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pg4937@uem.br, namartin@din.uem.br
2Departamento de Engenharia Elétrica, Universidade do Estado de Santa

Catarina - UDESC, Rua Paulo Malschitzki, s/numero, 89219-710,
Joinville, SC, Brasil

douglas.bertol@udesc.br
3Universidade Federal de Santa Catarina - UFSC, Departamento de

Automação e Sistemas, Grupo de Pesquisa Robótica, Caixa Postal 476,
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1. Introduction

Variable structure systems (VSS) theory offers great advantages over the tradi-
tional linear approach in terms of robustness and efficiency (see Utkin, Guldner
and Shi, 2009). The variable structure control (VSC) and, in particular, the
popular sliding mode control (SMC), provide a robust nonlinear feedback con-
trol technique that utilizes discontinuous control actions to have the system state
reach and thereafter stay within some predefined sliding regime. In sliding mode,
all state trajectories are confined to the sliding regime, and system responses
then completely depend on the characteristics of the sliding regime. However,
before the sliding motion occurs, there usually exists a reaching phase, during
which the invariance property of the sliding mode is not guaranteed. The exis-
tence of such a reaching phase deteriorates the performance robustness. More-
over, the discontinuous control actions may excite unmodeled dynamics and
lead to oscillations in the state vector at finite frequencies. These oscillations,
normally referred to as chatter, are known to result in low control accuracy,
high heat loss in electric power circuits and excessive wear of the moving me-
chanical parts, see Utkin (1993). The chattering phenomenon is thus a serious
implementation drawback.

It should also be emphasized that uncertainties and disturbances are in-
evitable in practice and the dynamics of nonholonomic mobile robots is subject
to them. The respective phenomena must have a known boundary in order to
guarantee the stability of the closed-loop control system (Utkin, Guldner and
Shi, 2009). However, such an assumption is not mild, because the boundary
value can hardly be exactly known in advance. The lack of the boundary value
may cause several drawbacks, such as deficiency of the system stability, de-
crease of the system robustness and deterioration of the system performance.
In order to take VSC and SMC into account for the trajectory tracking control
problem, it is necessary to minimize and compensate for the uncertainties and
disturbances.

With the advent of artificial intelligence systems, there have been increasing
efforts to improve VSC and SMC performance by integrating fuzzy logic systems.
This approach has emerged as a promising one for dealing with uncertain non-
linear systems and for relieving VSC implementation difficulties (see Kaynak,
Erbatur and Ertugner, 2001), i.e., the methodology of fuzzy logic can effectively
handle complex nonlinear systems with uncertainties and disturbances (Farrel
and Polycarpou, 2006).

By integrating adaptation techniques into the fuzzy sliding mode controls,
the adaptive fuzzy sliding mode control schemes (see Erbatur and Kaynak, 2001;
Guo and Woo, 2003; Wai, 2007; Kung, Chen and Kung, 2005; Kung and Chen,
2007) gain several excellent features, such as their adaptability and chatter al-
leviation, although convergence of the tracking error can be slow due to the
adaptation mechanisms, leading to poor transient responses. Thus, in order to
circumvent the uncertainties and disturbances of the VSC-based control prob-
lem, this paper proposes a fuzzy inference system, as an alternative choice, to
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compensate for them and to attenuate the tracking errors and chattering phe-
nomenon. The fuzzy system has to adaptively approximate the uncertainties
and disturbances, because the assumption that they have an unknown boundary
holds true. The fuzzy compensator and the variable structure controller work
in parallel to achieve the trajectory tracking. The VSC law and the robust
adaptation law are derived from the Lyapunov’s direct method.

The feasibility and robustness of the proposed adaptive fuzzy variable struc-
ture control (AFVSC), applied to a nonholonomic mobile robot, are verified by
means of simulations and experimental tests. In comparison with the results
obtained via the boundary layer variable structure controller (VSCBL), the pro-
posed AFVSC can also improve the tracking performance. The benefit of the
AFVSC is that it is only subject to the mild assumption that the uncertainties
and disturbances have an unknown boundary. Moreover, in the results obtained
from simulations and experimental tests it is verified that the loss of invariance
has little practical meaning (see Wang and Gao, 1995) and the robustness is en-
sured in the case of the AFVSC. An extension of some of the results, presented
here, can be found in Begnini, Bertol and Martins (2017).

This paper is organized as follows. Section 2 presents the kinematic and
dynamic models for DWMRs, and the description of the trajectory tracking
control problem. The kinematic and dynamic controllers of the DWMRs are
summarized in Section 3. In Section 4 the proposed AFVSC methodology, based
on the classical VSC and VSCBL, is presented. Section 5 shows the simulation
results and real-time experiments, and Section 6 presents the conclusions.

2. Problem formulation

In this section we present the kinematic and dynamic models for a DWMR, and
the control problem to be resolved.

