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Abstract: In this paper, we consider the problem of locating
coated inclusions in a 2D dimensional conductor material in or-
der to obtain a suitable thermal environment. The mathematical
model is described by elliptic partial differential equation with lin-
ear boundary condition, including heat transfer coefficient. A shape
optimization problem is formulated by introducing a cost functional
to solve the problem under consideration. The shape sensitivity
analysis is rigorously performed for the problem by means of a La-
grangian formulation. The optimization problem is solved by means
of gradient-based strategy and numerical experiments are carried
out to demonstrate the feasibility of the approach.
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1. Introduction

Advanced shape optimization techniques have become a very powerful tool in
the design and construction of industrial structures. The shape optimization
problem for such structure is formulated as the minimization of a given shape
functional, where the variable is the geometry of the subsets of Rn. In general,
the cost functional takes the form of an integral over the domain or its bound-
ary, where the integrand depend smoothly on the solution of a boundary value
problem. In such problems the sensitivity analysis plays a central role and was
intensively studied by many authors (see, for instance, Céa, 1986; Delfour and
Zolésio, 1988; Pantz, 2005; Sturm, 2013; Meftahi and Zolésio, 2015; Gangl et
al., 2015; Meftahi, 2017 and the references therein).

In this work, we consider the problem of locating coated inclusions inside a
thermal conductor domain in order to improve the thermal environment. This
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problem can be encountered in the design of electrical multicables, where the
optimization of heat transfer to avoid overheating and irreparable damages of
the machines is of great interest (see Harbrecht and Loos, 2016). The latter
has been considered in Belhachmi et al. (2018) from the point of view of the
topological sensitivity. The derivation of the so-called topological derivative is
rigorously performed by means of an adjoint method.

In this paper, we focus on the shape optimization by means of shape deriva-
tives, which, contrary to the topological derivatives, proceeds by smooth defor-
mations of the boundary of the design domain. There exists a certain number of
methods available to prove the differentiability of shape functions depending on
the solution of a partial differential equation (PDE). The established methods
comprise the material/shape derivative method (Soko lowski and Zolésio, 1992;
Afraites et al., 2007; Dambrine et al., 2015; Dambrine and Laurain, 2016), the
min approach for energy cost functions (Delfour, 2012) and the rearrangement
methods (Ito et al., 2008; Kasumba and Kunisch, 2011; Kasumba and Kunisch,
2014). Lagrangian methods are also commonly used in shape optimization and
have the advantage of providing the shape derivative without the need to com-
pute the material derivative of the partial differential equations.

In Harbrecht and Loos (2016) the shape derivative has been computed for
the similar problem by the finite element method and finite differences have
been used to verify the implementation.

In the present paper we compute rigorously the shape derivative following a
Lagrangian approach in the spirit of Delfour and Zolésio (1988). The method
is based on the minimax approach from Delfour and Zolésio (1988), which is
applicable to a large class for shape functionals. This allows us to obtain a
smooth deformation field used as a descend direction in a gradient method. For
the computation times, the adjoint method works much faster than the finite
difference method.

Our approach works very well in the case of small numbers of inclusions. For
the case of large number of inclusions, the gradient based approach algorithm
runs into several local minima. We intend in the future work to tackle this
situation using the topological derivation strategy (Giusti et al., 2017; Amigo
et al., 2016; Novotny and Soko lowski, 2013; Giusti et al., 2010), coupled with a
gradient based shape optimization approach.

The content of the paper is summarized as follows: In Section 2, we for-
mulate the direct and the optimization problem. In Section 3, we give a brief
review of the velocity method, which allows to build a family of parameterized
domains and to define the appropriate tools for the differentiability of the cost
functional, evaluated at these domains. In Section 4, we introduce the saddle
point formulation of the shape optimization problem, and the Lagrange func-
tions, associated with the cost functional. Then, we can perform the shape
sensitivity analysis for the Lagrangian functional. In Section 5, the min-max
formulation, coupled with the function space parameterization technique is de-
scribed. In Section 6, the numerical algorithm is described and the results are
given.
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2. Problem formulation

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary ∂Ω and ω ∈ Oad

with
Oad := {ω of classe C2 : ω ⊂ Ω, dist(∂ω; ∂Ω) > η},

for some η > 0. Let Ω0,Ω1,Ω2 be subsets of Ω such that Ω2 is surrounded by Ω1

and the latter is surrounded by Ω0(Ω0 = Ω \Ω1 ∪ Ω2). We denote by Γ2 = ∂Ω2

and Γ1 the external boundary of Ω1; see Fig. 1 for the illustration of this
geometry. In the sequel we will denote the coated inclusion ω by: ω = Ω2 ∪ Ω1

(ω is composed of two materials with different conductivities). We note that in
the practical/physical situation, e.g. the design of electrical multi-cables, the
inclusion is made of at least two materials (conducting and insulating and even
air bubbles) different from the background material. This makes our problem
non-standard.

