

(17) 

Notice that all variables are related to the output. Thus, no "real" dummy 
inputs are given. The results after the first steps are displayed in Table 4 
(RCreJ-valv,e = 0.000009). 

According to this result the inputs x 2 and x 3 are selected to be observed in the 
next step, while the other inputs are considered important. The removal of both 
x 2 and x3 causes an error RC/RCref of 1.10612 which implies low importance 
of those inputs. Thus, they are removed from the input set. 

Comparing the threshold values in the Examples 2.2 and 2.3 it again becomes 
obvious that only one fixed threshold value is not sufficient for identifying input 
variables at cases where all data are closely related to the output. 

3. Sequential system identification 

3.1. Basic Idea 

Having identified the inputs, the next step towards the identification of the 
fuzzy model is the rule and parameter identification. For this purpose, a novel 
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Replaced variable RC/RCref Threshold 
X1 5.42121 4.794 
X2 1.01272 6.282 
X3 3.98273 4.790 
X4 120.021 2.533 
X5 80.0202 3.007 

Table 4. Result after the first steps 

approach called sequential system identification is introduced in this section. 
The basic algorithm is as follows: 

1. Identify the inputs of the model using the modified REIGN algorithm. 
2. Cluster the most important input, that is, the input variable whose re­

moval causes the biggest representation error, in dependency of the output 
variable. 

3. Construct triangular membership functions of the most important input 
based on the resulting clusters. The core of each membership function is 
the cluster center. 

4. Project each membership function to the next input variable and con­
struct the corresponding membership functions. Note that a projection 
can yield several membership functions. The construction of the member­
ship functions is done by utilizing the downhill simplex method proposed 
by Nelder and Mead (1994), an optimization method which requires only 
function evaluation. The error to be minimized is: 

Error= I)µ - µopt)+ M(3 (18) 

where the first term describes the representation error of the designed 
membership functions, while the second term punishes the extensive con­
struction of membership functions. M is the amount of the constructed 
membership functions, and (3 is a sensitivity factor. Note that performing 
an optimization at this early stage helps to find the optimal rule structure. 
If due to the existing data no meaningful regression can be performed, this 
input variable ( only for the present rule) is not employed. 

5. Project the resulting membership functions to the next input variable and 
construct the corresponding membership functions using the procedure 
described in Step 4. 

6. Repeat step 5 until the membership functions of the last input variable 
are projected to the output variable. 

7. Calculate the mean squared error (MSE) of this initial model and the 
average error of each rule which is the MSE divided by the number of 
rules. 

8. Perform a fine tuning of the model using the downhill simplex method. 
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9. Validate each rule by calculating the error caused by it. If the error 
of a rule is bigger than the double amount of the average error, split 
the involved membership function of the most import input variable and 
repeat the algorithm from step 4. Else write down the rules and quit. 

One interesting feature of this identification approach is the fact that differ­
ent rule structures with different inputs are identified. 

EXAMPLE 3.1 Given two identified inputs, with Input 1 being the most impor­
tant input. The clustering of Input 1 in dependency to the output yields 2 
clusters. Thus, Input 1 is partitioned into two membership functions (Big and 
Small, respectively). 

The projection of the membership function Small of Input 1 results in one 
membership function, while the projection of the membership function Big yields 
two membership functions. In the next step, those three membership functions 
of the Inpv,t 2 are projected to the output space, resulting in three output mem­
bership functions. This sequential rule construction is shown in Figure 2. 

The identified rules are: 

IF {Input 1 is Small) AND {Input 2 is Small} THEN (Output 
is Small} 
IF {Input 1 is Big) AND {Input 2 is Medium) THEN (Output (19) 
is Medium) 
IF {Input 1 is Big) AND {Input 2 is Big) THEN {Output is Big) 

In the following step, each the error, caused by each rule is calculated. Let's 
assume that the error of the first rule exceeds a pre-determined threshold. There­
fore, the membership function Small of Input 1 is divided into two (Small and 
Medium), and each new membership function is projected to Input 2. Again, 
depending on the data, new rules are created. A possible outcome is shown in 
Figure 3. 