2.1. Kinematics and dynamics of DWMRs

A simple model that represents the essentials of the kinematics and dynamics of
the DWMR is extensively used in literature (see, e.g., Park et al., 2009; Elyoussef
et al., 2014; or Martins et al., 2015). Disregarding gravitational forces (G(q) =
0) and considering uncertainties and disturbances, the posture dynamic and
kinematic models of DWMRs for control purposes are defined as:

q̇ = S(q)v, (1)

M̄(q)v̇ + C̄(q, q̇)v + δd(q,v) = D̄(q)τ , (2)

where q is the posture vector in the plane, v = [ν ω]
T

is the velocity vector,
with longitudinal velocity (ν), and rotational velocity (ω), τ is the torque vector,

M̄(q) = ST(q)M(q)S(q),

C̄(q, q̇) = ST(q)M (q)Ṡ(q, q̇) + ST(q)C(q, q̇)S(q),
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D̄(q) = ST(q)D(q)

(see, e.g., Park et al., 2009; Elyoussef et al., 2014; or Martins et al., 2015), and

δd(q, q̇,v, v̇, t) = ∆M̄ (q)v̇ +∆C̄(q, q̇)v + τ̄p, (3)

where ∆M̄(q) and ∆C̄(q, q̇) denote unknown internal uncertainties, including
both parametric and non-parametric uncertainties, and τ̄p = ST(q)τp denotes
uncertainties and disturbances, including friction (Park et al., 2009). The Jaco-
bian matrix S(q), the nominal matrix of inertiaM(q), Coriolis and centrifugal
matrixC(q, q̇), and input transformation matrixD(q) are provided in Elyoussef
et al. (2014), as being representative of the PowerBot DWMR.

2.2. Problem statement

The trajectory tracking control problem for DWMRs (Fierro and Lewis, 1998) is
established by proposing a control structure that uses adaptation and fuzzy logic
on VSC, in order to design a robust kinematic controller that avoids chattering
and makes the posture tracking errors tend to zero quickly, and a PD control as
the principle of a dynamic controller that makes the auxiliary velocity tracking
errors also tend to zero quickly.

3. Control project

Let the control synthesis be treated separately, namely, we shall present first
the design of the dynamic control and then the design of the kinematic control.

3.1. Dynamic control

The objective of the dynamic controller is to compensate for the known torques
and forces, described in Eq. (2), and ensure fast convergence of the auxiliary
velocity tracking errors ve = vc−v to zero. As the uncertainties δd are unknown,
they are set to zero for the purpose of this design, and will be considered just
for adjusting control gains and in the design of the kinematic controller. Now,
we consider the calculus of the PD control, similar to that in Spong, Hutchinson
and Vidgasagar (2006), i.e.,

ū =

[

ūν(s)
ūω(s)

]

=

[

kpν
0

0 kpω

]

ve +

[

kdν
0

0 kdω

]

v̇e, (4)

where ve = vc − v is the error between the control velocity vc and velocity of
the DWMR v, and

τ = D̄(q)−1ū. (5)

is the control law.
The vector ū = [ūν ūω]

T is a new control input, where the proportional gains
kpν

, kpω
and the derivative gains kdν

, kdω
should be designed to achieve fast
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convergence of ve, as can be seen in Elyoussef et al. (2014). The stability analy-
sis of this controller is similar to the ones in Spong, Hutchinson and Vidgasagar
(2006).

Further, the authors of this work are aware that the VSCBL or AFVSC
could handle the entire control problem without the PD controller, but as the
real DWMR that is used as experimental platform (the PowerBot DWMR) has
in its firmware this PD controller as a basic and irremovable dynamic control
in the architecture (the DWMR cannot be directly torque controlled), the ap-
proach applied has to reflect this architecture in the simulations and in the
entire solution.

3.2. Kinematic control

The kinematics of the virtual DWMR is modeled as:

q̇r = S(qr)vr, ẋr = νr cos(θr), ẏr = νr sin(θr), θ̇r = ωr, (6)

where qr = [xr yr θr]
T is the reference posture vector of the virtual DWMR, and

vr = [ν ω]T is the reference velocity vector of the virtual DWMR.
Converting the posture tracking errors in the inertial frame to the DWMR

frame, the posture error equation of the DWMR can be written down as (see
Kanayama et al., 1991)

qe =





xe
ye
θe



 =





cos θr sin θr 0
− sin θr cos θr 0

0 0 1









xr − x
yr − y
θr − θ



 , (7)

and, consequently, the error dynamics of the closed-loop system for trajectory
tracking is obtained from the time derivative of Eq. (7), after mathematical
manipulations, as:

ẋe = ωye − ν + νr cos θe, ẏe = −ωxe + νr sin θe, θ̇e = ωr − ω. (8)

Under robustness considerations, in practical situations, the velocities and
the tracking errors are not equal to zero. The best that can be done is to guar-
antee that the error converges to a neighborhood of the origin. If uncertainties
and disturbances (e.g., external disturbances) drive the system away from the
compact convergence set, the derivative of the Lyapunov function becomes neg-
ative and the energy of the system decreases uniformly; therefore, the error
becomes small again (Fierro and Lewis, 1998).

As perfect velocity tracking does not hold in practice, the dynamic con-
troller generates auxiliary velocity tracking errors ve, which are bounded by
some known constant. These tracking errors can be seen as an uncertainty and
disturbance for the kinematic model (see Fig. 1). The closed-loop kinematic
model becomes:

ẋ = (νc + νe) cos θ, ẏ = (νc + νe) sin θ, θ̇ = (ωc + ωe), (9)
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kinematic
controller

vcqeqr kinematic model
q = S(q)v

dynamic
controller

v

ve

q
.

