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1. Introduction

For scalar-valued functions, the existence of sharp local minima is a crucial
property regarding a number of issues, e.g. stability of optimization problems,
convergence of algorithms, metric regularity of the subdifferential. Namely, for a
real-valued function f , defined on normed space X , a local minimum x0 is sharp
of order m ≥ 1 if there exist a positive constant κ > 0 and a neighbourhood V
of x0 such that

f(x) ≥ f(x0) + κ‖x− x0‖
m for all x ∈ V.

In this context, an important property is also constituted by the growth con-
dition. For a real-valued function f , defined on normed vector space X , the
growth condition of order m ≥ 1 holds on a subset S ⊂ argminf if there exist
an ε > 0 and a positive constant κ > 0 such that

f(x) ≥ inf f + κd(x, S)m for all x ∈ Sε =
⋃

s∈S

B(s, ε).

These properties are used to study metric subregularity and regularity of
subdifferentials of convex functions f in Aragón, Artacho and Geoffreoy (2008,
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2014), and to study metric subregularity and regularity of subdifferentials of lsc
functions in Drusvyatskiy and Lewis (2013).

Our aim is to pursue a similar approach in the case of vector-valued func-
tions. Main motivation comes from the fact that the vector counterpart of the
growth condition, introduced in Bednarczuk (2007), is crucial for the stability of
parametric vector optimization problems (see Bednarczuk, 2007, and the refer-
ences therein). In the case of vector-valued functions, the counterpart of sharp
local minima (called strict local minima) has been introduced in Bednarczuk
(2002) and Jiménez (2002), and then exploited in Bednarczuk (2007) to study
the stability of vector optimization problems.

In this paper we introduce the concept of uniform strict minima (local and
global) of order m ≥ 1 for vector-valued functions and study their continuity
properties. Moreover, we provide sufficient conditions for metric subregularity
of two kinds of subdifferentials in the case of K−convex mappings. These condi-
tions are related to the growth condition for vector-valued functions as defined
in Bednarczuk (2007).

The organization of the paper is as follows. In Section 1 we present basic
definitions and properties. Section 2 is devoted to the study of strict local
minima and their essential properties. In Section 3 we introduce the main
concept of the paper, namely the uniform strict local minima of order 2. The
notion of local domination property of order m ≥ 1 is introduced in Section 4.

In Section 5 we investigate Lipschitz continuity of uniform strict local minima
under perturbations of the function f of the form fa = f − a, where a is a
continuous linear operator from X into Y .

Some basic properties of K-convex mappings and two definitions of sub-
differentials for K−conex mappings provided by Valadier (1972) and Isac and
Postolica (1993), are given in Sections 6 and 7.

In Section 8 we study metric subregularity of subdifferentials, defined in Sec-
tion 7. We show that the subdifferential for vector-valued K−convex functions,
as defined in Valadier (1972), is metrically subregular at (x̄, ā) ∈ gph∂If if

fā(x) /∈ fā(x̄) + cd2(x, (∂If)
−1(ā))BY −K for x 6= x̄, x ∈ V (1)

for some neighborhood V of x̄ and constant c > 0. The analogous result for
the subdifferential defined in Isac and Postolica (1993) requires an additional
assumption. Let us note that in the case of a real-valued function the condition
(1) reduces to condition (3.1) from Aragón, Artacho and Geoffroy (2008) and
condition (2.1) from Aragón, Artacho and Geoffroy (2014).

2. Strict local minima

Let X and Y be normed spaces and f : X → Y . Let K ⊂ Y be a closed convex
pointed cone in Y . By B (BY ) we denote the open unit ball in a normed space
(in the normed space Y ).
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A point x̄ ∈ X is a local minimum of f with respect to K if there exists a
neighbourhood V ⊂ X of x̄ such that

(f(V )− f(x̄)) ∩ (−K) = {0}, i.e. f(V ) ∩ (f(x̄)−K) = {f(x̄)}.

Equivalently, there is no v ∈ V with f(v) 6= f(x̄) such that

f(v) ∈ f(x̄)−K.

Yet in other words, there is no v ∈ V with f(v) 6= f(x̄) such that

f(v) ≤K f(x̄),

where y1 ≤K y2 (or y2 ≥K y1) if y2 − y1 ∈ K.
A point x̄ ∈ X is a strict local minimum of order m ≥ 1 of f with respect to

K (see Jiménez, 2002) if there exist a neighborhood V ⊂ X of x̄ and a constant
κ > 0 such that

f(v) 6∈ f(x̄) + κ‖x̄− v‖mBY −K for every v ∈ V, v 6= x̄. (2)

Clearly, each strict local minimum of order m is a local minimum of f , since
f(x̄)−K ⊂ f(x̄) + κB‖v − x̄‖m −K.