3.2. Application examples 

3.2.1. Human operation of a chemical plant 

The proposed system identification approach was tested using data of a human 
operator's control of a chemical plant producing a polymer by the polymeriza­
tion of some monomers Sugeno, Yasukawa (1993). The operator determines 
the set point for the monomer flow rate and passes this information to a PID 
controller, which calculates the actual monomer flow rate input for the plant. 
There are 70 data sets, each set consisting of five inputs, X =(monomer con­
centration, change of monomer concentration, monomer flow rate, temperature 
1 and temperature 2 inside the plant), and one single output, namely the set 
point for the monomer flow rate. 
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Figure 2. Constructing rules and membership functions 

Neurons in hidden layer 4 3 2 
Error 0.000119 0.000119 0.01013 

Table 5. Result of the net identification algorithm 
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Figure 3. Final rules and their membership functions 
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Replaced variable RC/RCref 
X1 2.11 
X2 1.02 
X3 45.03 
X4 0.99 
Xs 0.88 

X2-X4 1.57 
X2-X4 -Xs 1.59 

Table 6. Replaced variables and the corresponding ratios RC / RCref 

The pruning algorithm yielded a network with three layers and three units 
in the hidden layer. The results are displayed in Table 5. 

Using all available inputs a reference value RCref = 0.000119 was computed. 
The fuzzy logic decision maker issued threshold values around 1.6. Then, re­
placing each input variable with a random noise signal, the algorithm identified 
the monomer concentration and the monomer flow rate as the important input 
variables. Further study of the remaining (dubious) variables showed that no 
other input variable is necessary. The results obtained by the algorithm are 
shown in Table 6. 

The FCM algorithm yielded 6 clusters. The sequential system identification 
resulted also in 6 rules, which means that in no case a projection of a membership 
function yielded 2 membership functions. In this example, the fuzzy model uses 
rules of the IF-THEN type as shown in (9), and employs the max-prod inference 
method with the center of gravity defuzzification. Figure 4 shows the resulting 
rules and their membership functions. 

In Figure 5 the model performance is compared to the original data. As 
one can see, using only two input variables, a good fit to the model could be 
achieved. 

3.2.2. Box-Jenkins gas furnace data 

The work of Box and Jenkins (1970) is well known, and their data have become 
a kind of benchmark for identification techniques. For this reason, the ability of 
the proposed identification approach was further tested using those gas furnace 
data. The data set consists of 296 pairs of input-output observation where 
the input u(t) is the gas flow rate into the furnace and the output y(t) is the 
C02-concentration in the outlet. The sampling rate is nine seconds. Since 
the process is dynamical, ten candidates for the input variables were selected, 
namely { u(t - 1), ... , u(t - 6), y(t - 1), ... , t(t - 4)}. 

The pruning algorithm yielded a network with three layers and eight units in 
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Figure 4. Rules and membership functions of the human operator 
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Figure 5. System identification result 
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Replaced variable RC/RCref 
u(t -1) 0.9678 
u(t - 2) 1.0813 
u(t - 3) 0.9981 
u(t - 4) 1.2060 
u(t - 5) 1.1724 
u(t - 6) 1.1094 
y(t - 1) 3.4872 
y(t - 1) 1.3698 
y(t - 1) 1.0471 
y(t -1) 1.0939 

Table 7. Replaced variables and the corresponding ratios RC / RCref 

the hidden layer. Using all available inputs a reference value RCref = 0.000219 
was computed. The fuzzy logic decision maker issued threshold values around 
2.35. 

Then, replacing each input variable by a random signal, in the first stage the 
algorithm only identified y(t-1) as the important input variables, thus leaving 
nine dubious variables to be investigated in the following stage. Table 7 shows 
the results after the first stage. 

In the following stage, the combinations of dubious variables were removed. 
After 21 trials the algorithm already found a minimal input set consisting of 
only three input variables. Thus, only combinations of at least seven variables 
were consequently investigated in 15 trials. The algorithm then terminated with 
the following identified inputs: y(t-1), y(t- 2), and u(t - 3). 