Figure 1. Block diagram of the closed-loop control system: ve as uncertainty
and disturbance for the kinematic model (similar to that of Fierro and Lewis,
1998)

where ve = [νe ωe]
T and vc = [νc ωc]

T denote the auxiliary velocity tracking
errors and the desired velocity control inputs, respectively. The uncertainty and
disturbance, given by ve, satisfies the matching condition, i.e., the nonholonomic
constraint ẏ cos θ−ẋ sin θ = 0 is not violated. Then, by using standard Lyapunov
methods, it can be shown that along a system’s solution, |qe| is bounded, and
thus |q̇e| is also bounded. The norm of the auxiliary velocity tracking errors
affects directly the norm of the posture tracking errors. Note that the norm
of the auxiliary velocity tracking errors |ve| depends on the proportional gains,
kpν

and kpω
, and the derivative gains, kdν

and kdω
, see Eq. (4). Since |ve| can

be made arbitrarily small, then |qe| can also be made arbitrarily small (Fierro
and Lewis, 1998).

The effect of the uncertainties and disturbances (e. g., external disturbances)
that affect the system can be considered, after mathematical manipulations, as
a term:

δk(q, t) = [ωeye− νe − ωexe − ωe]
T, (10)

added to the right hand side of error dynamics, Eq. (8). Now, recalling the
invariance principle for VSC, described by Utkin, Guldner and Shi (2009), and
assuming that the δk(q, t) is matched by the control signal vc, one can conclude
that if the system, Eq. (8), is enforced to a sliding motion under some desired
constraints, it will be ideally invariant to δk(q, t) in Eq. (10).

For purposes of designing the kinematic controller, which is based on VSC
theory, from the error dynamics, Eq. (8), the following sliding surfaces are se-
lected:

σ(z̃, t) =

[

σ1
σ2

]

=

[

Λ1xe
Λ2ye + Λ3θe

]

, (11)

σ∗(z̃, t) = BT

0σ
σ(z̃, t) = BT

0σ
ΛTz̃, (12)

where Λ1,Λ2,Λ3 are positive constants, and B0σ is defined as in Martins et
al. (2015). It should be emphasized that the selection of the sliding surfaces
is a critical and difficult problem for the VSC design, due to the posture error,
Eq. (7), representing a nonlinear system of multiple inputs (see Lee et al., 2009).
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After the selection of the sliding surfaces and with reference to the generic
modeling of nonlinear systems relative to the VSC design, the error dynamics
in Eq. (8) can be rewritten as:

˙̃z = A0(z̃, t) +B0(z̃, t)v(z̃, t) + db(t), (13)

since there are no parametric uncertainties and z, A0, B0, db are defined as in
Martins et al. (2015).

For the stability analysis, the Lyapunov function candidate is chosen in the
form:

V =
1

2
σTσ, (14)

which is positive definite. The sliding surface will be attractive, since the control
law v, defined as,

v = −B−1
0σ
A0σ −Gsign(σ∗)−Kσ∗, (15)

ensures that

V̇ = σTσ̇ = −σ∗
T

Gsign(σ∗)− σ∗
T

Kσ∗ + σ∗
T

d̃0, (16)

is negative definite. The definitions of the vectors A0σ , d̃0 and matrices G, K,
as well as further details on control law and stability analysis can be found in
Martins et al. (2015).

4. Control design considering chattering attenuation

4.1. Preliminaries

Unfortunately, in practical implementation, due to delays, neglected dynamics,
sampling frequency limitation, physical limitations of actuators and imperfec-
tions of switching, it is not possible to switch the control from a value to another
one instantaneously (see Martins et al., 2010; Elyoussef et al., 2014). Thus, the
state trajectory fluctuates in the vicinity of the sliding surface, instead of slid-
ing over it. This phenomenon, known as chattering, can be avoided or at least
reduced by replacing the discontinuous function sign(σ∗) by its continuous ap-
proximation. A commonly used solution is the use of the boundary layer (BL),
given by σ∗/(|σ∗| + ρ), where ρ is some positive constant. Upon replacing the
discontinuous function by the BL in the control law of Eq. (15), one obtains:

v = −B−1
0σ
A0σ −G

σ∗

|σ∗|+ ρ
−Kσ∗. (17)

The VSCBL can now avoid chattering, but the invariance principle is not
verified any more, theoretically reducing the robustness (such reduction is not
significant and the robustness is essentially ensured); however, the smooth con-
trol signal is achieved (Martins et al., 2010, 2015). This occurs because the
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system dynamics in this case is confined to a neighborhood of the sliding sur-
faces, and no longer over it, i. e., as a consequence of the approximation with
BL the system is enforced to a neighborhood of the manifolds σ(z̃, t) = 0 and
σ∗(z̃, t) = 0, resulting in a reduction of the original robustness, that can still
be acceptable. Moreover, realization of the invariance requires that switching
between the reaching phase and the sliding phase be ideal, which is impractical.
Therefore, the invariance needs an ideal switching, but, in fact, has little practi-
cal meaning (Wang and Gao, 1995). Another problem with VSCBL is the need
of knowledge of the limits of uncertainties and disturbances in the system, and
the application of a large value to the gains G that can cause a high control ef-
fort (large authority control), affecting the trajectory tracking and deteriorating
the system performance (Martins et al., 2010).

In order to ensure better results, and not to need the knowledge of the
limits of uncertainties and disturbances in the system, in this section a fuzzy
logic system is proposed to deal with the chattering.

4.2. Introduction to fuzzy systems

A fuzzy logic system can integrate expert knowledge into the control procedure,
without the help of a mathematical model, which makes it feasible in the control
of nonlinear systems. Moreover, a fuzzy system can have one or more inputs,
and with the help of the expert knowledge, it generates one output.