Assume that thermal conductivity in Ω is

σ = σ0χΩ0
+ σ1χΩ1

+ σ2χΩ2
,

where σ0, σ1, σ2 > 0, are the positive constants and χ denotes the indicator
function. For a given piecewise C1 source term f = f0χΩ0

+ f1χΩ1
+ f2χΩ2

, the

Figure 1. The domain Ω = Ω2 ∪ Γ2 ∪ Ω1 ∪ Γ1 ∪ Ω0

temperature u satisfies the following problem:




− div(σ∇u) = f in Ω

JuKΓi
= 0 on Γi, i = 1, 2,

Jσ∂nuKΓi
= 0 on Γi, i = 1, 2,

σ0∂nu+ α(u − ua) = 0 on ∂Ω,

(2.1)

where n is the unit normal vector to the interface Γi, i = 1, 2 or ∂Ω pointing
outward of Ωi or Ω, α is the heat transfer coefficient (assumed to be positive
constant), and ua is the ambient temperature. Defining by φi the restriction of
some function φ to Ωi, we denote by JφKΓi

the jump of φ across Γi, i.e.,

JφKΓi
= φi−1|Γi

− φi|Γi
.
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The weak form of (2.1) reads

find u ∈ H1(Ω) such that b(u, v) = l(v), (2.2)

where

b(u, v) =

∫

Ω

σ∇u ·∇v dx+

∫

∂Ω

αuv dx and l(v) =

∫

Ω

fv dx+

∫

∂Ω

αuav dx,

for all v ∈ H1(Ω). The existence and uniqueness of the weak solution follows
from the Riesz representation theorem and the Poincaré-Wirtinger inequality
(with the usual modification when α = 0, where H1(Ω) has to be replaced with
H1(Ω) \R). Then, the optimization problem under consideration is:

Find the location of the inclusion ω ⊂ Ω to get an efficient cooling temperature.

(2.3)

To solve numerically problem (2.3), we consider the objective function

Jp(ω, u) =
1

p

∫

Ω

|u|p dx, p ≥ 2, u solution of (2.1).

Then, the optimization problem reads:





minimize Jp(ω, u) :=

1

p

∫

Ω

|u|p dx

subject to ω ∈ Oad and u the solution of (2.1),

(2.4)

Remark 1 The adequate shape functional to minimize the maximum tempera-
ture is

J∞(ω, uω) = ‖u‖L∞(Ω).

The functional J∞ is not differentiable but admits a subgradient (see Habbal,
1998). In order to use a gradient method, we replace J∞ by the functional Jp,
for p ≥ 2.

The numerical resolution of (2.4) requires the sensitivity analysis of Jp with
respect to ω. The differentiation with respect to the shape ω is the main purpose
of the following sections.

3. Preliminaries

In this section we recall some basic facts about the velocity method from shape
optimization, used to calculate the shape derivatives of the functional Jp; see
Delfour and Zolésio (2011); Soko lowski and Zolésio (1992). In the velocity (or
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speed) method a domain Ω is deformed by the action of a velocity field V . The
evolution of the domain is described by the following dynamical system:






d

dt
x(t) = V (x(t)), t ∈ [0, ε)

x(0) = X
(3.1)

for some real number ε > 0. Assume V ∈ D1(Ω;R2), where D1(Ω;R2) denotes
the space of continuously differentiable functions with compact support in Ω,
then the ordinary differential equation (3.1) has a unique solution. This allows
us to define the diffeomorphism

Tt : R2 → R
2 : X 7→ Tt(X) := x(t). (3.2)

For t ∈ [0, ε), Tt is invertible. Furthermore, the Jacobian ξ(t) is strictly positive

∀ t ∈ [0, ε), ξ(t) = |detDTt(X)| > 0, (3.3)

where DTt(X) is the Jacobian matrix of the transformation Tt, associated with
the velocity field V . In the sequel, we use the following notation : M−1 for the
inverse of M and M−∗ for the transpose of its inverse. We also denote by

w(t) = ξ(t)|(DTt)
−∗n| (3.4)

the tangential Jacobian of Tt on ∂Ω.