The FCM algorithm yielded 6 clusters. The sequential system identification 
resulted in 8 rules. Those rules and the membership functions are shown in 
Figure 6. 

In Figure 7 the model performance is compared to the original data. The 
mean squared error (MSE) of the model is 0.063495, which is even smaller than 
the one achieved using the Takagi-Sugeno model as shown in Table 8. 

4. Outlook and conclusions 

A sequential system identification approach was introduced in this paper. In 
order to perform an input identification, the REIGN algorithm was extended by 
·a fuzzy logic decision maker which provides a flexible decision threshold. Using, 
a sequential approach, rules and also membership functions could be identified. 
The fine tuning was done by employing the downhill simplex method. Using 
this approach, the model of a human operator of a chemical plant, and also the 



Sequential fuzzy system identification 217 

Y(t-1) Y(t-2) U(t-3) Output 
47.568 61.101 59.954 61.6376 3.9352 7.256653 

50.983398 
54.507 57.4402 42.79 66.497 -8.306 11.0316 

48.51 48.713 57.985352, 60.334 16.1678 16.9709 

43.355465 

30.172 57.7239 -190.678 17.2 

59.2822 61.611 46.753 53.197 -8.1676 ·2.26974 

62.555542 
44.374 63.3012 30.6623 60.2011 ·18.874 5.8826 

58.0 67.8183 2.2426 8.63635 

/ 61.466805 60.051 64.512 
42.232 70.2495 ·12.1375 8.86248 

52.71 67.692"' 69.86 71.6235 

67.363297 
62.82 71.775 2.4428 13.9725 

68.479 68.4829 

57.273926 
67.139 69.878 45.291 70.869 6.6489 18.69 

73.2456 78.41/ 60.296352 
69.098 69.54 ·13.1484 0.11655 

66.86 78.44"' 78.397 81.855 14.40108 

47.148926 
77.91 82.6778 12.8287 14.4956 

Figure 6. Rules and membership functions of the gas data model 
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Approach by Inputs Number of rules MSE 
Tong (1980) y(t - l),u(t - 4) 19 0.469 
Sugeno- y(t - 1), u(t - 6 0.190 
Yasukawa 4), u(t - 3) 
(1993) 
Pedrycz y(t - l),u(t- 4) 81 0.320 
(1984) 
Xu (1988) y(t - l),u(t- 4) 25 0.328 
Takagi- y(t - 1), y(t - 2 0.068 
Sugeno 2),y(t - 3),u(t -
(1993) 1), u(t - 2), v,(t - 3) 
Bastian y(t - 1), y(t - 8 0.063 

2),u(t-3) 

Table 8. Comparison of various model results 

Sequential Modeling : 8 Rules 
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model of the Box-Jenkins gas furnace data were identified successfully. 
Further studies are going to be conducted to embed the REIGN algorithm 

directly into the fuzzy model in order to save computing time. Here, the main 
problem faced is the limited representation capability of the fuzzy model when 
not enough rules are provided. 
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Appendix 

A. REIGN: Recursive Identification by Generalizing Neural Networks 

The basic algorithm of REIGN is, see Bastian, Gas6s (1994): 
1. Identify the network size using the algorithm given in Appendix B. 
2. Divide the input/output data into two groups: A and B. 
3. Using all n available input variables, obtain a model MA using data A 

and a model MI!; using data B. The models are utilizing three-layered 
feedforward neural networks, employing back-propagation learning where 
the network learns to map a set of inputs to a set of outputs by adjusting 
the network weights w by: 

l:l.wji(t + 1) = rJDxjOxi + al:l.wji(t) (20) 
where t, 'I], Dxj, Dxi, a, and Wji are respectively the presentation number, 
the learning rate, the error signal for unit j, the activation of unit i as a 
result of the input pattern x, the momentum factor and the weight from 
unit i to unit j. 