A fuzzy system has four basic parts, as shown in the block diagram of Fig.
2. Given a set of non-fuzzy entries, from an external system, the fuzzification is
responsible for mapping these entries to input fuzzy sets, evaluating the degree
of membership of each entry for each fuzzy set. The fuzzy rule base represents
the expert knowledge (e.g. provided by a human expert) in the form of linguistic
sentences. The rules are written in the form ”if ... then ...”, describing a definite
relation between the input space and the output space. Then, for each rule, the
inference machine maps an input set to an output fuzzy set, according to the
relation defined by the rules. With this, it combines the fuzzy sets from all
the active rules in the rule base into the proper output fuzzy set. Finally, the
defuzzification translates fuzzy output to a real number for the system.

fuzzification
fuzzy inference

engine
defuzzification

x y

fuzzy rule
base

Figure 2. Block diagram representation of a fuzzy system

All the four parts can be mathematically formulated. In this paper, due to
the choice of the singleton fuzzification, the center average defuzzification, and
the product inference engine, the output of a single input single output (SISO)
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fuzzy system can be written as:

y =

M
∑

m=1

βmµm(x)

M
∑

m=1

µm(x)

= βTψ(x), (18)

where x is the input, y is the output, β = [β1 . . . βm . . . βM]T is the vector
of consequences and ψ(x) = [ψ1(x) . . . ψm(x) . . . ψM(x)]T is the vector of
weights, in which

ψm(x) =
µm(x)

M
∑

m=1

µm(x)

,

with µm being the membership function of the m rule.

4.3. Design of the adaptive fuzzy variable structure control (AFVSC)

The chattering in the control, presented in Eq. (15), is caused by the con-
stant value of G and the discontinuous function sign(σ∗). Let the control gain

Gsign(σ∗) be replaced by a fuzzy gain F̂ (σ∗). The new control input (AFVSC)
is then written as:

v = −B−1
0σ
A0σ − F̂ (σ∗)−Kσ∗,

= −B−1
0σ
A0σ − β̂

T

◦ψ(σ∗)−Kσ∗,
(19)

where ◦ is a vector element-wise multiplication symbol, the fuzzy control is
defined as

F̂ (σ∗) = β̂
T

◦ ψ(σ∗) = [f̂1(σ
∗

1) . . . f̂n(σ
∗

n) . . . f̂N(σ
∗

N)]
T,

and each f̂n(σ
∗

n) is estimated by an individual fuzzy system that can be written
as:

f̂n(σ
∗

n) =

M
∑

m=1

β̂
m

n µ
m
n (σ∗

n)

M
∑

m=1

µm
n (σ∗

n)

= β̂
T

nψn(σ
∗

n), (20)

where β̂n = [β̂1
n . . . β̂m

n . . . β̂M

n ]
T is the vector of consequences, and the vector

of weights is

ψn(σ
∗

n) = [ψ1
n(σ

∗

n) . . . ψ
m
n (σ∗

n) . . . ψ
M

n (σ
∗

n)]
T.



248 M. Begnini, D. W. Bertol, N. Almeida Martins

For the purpose of an online update of the parameters of f̂n(σ
∗

n), the conse-

quences β̂n are chosen as the parameters to be updated.
To decide upon the rules for the fuzzy system, consider V as in Eq. (14).

V is regarded as an indicator of the energy of σ. The stability of the system
is guaranteed by choosing a control law such that V̇ ≤ 0. In the AFVSC, a
fuzzy logic function F̂ (σ∗) is applied to compensate for the uncertainties and
disturbances in the system, and to reduce the energy of σ∗. In this case, V̇ can
be rewritten as:

V̇ =

N
∑

n=1

[

σ∗

n

(

d̃0n − f̂n(σ
∗

n)
)]

− σ∗
T

Kσ∗. (21)

Because of the function sign(σ∗) the control gain has the same sign as σ∗.

Therefore, f̂n(σ
∗

n) should have the same sign as σ∗

n.

Now, consider σ∗

n[d̃0n − f̂n(σ
∗

n)]. When |σ∗

n| is large, it is expected that

|f̂n(σ
∗

n)| is larger so that V̇ has a large negative value. This causes the energy

of σ∗ to decay fast. When |σ∗

n| is small, σ∗

n[d̃0n − f̂n(σ
∗

n)] is also small and has

little effect on the value of V̇ . Then, |f̂n(σ
∗

n)| can be small to avoid chattering.

When |σ∗

n| is zero, |f̂n(σ
∗

n)| is also zero. With this analysis, the rule base is
chosen as:

• IF σ∗

n is NB, THEN f̂n(σ
∗

n) is β̂
1
nψ

1
n(σ

∗

n)

• IF σ∗

n is NM, THEN f̂n(σ
∗

n) is β̂
2
nψ

2
n(σ

∗

n)

• IF σ∗

n is NS, THEN f̂n(σ
∗

n) is β̂
3
nψ

3
n(σ

∗

n)

• IF σ∗

n is ZE, THEN f̂n(σ
∗

n) is β̂
4
nψ

4
n(σ

∗

n)

• IF σ∗

n is PS, THEN f̂n(σ
∗

n) is β̂
5
nψ

5
n(σ

∗

n)

• IF σ∗

n is PM, THEN f̂n(σ
∗

n) is β̂
6
nψ

6
n(σ

∗

n)

• IF σ∗

n is PB, THEN f̂n(σ
∗

n) is β̂
7
nψ

7
n(σ

∗

n)

where N stands for negative, P for positive, ZE for zero, S for small, M for
medium, and B for big.