Remark 2 As the sets ω are made of two pieces (Ω1 and Ω2), we will restrict
the fields V to those preserving such structure. This is easily done, for example,
if we concatenate local smooth fields Vi = V|Ωi

, i = 1, 2.

Proposition 1 (Delfour and Zolésio, 2011; Soko lowski and Zolésio, 1992) For
a function ϕ ∈ W 1,1

loc (R2) and V ∈ D1(R2), we have the following formulae

∇(ϕ ◦ Tt) = DT ∗
t (∇ϕ) ◦ Tt, (3.5)

d

dt
(ϕ ◦ Tt) = (∇ϕ · V ) ◦ Tt, (3.6)

dξ(t)

dt
= [divV ] ◦ Ttξ(t), (3.7)

w′(0) = div(V ) −DV n · n. (3.8)

Let J be a real valued function J : Ω −→ R. We say that J has a Eulerian
semiderivative at Ω in the direction V if the following limit exists and is finite:

dJ(Ω;V ) = lim
tց0

J(Tt(Ω)) − J(Ω)

t
.

If the map V −→ dJ(Ω;V )) is linear and continuous, we say that J is shape
differentiable at Ω.
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Definition 1 (Delfour and Zolésio, 2011; Soko lowski and Zolésio, 1992) Let
Ω be an open domain of class C2 with compact boundary ∂Ω. We denote by
U(∂Ω) a neighborhood of ∂Ω.

(i) Let f ∈ C1(∂Ω) and f̃ be an extension of f in a neighborhood of ∂Ω. The
tangential gradient of f at a point of ∂Ω is defined as

∇τf = ∇f̃ − ∂nf̃n,

where n is the outward unit normal vector to ∂Ω.

(ii) For a vector function v ∈ C1(∂Ω)d, d ≥ 1 and its extension ṽ, the tangen-
tial divergence is defined as

divτ v = div(ṽ) −Dṽn · n

where Dṽ denotes the Jacobian matrix of ṽ.
Note that the tangential divergence and gradient are independent of the ex-

tension.

4. Min-sup formulation

In what follows we focus on the computation of the shape derivative of Jp. We
introduce the Lagrangian functional

G(ω, ϕ, ψ) = Jp(ω, ϕ) + b(ω, ϕ, ψ) − l(ψ), ∀ϕ, ψ ∈ H1(Ω).

Then, it is easy to check that

Jp(ω, u(ω)) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ω, ϕ, ψ),

since

sup
ψ∈H1(Ω)

G(ω, ϕ, ψ) =

{
J0(ω, u(ω)) if ϕ = u(ω),

+∞ otherwise.

It is easily shown that the functional G is convex, continuously differentiable
with respect to ϕ, and concave continuously differentiable with respect to ψ.
Therefore, according to Ekeland and Temam (1974), the functional G has a
saddle point (u, v) if and only if (u, v) solves the following system:

∂ψG(ω, u, v; ψ̂) = ∂ψb(ω, u, v; ψ̂) − ∂ψl(v; ψ̂) = 0,

∂ϕG(ω, u, v; ϕ̂) = ∂ϕJp(ω, u; ϕ̂) + ∂ϕb(ω, u, v; ϕ̂) = 0,

for all ψ̂ ∈ H1(Ω) and ϕ̂ ∈ H1(Ω). This yields that G has a saddle point (u, v),
where the state u is the unique solution of (2.1) and the adjoint state v = v(ω)
is the solution of the following adjoint problem:

{
div(σ∇v) = u|u|p−2, p ≥ 2 in Ω

σ0∂nv + αv = 0 on ∂Ω.
(4.1)
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Since u is Hölder continuous (from elliptic regularity results), u|u|p−2 is at
least in L2(Ω). Therefore, the problem (4.1) has unique solution v ∈ H1(Ω).
Summarizing the above, we have obtained

Theorem 1 The functional Jp(ω, u(ω)) is given by

Jp(ω, u(ω)) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ω, ϕ, ψ). (4.2)

The unique saddle point for G is given by (u, v), where u solves the direct problem
(2.1) and v solves the adjoint problem (4.1).