When Y = R and K = R+ := {x ∈ R | x ≥ 0}, the relation (2) takes the
form

f(v) ≥ f(x̄) + κ‖v − x̄‖m for v ∈ V (3)

and the strict local minima of order m ≥ 1 of a function f : X → R coincide
with sharp local minima of order m ≥ 1 as defined, e.g., in Chapter 3 of Bonnans
and Shapiro (2000).

Proposition 1 If x̄ ∈ X is a strict local minimum of f of order m ≥ 1 of f
with respect to K, then x̄ is a locally unique minimum in the sense that for any
v ∈ V ∩ f(X)

f(v) = f(x̄) ⇒ v = x̄, i.e. f(v) 6= f(x̄) for v 6= x̄. (4)

Proof By definition of strict local minimum, there exist a constant κ > 0 and
a neighbourhood V of x̄ such that for v 6= x̄ we have

f(v) /∈ f(x̄) + κB‖v − x̄‖m −K.

This implies that f(v) 6= f(x̄). �

Remark 1 Let us note that, in general, there may exist other strict minima x
in any neighborhood of x̄ with different values f(x) 6= f(x̄).
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3. Uniform strict local minima of order 2

Let f : X → Y . Consider tilt (linear) perturbations of f of the form

fa := f − a

where a : X → Y is a continuous linear operator, i.e. a ∈ L(X,Y ).
Strict local minima are sensitive to the tilt perturbations of f . This is shown

by the examples below.

Example 1 Let f : R2 → R
2, K = R

2
+, f(x) = (0, x2

2)T . The point x̄ = (0, 0)T

is a strict local minimum of order 2 of f . Let us consider a : R2 → R
2, 〈a, x〉 =

[

0 0
0 −r

]

x for some r 6= 0. The function fa(x) := f(x)−〈a, x〉 = (0, x2
2+ rx2)

T

has a strict local minimum of order 2 at xa = (0,− r
2
)T .

Proposition 2 If x̄ is a strict local minimum of order 1 of f , then x̄ is a strict
local minimum of order 1, for all functions fa with a sufficiently small, i.e. there
exist δ > 0 such that x̄ is a strict local minimum of order 1 of fa for all linear
operators a ∈ δB.

Proof It is enough to observe that for any a ∈ B(0, δ), where δ < κ
2
, and any

v ∈ X we have

〈a, v − x̄〉+
κ

2
‖v − x̄‖BY −K ⊂ κ‖v − x̄‖BY −K.

Hence, if f(v) − f(x̄) /∈ κ‖v − x̄‖BY − K for v ∈ V , then f(v) − f(x̄) /∈
〈a, v − x̄〉+ κ

2
‖v − x̄‖BY −K for v ∈ V , and finally

fa(v)− fa(x̄) /∈ κ‖v − x̄‖BY −K for all v ∈ V,

which means that x̄ is a strict local minimum of order 1 for the function fa,
where a ∈ B(0, δ), with δ < κ

2
. �

The example below shows that this fact is not true for strict local minima
of order 2.

Example 2 Let f : R2 → R
2, K = R

2
+, f(x) = (0, x2

2)T . The point x̄ = (0, 0)T

is a strict local minimum of order 2 of f . Let us consider a : R2 → R
2, 〈a, x〉 =

[

−r 0
0 0

]

x for some r 6= 0. The function fa(x) := f(x) − 〈a, x〉 = (rx1, x
2
2)

T

has no local minima.

This motivates the following definition.

Definition 1 A point x̄ ∈ X is a uniform strict local minimum of order 2 of
f with respect to K if there exist a neighbourhood V ⊂ X of x̄ and a constant
κ > 0 such that for each a ∈ L(X,Y ) close to zero in the norm topology there
exists xa ∈ V (for a = 0, xa = x̄) and

fa(v) 6∈ fa(xa) + κBY ‖v − xa‖
2 −K for every v ∈ V, v 6= xa. (5)



On uniform strict minima for vector-valued functions 261

The relation (5) means that for any a ∈ δB, where δ > 0 is a positive number,
the function fa has a strict local minimum xa ∈ V and, moreover, (2) is sat-
isfied with the same V and κ > 0 for all a ∈ δB. The word "uniform" in the
terminology stresses the fact that all xa are strict local minima with the same
neighbourhood V .

In the case when X = R
n and Y = R∪ {+∞,−∞}, the uniform strict local

minima of order 2 coincide with the stable strong local minima of order 2 as
defined in Drusvyatskiy and Lewis (2013), and the relation (5) takes the form

fa(v) ≥ fa(xa) + κ‖v − xa‖
2 for every v ∈ V. (6)

Proposition 3 If x̄ ∈ X is a uniform strict local minimum of order 2 of f
with respect to K, then, for all a ∈ δB, xa (see Definition 1) is defined uniquely.