The membership functions are chosen to be triangular-shaped functions, as
specified in Eq. (22):

µm
n (σ∗

n) =



































0, σ∗

n ≤ α1
n

σ∗

n − α1

α2
n − α1

n

, α1
n ≤ σ∗

n ≤ α2
n

α3
n − σ∗

n

α3
n − α2

n

, α2
n ≤ σ∗

n ≤ α3
n

0, α3
n ≤ σ∗

n

(22)

where α1 and α3 determine the ”feet” of the triangle and the parameter α2

locates the peak. The parameters of the input membership functions are pre-
defined and given in Table 1 (see Fig. 3), while those of the output, β̂m

n , are
updated online, determining the adaptive characteristic of the controller.
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Table 1. Parameters of the membership functions of σ∗

σ∗

1 σ∗

2

α1
1 α2

1 α3
1 α1

2 α2
2 α3

2

NB −∞ -0.3 -0.2 −∞ -0.5 -0.33
NM -0.3 -0.2 -0.1 -0.5 -0.33 -0.16
NS -0.2 -0.1 0 -0.33 -0.16 0
ZE -0.1 0 0.1 -0.16 0 0.16
PS 0 0.1 0.2 0 0.16 0.33
PM 0.1 0.2 0.3 0.16 0.33 0.5
PB 0.2 0.3 ∞ 0.33 0.5 ∞

-0.5 -0.4 -0.3 -0.2 -0.1

0

0.2

0.4

0.6

0.8

1

σ*
n

d
eg

re
e 

o
f 

m
em

b
er

sh
ip

0 0.1 0.2 0.3 0.4 0.5

NB NM NS ZE PS PM PB

Figure 3. Triangular-shaped input membership functions

It must be emphasized that the processing time required when using fuzzy
logic control depends upon the number of rules that must be evaluated. There-
fore, large systems with many rules would require very powerful and fast proces-
sors to compute in real time. The smaller the rule base, the less computational
power needed (Mishra, 2014). Thus, unlike a pure fuzzy logic controller, which
is encountered in the rule expanding problem, the AFVSC uses only 7 if-then
rules in the rule base with respect to sliding surfaces, and it also uses trian-
gular membership functions, making their structure even simpler. Therefore,
it is more suitable for implementation in the real DWMRs compared to the
proposals forwarded in Xie et al. (2012), Keighobadi and Mohamadi (2011a,b),
Keighobadi and Menhaj (2012), or Mishra (2014). In addition, the reasons to
choose this fuzzy inference system against the background of other methods are:
simplicity of the model and efficient control of the system, due to being best
suited for control applications. It is used often due to the intuitive nature of
the system and ease in designing. Further details, concerning this choice can be
found in Chaudhari and Patil (2014a,b).
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4.4. Stability analysis of the AFVSC

Since β̂n is chosen as the parameter of f̂n(σ
∗

n) to be online updated, we define
βn so that fn(σ

∗

n) = β
T

nψn(σn) is the optimal compensation for d̃0n . According
to Wang’s theorem (Wang, 1999; Guo and Woo, 2003; Li et al., 2004) there
exists γn > 0, satisfying

|d̃0n − βT

nψn(σ
∗

n)| ≤ γn, d̃0 = ∆f , (23)

where γn can be as small as possible, i.e., 0 < γn < 1. Now, define the estimation
error as

β̃n = β̂n − βn, (24)

so that Eq. (20) can be rewritten as:

f̂n(σ
∗

n) = β̃
T

nψn(σ
∗

n) + β
T

nψn(σ
∗

n). (25)

From Eq. (24) and Eq. (25) the following adaptive law can be derived:

˙̃
βn =

˙̂
βn = σ∗

nψn(σ
∗

n). (26)

From the adaptation law, given in Eq. (26), the stability analysis of the
AFVSC could be done starting from the following Lyapunov function candidate:

V =
1

2

[

σTσ +
N
∑

n=1

(

β̃
T

nβ̃n

)

]

(27)

where β̃
T

nβ̃n > 0, so that V is positive definite. By differentiating Eq. (27), one
obtains:

V̇ = σTσ̇ +

N
∑

n=1

β̃
T

n
˙̂
βn

= σTA0σ + σTB0σv + σTdσ +

N
∑

n=1

β̃
T

n
˙̂
βn

= σTB0σB
−1
0σ
A0σ + σTB0σv + σTB0σ d̃0 +

N
∑

n=1

β̃
T

n

˙̂
βn

=
(

BT

0σ
σ
)

T

B−1
0σ
A0σ +

(

BT

0σ
σ
)

T

(

v + d̃0

)

+
N
∑

n=1

β̃
T

n
˙̂
βn

= σ∗
T

B−1
0σ
A0σ + σ∗

T
(

v + d̃0

)

+

N
∑

n=1

β̃
T

n
˙̂
βn.
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Using the control law from Eq. (19) (AFVSC), and replacing Eq. (23) and
Eq. (25), we obtain for V̇ :

V̇ = σ∗
T

B−1
0σ
A0σ − σ∗

T

B−1
0σ
A0σ − σ∗

T

F̂ (σ∗)− σ∗
T

Kσ∗ + σ∗d̃0 +
N
∑

n=1

β̃
T

n
˙̂
βn

= −σ∗
T
[

β̃
T

◦ψ(σ∗)
]