Similarly, the previous analysis holds for the functional depending on the trans-
formed subdomain ωt = Tt(ω). Thus, we have

Jp(ωt, u(ωt) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(ωt, ϕ, ψ). (4.3)

The corresponding saddle point (u(ωt), v(ωt)) is characterized by

∂ψG(ωt, u(ωt), v(ωt); ψ̂) = 0, ∀ ψ̂ ∈ H1(Ω),

∂ϕG(ωt, u(ωt), v(ωt); ϕ̂) = 0, ∀ ϕ̂ ∈ H1(Ω).

5. Shape derivative by the min-sup differentiability

In this section we apply Theorem 5 to compute the shape derivative of Jp. Let
us consider the transformation Tt, defined by (3.2), with V ∈ D1(Ω,R2). In
this case, Tt(Ω) = Ω, but in general Tt(ω) 6= ω. Our aim is to compute the
derivative of Jp(ωt, u(ωt)) with respect to the parameter t ≥ 0.

In order to differentiate G(ωt, ϕ, ψ) with respect to t, the integrals appearing
in G(ωt, ϕ, ψ) need to be transported back on the reference interface ω using the
transformation Tt. However, composing by Tt inside the integrals creates terms
ϕ ◦ Tt and ψ ◦ Tt, which might be non-differentiable. To avoid this problem,
we need to parameterize the space H1(Ω) by composing the elements of H1(Ω)
with T−1

t . Following this argument, we rewrite (4.3) as

Jp(ωt, u(ωt)) = min
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G̃(t, ϕ, ψ), (5.1)

where

G̃(t, ϕ, ψ) := G(ωt, ϕ ◦ T−1
t , ψ ◦ T−1

t ). (5.2)

Note that since Tt(Ω) = Ω, we have H1(Tt(Ω)) = H1(Ω), and the sets, over
which the minimum and supremum are taken in (5.1) stay unchanged. Further-
more, (ut, vt) = (u(ωt) ◦ Tt, v(ωt) ◦ Tt) is the saddle point of G̃.
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We can rewrite expression (5.2) on the fixed domain Ω by using the trans-
formation Tt. This yields

G̃(t, ϕ, ψ) =
1

p

∫

Ω

|ϕ|pξ(t) dx+

∫

Ω

σA(t)∇ϕ · ∇ψ dx +

∫

∂Ω

w(t)αϕψ ds

−

∫

Ω

f ◦ Ttψξ(t) dx −

∫

∂Ω

w(t)αua ◦ Ttψ ds,

(5.3)

where

A(t) := (DTt)
−∗(DTt)

−1ξ(t),

and ξ(t), ω(t) are defined in (3.3),(3.4), respectively. The saddle point (ut, vt)
is characterized by

∫

Ω

σA(t)∇ut·∇ψ dx+

∫

∂Ω

w(t)αutψ ds =

∫

Ω

ξ(t)f◦Ttψ ds+

∫

∂Ω

w(t)αua◦Ttψ ds,

(5.4)

∫

Ω

σA(t)∇vt · ∇ϕdx+

∫

∂Ω

w(t)αvtψ ds = −

∫

Ω

ξ(t)ut|ut|p−2ϕdx, (5.5)

for all ψ ∈ H1(Ω) and ϕ ∈ H1(Ω).
Now we are ready to compute the limit

dJp(ω;V ) := lim
t→0

Jp(ωt) − Jp(ω)

t

where
Jp(ωt) := Jp(ωt, u(ωt)).

Theorem 2 (Volume expression) The functional Jp is shape differentiable
and its shape derivative in the direction V is given by

dJp(ω, V ) =
1

p

∫

Ω

|u|p div(V ) dx+

∫

Ω

σA′(0)∇u · ∇v dx

−
2∑

i=0

∫

Ωi

(fi div(V ) + ∇fi · V ) v dx.

(5.6)

Proof We apply Theorem 5, given in the Appendix, to compute the shape
derivative of Jp; see Section 7. To this end, we should verify the following four
respective assumptions (H1) − (H4).

Assumption (H1): Given (β, γ) satisfying 0 < β < γ, we can find ε > 0 such
that

∀η ∈ R2, β|η|2 ≤ σA(t)η · η ≤ γ|η|2, for t ∈ [0, ε]. (5.7)
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As in Theorem 5, introduce the sets

X(t) :=

{
xt ∈ H1(Ω) : sup

y∈H1(Ω)

G̃(t, xt, y) = inf
x∈H1(Ω)

sup
y∈H1(Ω)

G̃(t, x, y)

}
,

Y (t) :=

{
yt ∈ H1(Ω) : inf

x∈H1(Ω)
G̃(t, x, yt) = sup

y∈H1(Ω)

inf
x∈H1(Ω)

G̃(t, x, y)

}
.