Proof Let us assume that for a certain a ∈ L(X,Y ) there are xa, x
′

a, xa 6= x′

a,
satisfying (5). Hence, for all v ∈ V , v 6= x′

a we have

f(v)− 〈a, v〉 /∈ f(x′

a)− 〈a, x′

a〉+ κBY ‖v − x′

a‖
2 −K (7)

and for all v ∈ V , v 6= xa, we have

f(v)− 〈a, v〉 /∈ f(xa)− 〈a, xa〉+ κBY ‖v − xa‖
2 −K. (8)

By putting v = xa in (7), we get

f(xa)− 〈a, xa〉 /∈ f(x′

a)− 〈a, x′

a〉+ κBY ‖x
′

a − xa‖
2 −K,

and by putting v = x′

a in (8), we get:

f(x′

a)− 〈a, x′

a〉 /∈ f(xa)− 〈a, xa〉+ κBY ‖x
′

a − xa‖
2 −K.

Hence,

f(xa)− 〈a, xa〉 /∈ f(xa)− 〈a, xa〉+ 2κBY ‖x
′

a − xa‖
2 −K,

which means that 0 /∈ −K, a contradiction. �

The examples below illustrate the concept introduced in Definition 1.

Example 3 Let f : R → R
2, K = R

2
+, f(x) =

{

(1 + x, 0)T x ≥ 0

(0,− 1

x
)T x < 0

. The point

x̄ = 0 is a strict local minimum of order m ≥ 1 of f . Let us take a : R → R
2,

V = (−ε, ε) for some 1 > ε > 0, and constant κ > 0. We can assume that
〈a, x〉 = (a1x, a2x)

T and ‖a‖ < δ, which means that
√

a21 + a22 < δ. Hence

fa(x) =

{

(x+ 1− a1x,−a2x)
T x ≥ 0

(−a1x,−
1

x
− a2x)

T x < 0.

We see that a point xa = x̄ = 0 is a strict local minimum of fa. This means
that x̄ = 0 is a uniform strict local minimum of order 2 of f with respect to K.

Example 4 Let f : R → R
2, K = R

2
+, f(x) = (x2, 1

3
x2)T . Let us take a : R →

R
2, 〈a, x〉 = (a1x, a2x)

T , fa(x) = (x2 − a1x,
1

3
x2 − a2x)

T . We see that xa 6= xa′

for a 6= a′.
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4. Local domination property of order m ≥ 1

In order to investigate the Lipschitzness of xa with respect to a, we need the
following concepts. Let USm

f , Stmf , Sf denote the set of all uniform strict local
minima of order m ≥ 1 of f , the set of all strict local minima of order m ≥ 1
of f , and the set of all local minima of f , respectively. In the case of m = 1 we
use the notation USf , Stf , respectively.

Definition 2 Let x̄ ∈ Sf . We say that the local domination property of order
m ≥ 1 holds for f at x̄ if there exist a neighbourhood V of x̄ and a constant
κ > 0 such that for any v ∈ V

f(v) ∈ f(x̄) + κ‖v − x̄‖mBY +K,

i.e. ∃ kv ∈ K, bv ∈ B such that f(v) = f(x̄) + κ‖v − x̄‖mbv + kv.

Definition 3 Let x̄ ∈ USm
f . We say that the uniform local domination pro-

perty of order m ≥ 1 holds for f at x̄ if there exists a constant κ > 0 such
that

fa(v) ∈ fa(xa) + κ‖v − xa‖
m
BY +K, for v ∈ V, a ∈ δB

i.e. ∃ kv ∈ K, bv ∈ B such that fa(v) = fa(xa) + κ‖v − xa‖mbv + kv.
where xa, V and δ > 0 are the same as those which follow from the fact that
x̄ ∈ USm

f (see Definition 1).

In other words, the uniform local domination property of order m ≥ 1 holds
for f at x̄ ∈ USm

f if there exists a constant κ > 0 such that the local domination
property of order m ≥ 1 holds for all fa at xa with the same constant κ and for
V and δ > 0 resulting from the fact that x̄ ∈ USm

f .
For scalar-valued functions, the uniform strict local minimizers of order 2

automatically have the uniform local domination property of order 2. For vector-
valued functions, the uniform local domination property may not be satisfied as
shown by the example below.

Example 5 Let f : R → R
2, K = R

2
+, f(x) =











(1, 1

x
)T x > 0

(1, 0)T x = 0

(1,− 1

x
)T x < 0

. Let us

take a : R → R
2, 〈a, x〉 = (a1x, 0)

T , fa(x) =











(1− a1x,
1

x
)T x > 0

(1, 0)T x = 0

(1− a1x,−
1

x
)T x < 0

. The

point xa = 0 is a strict minimum of order 2 of fa, but fa does not possess the
domination property.

5. The Lipschitz continuity of uniform strict minima

In this section we prove the Lipschitz continuity of xa as a function of a bounded
linear operator a ∈ L(X,Y ) at ā = 0.
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Theorem 1 Let X and Y be normed spaces. Let f : X → Y and let K ⊂ Y be
a closed convex pointed cone.