− σ∗
T

[βT ◦ψ(σ∗)]− σ∗
T

Kσ∗ + σ∗
T

∆f +

N
∑

n=1

β̃
T

n
˙̂
βn

=

N
∑

n=1

σ∗

n

[

∆fn −
(

β̃
T

nψn(σ
∗

n) + β
T

nψn(σ
∗

n)
)]

− σ∗
T

Kσ∗ +

N
∑

n=1

β̃
T

n
˙̂
βn

= −σ∗
T

Kσ∗ +

N
∑

n=1

σ∗

n [∆fn − βT

nψn(σ
∗

n)]−

N
∑

n=1

σ∗

nβ̃
T

nψn(σ
∗

n) +

N
∑

n=1

β̃
T

n

˙̂
βn

= −σ∗
T

Kσ∗ +
N
∑

n=1

σ∗

n [∆fn − βT

nψn(σ
∗

n)] +
N
∑

n=1

β̃
T

n

(

−σ∗

nψn(σ
∗

n) +
˙̂
βn

)

,

while by replacing the adaptive law, Eq. (26), V̇ yields:

V̇ = −σ∗
T

Kσ∗ +

N
∑

n=1

σ∗

n [∆fn − βT

nψn(σ
∗

n)] +

N
∑

n=1

β̃
T

n (−σ
∗

nψn(σ
∗

n) + σ∗

nψn(σ
∗

n))

= −σ∗
T

Kσ∗ +

N
∑

n=1

σ∗

n [∆fn − βT

nψn(σ
∗

n)] .

(28)

From Eq. (23), assume that:

|∆fn − βT

nψn(σ
∗

n)| ≤ γn ≤ φn|σ
∗

n|,

where 0 < φn < 1. Then, the second term at the right hand side of Eq. (28)
satisfies

σ∗

n|∆fn − βT

nψn(σ
∗

n)| ≤ φn|σ
∗

n|
2 = φnσ

∗
2

n ,

and therefore

V̇ ≤ −σ∗
T

Kσ∗ +

N
∑

n=1

φnσ
∗
2

n . (29)

The right hand side of Eq. (29) can now be written as

V̇ ≤

N
∑

n=1

(−κnσ
∗
2

n + φnσ
∗
2

n ) = −σ∗
T

(K−Φ)σ∗ ≤ 0.
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where K = diag[κ1 . . . κn . . . κN] and Φ = diag[φ1 . . . φn . . . φN]. Simply
choose κn > φn, so that (K − Φ) is a positive definite matrix, and therefore
V̇ ≤ 0. Since (K −Φ) is a positive definite matrix, V̇ = 0 only when σ∗ = 0.
Thus, the AFVSC is asymptotically stable.

5. Simulations results and RT implementations

5.1. The setup

In order to verify the performance of the controllers described in Sections 3 and
4, the VSCBL and the AFVSC are implemented in Matlab/Simulink software,
version R2014a, and evaluated for the trajectory tracking control problem by
means of simulation using MobileSim simulator, and experiments in the Power-
Bot DWMR itself. The Matlab/Simulink executions were performed with the
Euler solver for equation integration with sampling time of 5 ms. Other inte-
gration methods were tested, but only with at most marginal improvement.

An eight-shaped trajectory (Oriolo, De Luca and Venditelli, 2002) was used
as reference. The mathematical formulation of the trajectory is given by Eqs. (30):

vr =

[

νr
ωr

]

=

[
√

ẋ2r + ẏ2r
θ̇r

]

,

q̇r =





ẋr
ẏr
θ̇r



 =

















3π

50
sin

( π

25
t+

π

2

)

−
3π

25
cos

( π

25
t+

π

2

)

ÿrẋr − ẍrẏr
ẋ2r + ẏ2r

















.

(30)

In the trajectory, the DWMR starts with an initial error of qe = [0.15 0.2 π
6
]T.

The gains of the sliding surfaces are Λ1 = 1.5, Λ2 = 6.0 and Λ3 = 1.0, and the
gains of the kinematic and dynamic controllers are presented in Table 2.

Table 2. Gains of the kinematic and dynamic controllers

Gain
Controller

VSCBL AFVSC
g1 0.1 -
g2 0.3 -
κ1 0.1 0.1
κ2 0.1 0.1
ρ 0.1 -
kpν

40.0 40.0
kpω

40.0 40.0
kdν

20.0 20.0
kdω

20.0 20.0
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Unfortunately, the PowerBot DWMR is closed and there is an internal PID
controller that tracks these inputs with a sampling time of 5 ms. Thus, only
the PD controller can be considered as dynamic controller for simulations in the
MobileSim simulator, and experiments in the PowerBot DWMR itself. Actu-
ally, this unpleasant situation is commonly found in the literature of robotics,
like in Spong, Hutchinson and Vidjasagar (2006) or in Elyoussef et al. (2014).
Although it is not possible to implement a direct torque controller, sufficient
analysis results are obtained by studying two different control structures, com-
prising the PD controller integrated with the following kinematic controllers:
VSCBL and AFVSC.

5.2. Simulation results in the realistic scenario

The first simulation scenario, called the realistic scenario, instead of using the
kinematics, Eq. (1), and dynamics, Eq. (2), developed in Section 2 to represent
the behavior of the DWMR, used the MobileSim simulator.