We obtain

∀ t ∈ [0, ε] S(t) = X(t) × Y (t) = {ut, vt} 6= ∅,

and assumption (H1) is satisfied.

Assumption (H2): Upon defining B(t) = DT−∗
t , we may compute

B′(t) = −B(t)DV ∗B(t), ξ′(t) = tr(DV B(t)∗)ξ(t),

A′(t) = −A(t) tr(DV B(t)∗) +A(t)B(t)∗DV +DV ∗B(t)A(t),

w′(t) = ξ′(t)|B(t)n| + ξ(t)|B(t)n|−1B′(t)n.

Consequently, we obtain the derivatives

∂tG̃(t, ϕ, ψ) =
1

p

∫

Ω

|ϕ|pξ′(t) dx +

∫

Ω

σA′(t)∇ϕ · ∇ψ dx+

∫

∂Ω

w′(t)αϕψ ds

−
2∑

i=0

∫

Ωi

(∇fi · V ) ◦ Ttξ(t) dx −

∫

Ω

f ◦ Ttξ
′(t)dx

−

∫

∂Ω

w′(t)αua ◦ Ttψ ds−

∫

∂Ω

w(t)α∇ua · V ψ ds.

(5.8)

At t = 0 we also have

A′(0) = div(V )I2 −DV ∗ −DV, w′(0) = divτ V,

where I2 is the 2 × 2 identity matrix. Since V ∈ D1(Ω), t → DTt is continuous
in [0, ε], and consequently also t 7→ (B(t), A(t), A′(t), w(t), w′(t)). Therefore,
the partial derivatives ∂tG̃(t, ϕ, ψ) exist everywhere in [0, ε] and the condition
(H2) is satisfied.

Assumptions (H3) and (H4): We show first the boundedness of (ut, vt). Let
ψ = ut in the variational equation (5.4). By the choice, of ε satisfying the
condition (5.7), and noting that

Tt(x) = x, ξ(t) = 1 and w(t) = 1 on ∂Ω,
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we get from (5.4)

β‖∇ut‖2L2(Ω)+α‖u
t‖2L2(∂Ω) ≤ ‖ξ(t)f◦Tt‖L2(Ω)‖u

t‖L2(Ω)+‖ua‖L2(∂Ω)‖u
t‖L2(∂Ω).

Using Young’s inequality, we obtain

β‖∇ut‖2L2(Ω) + α‖ut‖2L2(∂Ω) ≤
1

2r
‖ξ(t)f ◦ Tt‖

2
L2(Ω) +

r

2
‖ut‖2L2(Ω) +

1

2s
‖ua‖

2
L2(∂Ω)

+
s

2
‖ut‖2L2(∂Ω)

for some r, s > 0. This implies that

β‖∇ut‖2L2(Ω) −
r

2
‖ut‖2L2(Ω) +

(
α−

s

2

)
‖ut‖2L2(∂Ω)

≤
1

2r
‖ξ(t)f ◦ Tt‖

2
L2(Ω) +

1

2s
‖ua‖

2
L2(∂Ω).

We choose s such that α > s/2, and using the fact that

‖u‖2 := ‖∇u‖2L2(Ω) + ‖u‖2L2(∂Ω)

is a norm on H1(Ω), equivalent to the natural norm (Meftahi, 2017), we obtain

min
(
β, α−

s

2

)
‖ut‖2H1(Ω)−

r

2
‖ut‖2L2(Ω) ≤

1

2r
‖ξ(t)f ◦Tt‖

2
L2(Ω)+

1

2s
‖ua‖

2
L2(∂Ω).

Choosing r such that min(β, α− s/2) − r/2 > 0, we deduce that

‖ut‖2H1(Ω) ≤ C

(
1

2r
‖ξ(t)f ◦ Tt‖

2
L2(Ω) +

1

2s
‖ua‖

2
L2(∂Ω)

)
,

where C is a positive constant. Since ξ(t) → 1 as t→ 0 and f ◦Tt → f in L2(Ω)
(see Delfour and Zolésio, Lemma 2.1, p. 397), then ut is bounded:

there exists c > 0 such that sup
t∈[0,ǫ]

‖ut‖H1(Ω) ≤ c.