Let x̄ be a uniform strict local minimum of order 2, x̄ ∈ US2
f , with constants

κ > 0 and δ > 0 and let the uniform domination property of order 2 hold for f
at x̄ with the constant κ

2
(or κ0 < κ/2).

Then the mapping a → xa is Lipschitz around zero, i.e. there exists a
constant L > 0 and δ > 0 such that

‖xa − xa′‖ ≤ L‖a− a′‖ for every a, a′ ∈ B(0, δ). (9)

Proof Since x̄ is a uniform strict local minimum, there exists a neighborhood
V of x̄ and a constant κ > 0 such that for any a ∈ B(0, δ) there exists a unique
xa ∈ V satisfying the relation

fa(v) 6∈ fa(xa) + κB‖xa − v‖2 −K for all v ∈ V, xa 6= v. (10)

Let us note that each xa is a strict local minimum of order 2 of the function

fa := f − a.

Let a, a′ ∈ B(0, δ). Consider the corresponding strict local minima of order 2
xa, xa′ ∈ V of fa, fa′ . We can assume that xa 6= xa′ , since otherwise (9) is
satisfied.

By (10)

fa(xa′ ) 6∈ fa(xa) + κB‖xa − xa′‖2 −K. (11)

We have

fa(xa′) = f(xa′)−〈a, xa′〉 = f(xa′)−〈a′, xa′〉+〈a′−a, xa′〉 = fa′(xa′ )+〈a′−a, xa′〉.

Analogously, fa(xa) = fa′(xa) + 〈a′ − a, xa′〉. Combining this with (11), we get

fa′(xa′) + 〈a′ − a, xa′〉 6∈ fa′(xa) + 〈a′ − a, xa′〉+ κB‖xa − xa′‖2 −K (12)

and

〈a′ − a, xa′ − xa〉 6∈ fa′(xa)− fa′(xa′ ) + κB‖xa − xa′‖2 −K. (13)

Let us note that we also have

〈a′ − a, xa′ − xa〉 6∈ fa(xa′)− fa(xa) + κB‖xa − xa′‖2 −K. (14)

Since the uniform local domination property of order 2 holds at x̄, we have

fa(v) ∈ fa(xa) +
κ

2
BY ‖v − xa‖

2 +K for every v ∈ V (15)

and
fa(xa′) ∈ fa(xa) +

κ

2
BY ‖xa′ − xa‖

2 +K.
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By (15), there exist ba ∈ BY and ka ∈ K such that

fa(xa′ )− fa(xa) =
κ

2
‖xa′ − xa‖

2ba + ka. (16)

From (13), by using (16), we get

〈a′ − a, xa′ − xa〉 6∈
κ

2
‖xa′ − xa‖

2ba + κB‖xa − xa′‖2 + ka −K.

Clearly, −K ⊂ ka −K, and consequently

〈a′ − a, xa′ − xa〉 6∈ κ‖xa′ − xa‖
2ba + κB‖xa − xa′‖2 −K = b1a −K. (17)

Moreover,

κ

2
‖xa′ − xa‖

2
BY ⊂ κ‖xa′ − xa‖

2ba + κB‖xa − xa′‖2,

since, if x ∈ κ
2
‖xa′ − xa‖2BY , then

‖x‖ <
κ

2
‖xa′ − xa‖

2

and
‖b1a − x‖ < ‖b1a‖+ ‖x‖ <

κ

2
‖xa′ − xa‖

2 +
κ

2
‖xa′ − xa‖

2.

Consequently,

〈a′ − a, xa′ − xa〉 6∈
κ

2
‖xa′ − xa‖

2
BY . (18)

By (18),

‖〈a′ − a, xa′ − xa〉‖ ≥
κ

2
‖xa′ − xa‖

2,

which gives

‖xa′−xa‖ ≤
2

κ
‖a′−a‖ for every a, a′ ∈ B(0, δ). �

It follows from the proof that instead of taking κ/2 in the uniform local
domination property of order 2 of f at x̄ we can take any constant κ0 ≤ κ

2
.

In the case of real-valued functions, the uniform strict local minima have been
investigated in Drusvyatskiy and Lewis (2013). In Proposition 2.2 of Drusvy-
atskiy and Lewis (2013) it is proved that uniformly strict local minima are locally
Lipschitz around zero. Let us observe that Theorem 1 reduces to Proposition
2.2. of Drusvyatskiy and Lewis (2013) in the real-valued case.

Corollary 1 Let x̄ be a uniform strict local minimum of order 2 of f with
constant κ > 0 and neighborhood V. Under the assumptions of Theorem 1, the
point x̄ is a uniform strict local minimum of order 2 of f with any neighborhood
V1 ⊂ V.
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Proof By Theorem 1, there exist δ > 0 and a constant L > 0 such that

‖xa − x̄‖ ≤ L‖a‖, for a ∈ B(0, δ), (19)

where xa is a strict local minimum of fa. Let V1 ⊂ V be a neighborhood of x̄.
Hence, B(x̄, ε) ⊂ V1 for some ε > 0. Now, by taking δ < ε

L
from (19) we obtain

that ‖xa − x̄‖ < ε. �

6. K-convex mappings

Let X and Y be linear spaces. Let K ⊂ Y be a closed convex pointed cone in
Y.