MobileSim is a software designed to simulate the behavior of MobileRobots
platforms produced by Mobile Robots Inc. for debugging and experimentation.
To establish communication between the controller in Matlab/Simulink, and
the MobileSim simulator, ARIA is used. ARIA (Advanced Robot Interface for
Applications) is a library for all MobileRobots platforms, capable of dynamically
controlling the DWMRs velocity, heading, relative heading, and other motion
parameters. ARIA also receives position estimation, sonar readings, and all
other current operating data sent by the robotic platform.

The block diagram, presented in Fig. 4, shows how ARIA and MobileSim
simulator were used to perform the simulations in the realistic scenario. The
blocks of Fig. 4 have the following meaning: the Reference Trajectory block
generates the reference posture qr and reference velocity vr. With the reference
posture, and the real posture q of the DWMR, the Sum block calculates the
posture error qe, as in Eq. (7). The Kinematic Controller block, with the posture
error and the reference velocity, calculates the control velocities vc using the
control law of Eq. (17) with respect to the VSCBL, as well as Eq. (19) and
Eq. (26) with respect to the AFVSC. The velocity, calculated by the controller,
passes to the ARIA Function block. This block establishes the communication
between Matlab/Simulink and the MobileSim simulator. The MobileSim block
simulates the DWMR behavior, and gives the real posture q of the DWMR.
Again, an ARIA Function block is needed to receive the posture information
from the MobileSim simulator, which is used to calculate the posture error.

VSCBL and the AFVSC were simulated in the realistic scenario for the eight-
shaped trajectory. This trajectory was selected because it features deceleration
and acceleration, together with the assumed initial error. The simulation results
of the trajectory tracking include: posture tracking and orientation errors, con-
trol velocities, reference velocities and velocities of the DWMR, sliding surfaces
and new sliding surfaces, auxiliary velocity tracking errors and compensations
of the VSCBL and AFVSC.
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reference
trajectory
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Eq. (27) Eq. (14) or (17)Eq. (6)
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ARIA function

q
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kinematic
controller

vc

Figure 4. Block diagram of the simulations in the realistic scenario

The results, presented in Table 3, containing RMS of the errors, show that
the controllers can track the trajectories with minimum error even with un-
certainties and disturbances (e.g., external disturbances) provided by the Mo-
bileSim simulator.

Table 3. RMS of the errors - simulation results for the realistic scenario using
MobileSim simulator

Controller RMS error Eight-shaped trajectory

VSCBL
xye 0.1279
θe 0.0982

AFVSC
xye 0.1252
θe 0.0940

The reference trajectory, with respect to the trajectory realized by the
DWMR using the controllers, is illustrated in Fig. 5. From this figure, it can be
established that both controllers lead the DMWR to reach the trajectory at a
similar point and that it remains near the trajectory during the remaining time,
i.e., the DWMR tracks the reference trajectory.

Figure 6 shows the posture tracking and orientation errors. The tracking
error of the VSCBL varies slightly more than that of the AFVSC. But for both,
the errors tend to zero with a slight variation of the orientation error when the
DWMR makes a curve. (Note, please, that all figures, starting with Fig. 6,
have been placed at the end of the paper.)

In Fig. 7, the control velocities are presented. The VSCBL and the AFVSC
show smooth control signals. This behavior can also be observed in Fig. 8, in
which the velocities of the DWMR track the reference.

For the use of the VSCBL and AFVSC, the sliding surfaces and the new
sliding surfaces tend to converge to zero, as can be seen in Figs. 9 and 10,
without chattering phenomenon.

The auxiliary velocity tracking errors ve, seen as disturbances for the kine-
matic model, and given by the difference between the control velocities vc and
the real velocities of the DWMR v, appear because of uncertainties and dis-
turbances (e.g., parametric variations, unmodeled dynamics and physical lim-
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Figure 5. Trajectory tracking in the realistic scenario

itations). Figures 11 and 12 show the auxiliary velocity tracking errors and
compensations for each controller.

For this scenario, Figs. 7 and 8 show how the DWMR cannot switch instan-
taneously the control velocities and the velocities of the DWMR, generating
large auxiliary velocity tracking errors. As a consequence, regarding both the
VSCBL and the AFVSC, Figs. 11 and 12 present auxiliary velocity tracking
errors and compensations, whose magnitudes show opposite behaviors in abso-
lute terms, having the aim of cancelling the auxiliary velocity tracking errors.
The compensations tend to converge to zero.

The AFVSC presents slightly better tracking results than the VSCBL, and
the clear advantage of the AFVSC is also that it does not require the a priori
knowledge of the boundaries of the uncertainties and disturbances (e.g., exter-
nal disturbances). On the other hand, the VSCBL requires such knowledge in
order to define the gain values G to achieve a satisfactory tracking performance,
without unnecessary control efforts regarding the actuators of the DWMR.

5.3. Implementations in real time

After the simulations in the realistic scenario, the proposed controller was tested
using the Powerbot DWMR. Powerbot DWMR is a high-payload differential
drive robotic platform for research and rapid prototyping. It is an ideal plat-
form for laboratory and research tasks, involving delivery, navigation and ma-
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nipulation. It is an automated guided vehicle, specially designed and equipped
for autonomous, intelligent delivery and handling of large payloads. Powerbot
DWMR is a member of MobileRobots Pioneer family of mobile robots, which are
research and development platforms that share a common architecture, founda-
tion software and employ intelligence based client-server robotics control (see
Filipescu et al., 2011). Table 4 shows the parameters of the Powerbot DWMR.