We apply the same technique to the variational equation (5.5) and we are able
to show that the function vt is bounded. The next step is to show the continuity
with respect to t of the vector (ut, vt). Subtracting (5.4) at t > 0 and t = 0 and
choosing ψ = u− ut yields

∫

Ω

σ|∇(u − ut)|2 dx+

∫

∂Ω

α|u− ut|2 ds

=

∫

Ω

(σA(t) − σI2)∇ut · ∇(u− ut) dx+

∫

Ω

(ξ(t)f ◦ Tt − f) (u− ut) dx

≤ ‖σA(t) − σI2‖L∞(Ω)‖∇u
t‖L2(Ω)‖∇(u− ut)‖L2(Ω)

+ ‖ξ(t)f ◦ Tt − f‖L2(Ω)‖u− ut‖L2(Ω).
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Furthermore, due to the boundedness of ut and the fact that

‖u‖2 := ‖∇u‖2L2(Ω) + ‖u‖2L2(∂Ω)

is a norm on H1(Ω), equivalent to the natural norm, we obtain

‖ut − u‖H1(Ω) ≤ c
(
‖σA(t) − σI2‖L∞(Ω) + ‖ξ(t)f ◦ Tt − f‖L2(Ω)

)
.

Due to the strong continuity of A(t) (as a function of t) and ξ(t)f ◦ Tt → f in
L2(Ω) as t → 0, one deduces that ut → u in H1(Ω) as t → 0. Concerning the
continuity of vt, one may show from (5.5) that vt → v in H1(Ω). Finally, in
view of the strong continuity of

(t, ϕ) → ∂tG̃(t, ϕ, ψ) and (t, ψ) → ∂tG̃(t, ϕ, ψ),

assumptions (H3) and (H4) are verified. All assumptions of Theorem 5 are
satisfied and therefore, we obtain

dJp(ω;V ) = ∂tG̃(t, u, v)
∣∣
t=0

,

where

∂tG̃(t, u, v)
∣∣
t=0

=
1

p

∫

Ω

div(V )|u|p dx+

∫

Ω

σA′(0)∇u · ∇v dx

−
2∑

i=0

∫

Ωi

(fi div(V ) + ∇fi · V ) v dx.

To obtain the boundary expression of the shape derivative, presented in
(5.6), one may differentiate (5.2) directly, using the following result for the
differentiation of domain integrals; see for instance Delfour and Zolésio (2011).

Theorem 3 Let Φ : [0, T ] → W 1,∞(Rd) differentiable at t = 0 with Φ(0) = I
and Φ′(0) = V and let Ω ⊂ Rd with Lipschitz boundary. Assume [0, T ] ∋ t →
F (t, .) ∈ L1(Rd) is differentiable at 0 and F ′(0, .) ∈W 1,1(Rd). Then

∫

Φ(t)(Ω)

F (t, x) dx

is differentiable at 0 and we have

d

dt

∫

Φ(t)(Ω)

F (t, x) dx
∣∣∣
t=0

=

∫

∂Ω

F (0, x)V · n ds+

∫

Ω

∂tF (0, x) dx. (5.9)

In order to apply formula (5.9), we split integrals in (5.2), and we obtain

∂tG̃(0, u, v) = −
1

p

∫

Γ1

J|u|pKΓ1
V · n ds−

1

p

∫

Γ2

J|u|pKΓ2
V · n ds+

∫

Ω

u̇u|u|p−2 dx

−

∫

Γ1

Jσ∇u · ∇vKΓ1
V · n ds−

∫

Γ2

Jσ∇u · ∇vKΓ2
V · n ds

+

∫

Ω

σ(∇u̇ · ∇v + ∇u · ∇v̇) dx−

∫

Ω

f v̇ dx

+

∫

Γ1

JfKΓ1
vV · n ds+

∫

Γ2

JfKΓ2
vV · n ds
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(5.10)

where

φ̇ =
d

dt
(φ ◦ T−1

t )
∣∣∣
t=0

= −∇φ · V.