Let ∞ /∈ Y denote the greatest element in the sense that y ≤K ∞ and denote
Y • = Y ∪ {∞}. We consider that y +∞ = ∞, ∞ +∞ = ∞, λ∞ = ∞ for all
λ ∈ R+.

Let f : X → Y •. The domain of f is dom f := {x ∈ X : f(x) ∈ Y }.

Definition 4 We say that f : X → Y • is K-convex if ∀ x1, x2 ∈ X, λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤K λf(x1) + (1− λ)f(x2).

Equivalently, f is K-convex if ∀ x1, x2 ∈ X f , λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ∈ λf(x1) + (1 − λ)f(x2)−K.

As in the scalar case, any local minimum of a K− convex function is a global
minimum in the sense that there is no x ∈ X , f(x) 6= f(x0) such that

f(x) ∈ f(x0)−K.

Below, we prove the similar fact for strict minima.

Proposition 4 Let X and Y be normed spaces. Let f : X → Y be K−convex.
If x̄ is a strict local minimum of order m ≥ 1 of f with constant κ > 0, then x̄
is a global strict minimum of order m ≥ 1 of f with constant κ > 0 in the sense
that

f(x) 6∈ f(x̄) + κ‖x− x̄‖mB−K for all x ∈ X. (20)

Proof Suppose that (20) does not hold, i.e. there exists a z ∈ X such that

f(z) = f(x̄) + κ‖z − x̄‖mb− k, where b ∈ B, k ∈ K. (21)

Consider w(λ) := λz + (1− λ)x̄, 0 ≤ λ ≤ 1. By the K−convexity of f we have

f(λz + (1− λ)x̄) = λf(z) + (1− λ)f(x̄)− kλ, kλ ∈ K.
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Hence, by (21), for all 0 ≤ λ ≤ 1 we have

f(λz + (1 − λ)x̄) = λf(z) + (1− λ)f(x̄)− kλ
= f(x̄) + λ(f(z)− f(x̄))− kλ
= f(x̄) + λ(κ‖z − x̄‖mb− k)− kλ
= f(x̄) + λκ‖z − x̄‖mb− λk − kλ
= f(x̄) + λκ‖z − x̄‖mb− k̄λ, where k̄λ = λk − kλ ∈ −K
= f(x̄) + κ‖λ(z − x̄)‖mb − k̄λ
= f(x̄) + κ‖(λz + (1− λ)x̄)− x̄‖mb− k̄λ.

This contradicts the fact that x̄ is a strict local minimum of order m of f . �

Corollary 2 Let f : X → Y be a K−convex function f . If x̄ is a uniform
local minimum of order m ≥ 1 of f with constants κ > 0 and δ > 0 and a
neighbourhood V of x̄, then x̄ is a uniform (global) minimum of order m ≥ 1 of
f with constants κ > 0 and δ > 0, i.e. for a ∈ B(0, δ) there exists xa ∈ V such
that

f(x)− 〈a, x〉 6∈ f(xa)− 〈a, xa〉+ κ‖x− xa‖
m
B−K for all x ∈ X. (22)

Proof As already observed, any xa ∈ V satisfying (22) is a strict local minimum
of the function fa. Since fa is a K−convex function, by Proposition 4, xa is a
global strict minimum of fa, hence (22) holds. �

7. Subgradients of vector-valued functions

Let f : X → Y • be a K-convex vector-valued function, taking values in a Banach
space Y. Definitions of subdifferentials for K-convex vector-valued functions at
a point have been proposed by Valadier (1972) and Isac and Postolica (1993),
and investigated in Papageorgiu (1983), Stamate (2003), and Zǎlinescu et al.
(2003).

Definition 5 (Valadier, 1972; Zǎlinescu et al., 2003) A linear continuous op-
erator a ∈ L(X,Y ) is an ideal subgradient of f at x̄ ∈ domf if

f(x) ≥K f(x̄) + 〈a, x− x̄〉 for all x ∈ X (23)

By ∂If(x̄) we denote the set of all ideal subgradients of f (23) at x̄.

Definition 6 (Isac and Postolica, 1993) A linear continuous operator a ∈
L(X,Y ) is a Pareto-subgradient of f at x̄ ∈ domf if

f(x) /∈ f(x̄) + 〈a, x− x̄〉 −K for all x ∈ X such that fa(x) 6= fa(x̄). (24)

By ∂P f(x̄) we denote the set of all Pareto-subgradients of f at x̄.