Table 4. Parameter specifications of the Powerbot DWMR

Parameter Value
Mass of the DWMR body 120 kg
Maximum payload 100 kg
Radius of the drive wheel 0.135 m
DWMR length 0.9 m
DWMR width 0.66 m
DWMR height 0.48 m

Moment of inertia 15.0656 kg.m2

Maximum linear velocity 2.1 m/s
Maximum angular velocity 5π

3
rad/s ≈ 5.24 rad/s

Maximum torque in DC motor 20.45 Nm

Figure 13 shows the block diagram of the experiment execution as the simu-
lator MobileSim is replaced by the Powerbot DWMR. ARIA is still used for the
communication between the Matlab/Simulink and the Powerbot DWMR. This
communication is carried out by a serial port.

Finally, the VSCBL and the AFVSC were tested in the Powerbot DWMR
for the eight-shaped trajectory. Table 5 presents the RMS of the errors for this
experiment.

Table 5. RMS of the errors - experimental results

Controllers RMS errors Eight-shaped trajectory

VSCBL
xye 0.0894
θe 0.1180

AFVSC
xye 0.0892
θe 0.1176

The experimental results in real time, presented in Table 5, confirm what
was observed in the simulation results, namely that both VSCBL and AFVSC
can track the trajectory with minimum errors. Figures 14 to 21 show graphically
the experimental results of the VSCBL and AFVSC on the Powerbot DWMR.

For the controllers, Fig. 14 shows how the DWMR reaches the reference
trajectory, and remains on it for the subsequent time.

In Fig. 15, by using VSCBL and AFVSC, it is observed how the posture
tracking and orientation errors tend to zero and stay there for the remainder of
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the experiment. The variation of the orientation error has a behavior similar to
that obtained in the MobileSim simulator (realistic scenario).

The control velocities, generated by the VSCBL and AFVSC have smooth
control signals, as illustrated in Fig. 16. With respect to the velocities of
DWMR, it can be observed in Fig. 17 that these velocities track the reference
velocities.

From the observation of Figs. 18 and 19, it can be seen that the sliding
surfaces and the new sliding surfaces tend to converge to zero and are free from
chattering, for both the VSCBL and AFVSC.

Figures 20 and 21 show that the controllers are robust with respect to
matched uncertainties and disturbances, with behaviors of auxiliary velocity
tracking errors and compensations being similar to behaviors obtained in the
MobileSim simulator (realistic scenario).

In short, the results in the experimental scenario are are in agreement with
the results obtained in the simulated realistic scenario.

Based on the experimental results, it was demonstrated that Remark 2.1,
provided in Wang and Gao (1995) is true, i.e., that the realization of the invari-
ance requires that switching between the reaching phase and the sliding phase
be ideal, which is impractical. Therefore, the invariance is ideal, but this has
little practical meaning.

6. Conclusions

In this paper, the integration of a kinematic controller (AFVSC) and dynamic
controller (PD control) as a solution to the trajectory tracking problem applied
to DWMRs, was proposed. For purposes of performance comparison with the
AFVSC, the kinematic controller, a VSCBL, was also integrated with the PD
controller, demonstrating that the incidence of uncertainties and disturbances
produces auxiliary velocity tracking errors. The results obtained in simulated
realistic and experimental scenarios have shown that: the AFVSC has better
performance than the VSCBL, indicating that the invariance has little practical
meaning, the robustness is ensured and a smooth control signal is achieved; the
advantages of the AFVSC in comparison to the VSCBL were verified, making it
more suitable for implementation in real wheeled mobile robots when compared
to the related proposals from the literature; the stability analysis of the closed-
loop control system with the adaptation law of the fuzzy system was successfully
performed using Lyapunov theory.

In future works, it is envisaged to carry out the comparison of AFVSC
with other existing chattering reduction approaches (including other fuzzy con-
trollers) and to use the AFVSC in the DWMR group formation control problem.
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Figure 6. Posture tracking and orientation errors in the realistic scenario
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Figure 7. Control velocities in the realistic scenario
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Figure 8. Velocities of the DWMR and reference velocities in the realistic scenario
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Figure 9. Sliding surface σ1 and new sliding surface σ∗

1 in the realistic scenario
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Figure 10. Sliding surface σ2 and new sliding surface σ∗

2 in the realistic scenario
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Figure 11. Auxiliary velocity tracking errors and compensations using VSCBL in the realistic scenario
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Figure 12. Auxiliary velocity tracking errors and compensations using AFVSC in the realistic scenario
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Figure 13. Block diagram of implementation in real time of experimental sce-
nario

Figure 14. Trajectory tracking in the experimental scenario
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Figure 15. Posture tracking and orientation errors in the experimental scenario
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Figure 16. Control velocities in the experimental scenario
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Figure 17. Velocities of the DWMR and reference velocities in the experimental scenario
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Figure 18. Sliding surface σ1 and new sliding surface σ∗

1 in the experimental scenario
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Figure 19. Sliding surface σ2 and new sliding surface σ∗

2 in the experimental scenario
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Figure 20. Auxiliary velocity tracking errors and compensations using VSCBL in the experimental scenario
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Figure 21. Auxiliary velocity tracking errors and compensations using AFVSC in the experimental scenario