Using Green’s formula and the fact that v̇ = −∇v · V has compact support in
Ω, we obtain

∫

Ω

σ∇u · ∇v̇ dx−

∫

Ω

f v̇ dx =

∫

Ω0

σ∇u · ∇v̇ dx+

∫

Ω1

σ∇u · ∇v̇ dx

+

∫

Ω2

σ∇u · ∇v̇ dx−

∫

Ω

f v̇ dx

= −

∫

Ω0

div(σ∇u)v̇ dx−

∫

Ω1

div(σ∇u)v̇ dx

−

∫

Ω2

div(σ∇u)v̇ dx−

∫

Ω

f v̇ dx

+

∫

Γ1

Jσ∂nu · ∂nvKV · n ds+

∫

Γ2

Jσ∂nu · ∂nvKV · n ds

=

∫

Γ1

Jσ∂nu · ∂nvKV · n ds+

∫

Γ2

Jσ∂nu · ∂nvKV · n ds.

Similarly, we obtain

∫

Ω

σ∇v·∇u̇ dx+

∫

Ω

u̇u|u|p−2 dx =

∫

Γ1

Jσ∂nu·∂nvKV ·n ds+

∫

Γ2

Jσ∂nu·∂nvKV ·n ds.

Due to the fact that u ∈ H1(Ω), expression (5.10) becomes

∂tG̃(0, u, v) = −

∫

Γ1

Jσ∇u · ∇vKΓ1
V · n ds−

∫

Γ2

Jσ∇u · ∇vKΓ2
V · n ds

+

∫

Γ1

JfKΓ1
vV · n ds+

∫

Γ2

JfKΓ2
vV · n ds

+ 2

∫

Γ1

Jσ∂nu · ∂nvKV · n ds+ 2

∫

Γ2

Jσ∂nu · ∂nvKV · n ds.

(5.11)

Using the decomposition

Jσ∇u·∇vKΓi
= Jσ∂nu·∂nv+σ∇Γi

u·∇Γi
vK = Jσ∂nu·∂nvKΓi

+JσKΓi
∇Γi

u·∇Γi
v,

we have arrived at the following result.
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Theorem 4 (Boundary expression) The shape derivative of the functional
J in the direction V ∈ D1(Ω) is given by

DJp(ω;V ) =

∫

Γ1

Jσ∂nu · ∂nvKΓ1
V · n ds+

∫

Γ2

Jσ∂nu · ∂nvKΓ2
V · n ds

−

∫

Γ1

JσKΓ1
∇Γ1

u · ∇Γ1
vV · n ds−

∫

Γ2

JσKΓ2
∇Γ1

u · ∇Γ1
vV · n ds

+

∫

Γ1

JfKΓ1
vV · n ds+

∫

Γ2

JfKΓ2
vV · n ds.

(5.12)

Remark 3 Note that the volume expression of the shape derivative, presented
in (5.6), can be rewritten in canonical form as

dJpJ(ω;V ) =

∫

Ω

S : DV dx+

2∑

i=0

∫

Ωi

Si : DV + Gi · V dx

where

S = −σ(∇u⊗∇v+∇v⊗∇u)+σ(∇u·∇v)I+
1

p
|u|pI, Si = fivI and Gi = ∇fiv.

Using standard tensor relation (∇u⊗∇)n = (∇v ·n)∇u, one may obtain directly
the boundary expression of the shape derivative, presented in Theorem 4 (see
Laurain and Sturm, 2016).

6. Algorithm and numerical results

6.1. Descent direction

Definition 2 Let V ∈ D1(Ω,Rd) and denote by Tt the associated transforma-
tion, defined in (3.2). We say that V is a descent direction for a functional
J : Ω → R if there exists ε > 0 such that

J(Tt(Ω)) < J(Ω) ∀ t ∈ (0, ε).

If the Eulerian semiderivative of J at Ω in the direction V exists and if it is a
descent direction, then by definition

dJ(Ω;V ) < 0.

We use descent descent directions in iterative methods to find a possible local
minimizers of the functional J . The strategy is to start with the initial shape Ω
and compute descent direction V , then we proceed along this direction as long
as the cost functional J reduces sufficiently, using a line search strategy.

In our problem the shape ω is known and invariant under a rotation, but its
location is unknown. It is meaningful to use translations to move the shape ω.
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One may choose a velocity V as a piecewise linear function so that V is a
translation on Γ1,Γ2 and vanishes on ∂Ω. In order to obtain transformation,
which is locally a translation, one may choose the class of vector fields V =
(b1ζ, b2ζ)

T := (V1, V2)T , where b1, b2 ∈ R and ζ is a smooth function equal to
one in a neighborhood ω∗ of ω and equal to zero on ∂Ω.