The terminology above is motivated by the following proposition:
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Proposition 5 Let X and Y be normed spaces and let K ⊂ Y be a closed
convex and pointed cone in Y . Let f : X → Y be K−convex. The following
relations hold:

(i) x̄ ∈ X is a (global) minimum of f if and only if 0 ∈ ∂P f(x̄),
(ii) x̄ ∈ X is a (global) ideal minimum of f in the sense that f(x) ≥K f(x̄)

for all x ∈ X if and only if 0 ∈ ∂If(x̄).

Proof The proof follows immediately from the definitions. �

Corollary 3 In case (ii) x̄ is the unique minimum in the sense that if there
exists another ideal minimum x1, then f(x̄) = f(x1).
If K is not pointed, which means that K ∩ (−K) = linK 6= {0} and x̄, x1 are
ideal minima, then f(x̄)− f(x1) ∈ linK, where linK is the lineality space of K.

Proposition 6 a ∈ ∂If(x̄) ⇒ a ∈ ∂P f(x̄).

Proof Let us take some a ∈ ∂If(x̄), which means that f(x)−f(x̄)+〈a, x−x̄〉 =
k for some k ∈ K. We have that f(x) − f(x̄) + 〈a, x − x̄〉 /∈ −K, because
K ∩ −K = {0}. �

Clearly, in general, we do not have the inclusion ∂P f(x̄) ⊂ ∂If(x̄), as shown
by the example below.

Example 6 Let f : R
2 → R

2, f(x) =

{

(0, 0)T x = (0, 0)T

(1, x2
2)

T x 6= (0, 0)T
. Let us take

a : R2 → R
2, 〈a, x〉 = (0, 1

10
x2)

T .

fa(x) =

{

(0, 0)T x = (0, 0)T

(1, x2
2 −

1

10
x2)

T x 6= (0, 0)T
.

We have a ∈ ∂P f(0) and a 6∈ ∂If(0).

Proposition 7 ∂If(x̄) is a convex set.

Proof Let us take some λ ∈ [0, 1] and a1, a2 ∈ ∂If(x̄). For all x ∈ X

f(x)− f(x̄)− 〈a1, x− x̄〉 = k1, f(x)− f(x̄)− 〈a2, x− x̄〉 = k2,

where k1, k2 ∈ K. Since k = λk1 + (1− λ)k2 ∈ K, we have

f(x)− f(x̄)− 〈λa1 + (1− λ)a2, x− x̄〉 = k. �

On the other hand, ∂P f(x̄) needs not to be a convex set, as is shown by the
example below.

Example 7 Let f : R2 → R
2,

f(x) =

{

0 x = 0

(1 + x2
1, 1 + x2

2)
T x 6= 0

.
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Let us take linear operators a, ā : R2 → R
2

a =

[

10 0
0 0

]

ā =

[

0 0
0 10

]

.

We have fa(x) = (1 + x2
1 − 10x1, 1+ x2

2)
T , fā(x) = (1 + x2

1, 1+ x2
2 − 10x2)

T . We
can see that a, ā ∈ ∂P f(0), but 1

2
a+ 1

2
ā /∈ ∂P f(0), which means that ∂P f(0) is

not a convex set.

8. Metric regularity of subdifferentials

In this section we investigate the regularity properties of the set-valued map-
pings ideal and Pareto subdifferentials. More precisely, we investigate the rela-
tionships between metric subregularity of the subdifferential of f around point
(x̄, ā) and the behavior of the function f around x̄. For any subset C of a normed
space, we put d(x,C) := inf

y∈C
‖x− y‖ and gph ∂f := {(x, a)|a ∈ ∂f(x)}.

Definition 7 A mapping F : X ⇒ Y is metrically subregular at x̄ for ȳ,
ȳ ∈ F (x̄), if there is a positive constant κ along with neighborhoods V of x̄ and
U of ȳ such that

d(x, F−1(ȳ)) ≤ kd(ȳ, F (x) ∩ U) for all x ∈ V. (25)

The following theorem provides the sufficient conditions for metric subregu-
larity for subdifferential.

Theorem 2 Let X and Y be normed spaces and K be a closed pointed cone in
Y . Let f : X → Y be a K-convex mapping. Let x̄ ∈ X and ā ∈ L(X,Y ) be such
that ā ∈ ∂If(x̄).

Then, ∂If is metrically subregular at x̄ for ā if there exist a neighborhood V
of x̄ and a positive constant c such that

f(v) /∈ f(x̄)+〈ā, v−x̄〉+cd2(v, (∂If)
−1(ā))BY −K for all v ∈ V, v 6= x̄. (26)

Proof Assume that (26) holds. Consider any v ∈ V , v 6= x̄ and take any
a ∈ ∂If(v) (if ∂If(v) = ∅, there is nothing to prove).

Choose ε > 0. Since (∂If)
−1(ā) 6= ∅, there is xε ∈ (∂If)

−1(ā) such that

‖v − xε‖ ≤ d(v, (∂If)
−1(ā)) + ε. (27)

We have
f(w) ≥K f(xε) + 〈ā, w − xε〉 for all w ∈ X.