4. After training, the reference network M.,4 is tested using data set B and 
reference network MI!; is tested using data set A. 
Compute the RC, Ihara (1980): 

RC = [t(yf - yfB)2 /kA + t,(yf - yfA) 2 /kB l /2 (21) 

where: kA and kB are respectively the number of data in sets A and B, yA 
and yB are the output data in sets A and B, yAB is the output obtained 
for the data set A using the network MI!;, and yBA is the output obtained 
for data set B using the network M.,4. This calculated RC will be used as 
a reference value. 
If the reference value is bigger than a defined threshold E then the algo­
rithm is terminated since the data quality or the modeling method is not 
sufficient. Else continue with Step 5. 

5. Repeat the Steps 3-4 for i = 1 ... n replacing each input variable Xi in the 
test sets A and B with a random variable and compute the RCi according 
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to (21). 
Calculate the ratio: 

RCratio = RC / RCref (22) 

6. Replaced input variables which cause a high RCratio are considered im­
portant variables, denoted Ii, I2, ... , Ip, and should not be replaced by 
random variables anymore, while the replaced variables which cause a low 
RCratio are regarded as dubious variables, denoted D 1 , ... , Dq, 
If (q = 0) all input variables are necessary and the algorithm is terminated. 
Else save the best input selection in the 3-tuple: 

~ = { var; conf; RCmin}, (23) 
where var is the number of input variables not replaced by random signals, 
conf is the input variable configuration that generated the smallest RC, 
and RCmin: is the smallest RCratio· 

7. In this step all combinations of two dubious variables are generated and 
the recursive routine next_input_combination in Step 8 is called to check 
them. 

for i = 1, ... , q - l 
{ 

} 

replace input variable i with a random signal; 
for j = i + l, ... , q 

{ 

} 

if (amounLoLvariables i,= conf:) 
nexLinput_combination (j); /* see Step 8 * / 

recover original values of variable i; 

8. The recursive routine nexLinpuLcombination receives an input configu­
ration and calculates the RCratio· Is the RCratio small then it checks 
whether this input variable combination is the best up to this time, and 
continues replacing the next dubious input variable with a random signal. 
Otherwise the algorithm returns to the calling function. 

nexLinpuLcombination ( additionaLinput) 
{ 

replace additionaLinput with a random signal; 
train the networks; 
calculate the RCratio for this configuration; 
if (RCratio is big) 

{ 

} 

recover original values of variable additionaLinput; 
return; 

if ( RCratio is small) 
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} 

{ 
/* N is the number of variables that keep their 
original values in this configuration * / 
if (N < var OR (N = var AND RCratio < RCmin)) 

save results in the tuple ~ = { var; conf; RCmin}; 
for k = additional.input+ 1, ... , q 

{ 
next_inpuLcombination ( k); 

} 
} 

recover original values of variable additional.input; 
return; 

A. BASTIAN 

B. Algorithm to determine the optimal number of hidden units 

Find the optimal network structure, Bastian (1994): 
1. Determine the number of features f by clustering the output using the 

FCM-algorithm. 
2. Divide the data. into training and validation set. 
3. Generate a three-layered network with q = f neurons in its hidden layer. 
4. Train the network using the training data. The training is terminated if 

the error on the validation set begins to rise or 50000 training cycles have 
been completed. 

5. Calculate the mean square error E(q) on the training set. 
k 

E(q) = L(Yi - tfet) 2 /k, (24) 
i=l 

where k is the number of data, Yi is the desired output, Y':et is the output 
of the net, and q the number of neurons in the hidden layer as optimal 
solution. 

6. Add one hidden unit, initialize the network and repeat the Steps 4 and 5. 
If 

E(q) - E(q + l) > 0.01 (25) 
E(q) -

then set q = q + 1, and repeat Step 6. 
Else go to Step 7. 

7. If q = f go to Step 8. Else terminate the algorithm with q neurons in the 
hidden layer. 

8. Remove one neuron from the hidden layer, initialize the network and re­
peat the Steps 4 and 5. If 

E(q + 1) - E(q) > 0.01 (26) 
E(q) -
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then set q = q - 1, and repeat Step 8. 
Else terminate the algorithm with q neurons in the hidden layer as optimal 
solution. 