For w = x̄, there is k1 ∈ K, and we have

f(x̄)− f(xε) = 〈ā, x̄− xε〉+ k1.

Since a ∈ ∂If(v), f(w) ≥K f(v)+ 〈a, w−v〉 for w ∈ X , and there exists k2 ∈ K
such that

〈a, v − xε〉 = f(v)− f(xε) + k2.
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Hence

〈a− ā, v − xε〉 = 〈a, v − xε〉 − 〈ā, v − x̄〉 − 〈ā, x̄− xε〉
= f(v)− f(x̄)− 〈ā, v − x̄〉+ k1 + k2.

(28)

Since v ∈ V , by (26),

f(v)− f(x̄)− 〈ā, v − x̄〉 /∈ cd2(v, (∂If)
−1(ā))BY −K.

Since

cd2(v, (∂If)
−1(ā))BY ⊂ cd2(v, (∂If)

−1(ā))BY −K
⊂ cd2(v, (∂If)

−1(ā))BY −K + k1 + k2,

by (28), we get
〈a− ā, v − xε〉 /∈ cd2(v, (∂If)

−1(ā))BY .

From this and by (27),

‖a− ā‖(d(v, (∂If)
−1(ā)) + ε) ≥ ‖a− ā‖‖v − xε‖

≥ ‖〈a− ā, v − xε〉‖ ≥ cd2(v, (∂If)
−1(ā)).

Thus, passing to the limit when ε goes to zero, we obtain

d2(v, (∂If)
−1(ā)) ≤

1

c
‖a− ā‖d(v, (∂If

−1)(ā)). (29)

If d(v, (∂If)
−1(ā)) = 0, then v ∈ (∂If)

−1(ā) and d(ā, ∂If(v)) = 0 and the
conclusion follows. If d(v, (∂If)−1(ā)) 6= 0, then, by (29),

d(v, (∂If)
−1(ā)) ≤

1

c
‖a− ā‖,

and, since a ∈ ∂If(v) is chosen arbitrarily, we obtain

d(v, (∂If)
−1(ā)) ≤

1

c
d(ā, ∂If(v)).

Since this inequality holds for all U such that ā ∈ U , we get that ∂If is metrically
subregular at x̄ for ā. �

The above theorem and condition (26) reduce to Theorem 3.3 and condition
3.1 of Aragón, Artacho and Geoffroy (2014).

Theorem 2 allows for providing the sufficient conditions for metric subregu-
larity in terms of strict local minima.

Corollary 4 Let X and Y be normed spaces and K be a closed convex pointed
cone in Y . Let f : X → Y be a K-convex mapping, x̄ ∈ X, ā ∈ L(X,Y ),
ā ∈ ∂If(x̄). If xā ∈ St2fā , i.e. there exist a neighborhood V of xā and a positive
constant c > 0 such that

fā(v) /∈ fā(xā) + c‖v − xā‖
2
BY −K for all v ∈ V, v 6= xā, (30)

then ∂If is metrically subregular at x̄ for ā.
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Proof By (30),

fā(v) /∈ fā(x̄) + [fā(xā)− fā(x̄)] + c‖v− xā‖
2
BY −K ∀v ∈ V, v 6= xā. (31)

Since ā ∈ ∂If(x̄), we have

fā(w)− fā(x̄) = kw ∈ K for all w ∈ X.

By Proposition 5, xā is a global ideal minimum of fā, there must be fā(xā) =
fā(x̄), and since xā is a global strict minimum of order 2 of fā, there must be
xā = x̄. Consequently, by (31),

fā(v) /∈ fā(x̄) + c‖v − x̄‖2BY −K ∀v ∈ V, v 6= x̄. (32)

Since d(v, (∂If)
−1(ā)) ≤ ‖v − x̄‖, by (32),

fā(v) /∈ fā(x̄) + cd2(v, (∂If)
−1(ā))BY −K ∀v ∈ V, v 6= x̄. (33)

By Theorem 2, the conclusion follows. �

For the Pareto subdifferential the following result holds:

Theorem 3 Let X and Y be normed spaces and K be a closed pointed cone in
Y . Let f : X → Y be a K-convex mapping. Let x̄ ∈ X and ā ∈ L(X,Y ) be such
that ā ∈ ∂P f(x̄).

Then, ∂P f is metrically subregular at x̄ for ā if the following two conditions
hold:

(i) there exist a neighborhood V of x̄ and a positive constant c > 0 such that

f(v) /∈ f(x̄)+〈ā, v− x̄〉+cd2(v, (∂P f)
−1(ā))BY −K for all v ∈ V , v 6= x̄,

(34)

(ii) there exists a neighbourhood U of ā such that for all a ∈ U we have

fa(w) ∈ fa(v)+
c

2
d2(v, (∂P f)

−1(ā))BY +K for all w ∈ (∂P f)
−1(ā)), v ∈ Sfa .

(35)

Proof We need to show that that there exist a constant M > 0 and a
neighbourhood V of x̄ and a neighbourhood U of ā such that

d(v, (∂P f)
−1(ā)) ≤ M · d(ā, ∂P f(v) ∩ U).

Assume that (34) and (35) hold. Consider any v ∈ V , v 6= x̄ and take any
a ∈ ∂P f(v)∩U (if ∂P f(v)∩U = ∅, there is nothing to prove). Since a ∈ ∂P f(v),
we have

f(w) /∈ f(v) + 〈a, w − v〉 −K for all w ∈ X, fa(w) 6= fa(v),
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which means that v ∈ Sfa.
Choose ε > 0. Since (∂P f)

−1(ā) 6= ∅, there is xε ∈ (∂P f)
−1(ā) such that

‖v − xε‖ ≤ d(v, (∂P f)
−1(ā)) + ε. (36)

By purely algebraic manipulations, we have

〈a, v − xε〉 − 〈ā, v − x̄〉 − 〈ā, x̄− xε〉 =
= [f(v)− f(x̄)− 〈ā, v − x̄〉] + [f(xε)− f(v) + 〈a, v − xε〉]+
+[f(x̄)− f(xε)− 〈ā, x̄− xε〉].

(37)

Since ā ∈ ∂P f(x̄) and ā ∈ ∂P f(xε), we have x̄ ∈ Sfā, and xε ∈ Sfā and
d(xε, (∂P f)

−1(ā)) = 0. Hence, by (35), there must be

fā(x̄) = fā(xε)

and the relation (37) takes the form

〈a, v − xε〉 − 〈ā, v − x̄〉 − 〈ā, x̄− xε〉 =
= [f(v)− f(x̄)− 〈ā, v − x̄〉] + [f(xε)− f(v) + 〈a, v − xε〉].

(38)

Since
〈a− ā, v − xε〉 = 〈a, v − xε〉 − 〈ā, v − x̄〉 − 〈ā, x̄− xε〉,

and v ∈ V , by (34),

f(v)− f(x̄)− 〈ā, v − x̄〉 /∈ cd2(v, (∂If)
−1(ā))BY −K,

and so, from (38) we get

〈a− ā, v − xε〉 6∈ cd2(v, (∂If)
−1(ā))BY + f(xε)− f(v) + 〈a, v − xε〉 −K.

Since a ∈ U and v ∈ Sfa, by (35) we have

fa(xε) = fa(v) +
c

2
d2(v, (∂P f)

−1(ā))b+ k

for some b ∈ BY and k ∈ K. Since fa(·) = f(·)− 〈a, ·〉, for a ∈ U we get

〈a− ā, v − xε〉 /∈
c

2
d2(v, (∂If)

−1(ā))b + k + cd2(v, (∂If)
−1(ā))BY −K.

Since

c

2
d2(v, (∂If)

−1(ā))BY ⊂
c

2
d2(v, (∂If)

−1(ā))b + cd2(v, (∂If)
−1(ā))BY ,

for a ∈ U we get

〈a− ā, v − xε〉 /∈
c

2
d2(v, (∂If)

−1(ā))BY .
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From this, and by (36), for a ∈ U we get

‖a− ā‖(d(v, (∂P f)
−1(ā)) + ε) ≥ ‖a− ā‖‖v − xε‖

≥ ‖〈a− ā, v − xε〉‖ ≥
c

2
d2(v, (∂P f)

−1(ā)).

Thus, passing to the limit when ε goes to zero, we obtain

d2(v, (∂P f)
−1(ā)) ≤

2

c
‖a− ā‖d(v, (∂P f

−1)(ā)). (39)

If d(v, (∂P f)
−1(ā)) = 0, then v ∈ (∂P f)

−1(ā) and d(ā, ∂P f(v)) = 0, and the
conclusion follows. If d(v, (∂If)−1(ā)) 6= 0, then, by (39),

(d(v, (∂P f)
−1(ā)) ≤

2

c
‖a− ā‖,

and since a ∈ ∂P f(v) ∩ U is chosen arbitrarily, we obtain

d(v, (∂P f)
−1(ā)) ≤

2

c
d(ā, ∂P f(v) ∩ U) for v ∈ V,

which proves that ∂P f is metrically subregular at x̄ for ā with M = c
2
. �

By Proposition 5, for a K−convex function f we have

(∂P f)
−1(0) = S,

where S is the set of all global minima of f . Hence, for ā = 0 the formula (34)
takes the form

f(v) /∈ f(x̄) + cd2(v, S)BY −K for all v ∈ V, v 6= x̄. (40)

Condition (40) is the quadratic growth condition for f at x̄, as defined in
Bednarczuk (2007). In the scalar case, the analogous relation was noted in
Aragón Artacho and Geoffroy (2008).
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