The volume expression of the shape derivative can be written as

dJ(ω;V ) =

∫

Ω

G1(V1) +G2(V 2) dx = b1

∫

Ω

G1(ζ) dx + b2

∫

Ω

G2(ζ) dx.

Therefore, the descent direction is easily found as

b1 = −

∫

Ω

G1(ζ) dx, b2 = −

∫

Ω

G2(ζ) dx. (6.1)

The reconstruction of the function ζ depends on the geometry of ω and Ω.
The boundary expression of the shape derivative can be written as

dJ(Ω;V ) =
2∑

i=1

∫

Γi

giV · n ds.

On the boundary Γi, V = (b1, b2)T . Then, plugging V with n = (n1, n2)T in
the above expression, one obtains

dJ(Ω;V ) = b1

2∑

i=1

∫

Γi

gin1 ds+ b2

2∑

i=1

∫

Γi

gin2 ds.

To get a descent direction, one may choose

b1 = −
2∑

i=1

∫

Γi

gin1 ds and b2 = −
2∑

i=1

∫

Γi

gin2 ds. (6.2)

For our numerical results, we use the boundary expression of the shape derivative
to get the descent directions and the gradient algorithm with backtracking line
search to solve the optimization problem.

To avoid the overlap of the inclusions during the optimization process, we
follow the routine presented in Loos et al. (2014). To prevent the exit to the
external boundary, we introduce a constraint on the distance between the center
of the inclusions and the center of the domain Ω. Since we use a gradient-based
method, we implement a line search to adjust the time-stepping. The algorithm
is stopped when the decrease of the functional becomes insignificant.

6.2. Numerical results

In this section we provide some preliminary numerical results, meant to assess
the shape gradient approach. We take Ω to be the unit disk, Ω2 the disk with
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radius r2 = 0.1 and Ω1 the annulus with internal radius r2 and external radius
r1 = 0.2. The conductivity values are set as σ0 = 1, σ1 = 0.5 and σ2 = 30.
The term source values are set as f0 = 0, f1 = 0 and f2 = 20. We take the
ambient temperature ua = 32 and the heat transfer coefficient α = 10. We
use pdetoolbox of MATLAB for the implementation. The domain Ω is meshed
using 6016 elements.

6.2.1. Example 1

Figure 2. History of the objective function for p = 2.

We first optimize the position of only a single inclusion. For the shape
functional, we set two different values of p (p = 2 and p = 10). We start with
the origin of the coordinate system as the first position of the inclusion. The
objective function is monotonically decreasing with respect to the iterations
(see Figs. 2, 4). Obviously, the optimization works very well. During the
optimization process, the single inclusion starts from the origin (see Figs. 3a,
5c) and runs out to the external boundary(see Figs. 3b, 5d). Figures 3 and 5
depict the temperature distributions for two different configurations.

6.2.2. Example 2

In the second example, we optimize the position of three inclusions. Starting
with the positions (−0.3, 0), (0, 0.3), (0.3,−0.1)(see Figs. 7e, 7), the objective
function decreases monotonically with respect to the iterations (see Figs. 6, 8)
and the inclusions run out to the external boundary again (see Figs. 7f, 9h).
They are forced to find a configuration, in which the inclusions have the largest
distance from each other. Figures 5 and 9 depict the temperature distributions
for two different configurations.
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(a) (b)

Figure 3. (a) the temperature distribution of the initial configuration and (b)
the temperature distribution for the final configuration (p = 2)

Remark 4 Although with p = 2 or p = 10 the functional Jp does not approxi-
mate the L∞-norm very accurately, the maximum temperature is lower than at
the initial configuration for both cases presented in Examples 1 and 2. The rea-
son is that if the inclusions are near the external boundary, more heat is emitted
to the environment by radiation and convection than it is the case if they are
located far form the boundary.

7. Appendix

An abstract differentiability result

In this section, we give an abstract result for differentiating Lagrangian func-
tionals with respect to a parameter. This result is used to prove Theorem 2.
We first introduce some notations. Consider the functional

G : [0, ε] ×X × Y → R (7.1)

for some ε > 0 and the Banach spaces X and Y . For each t ∈ [0, ε], define

g(t) = inf
x∈X

sup
y∈Y

G(t, x, y), h(t) = sup
y∈Y

inf
x∈X

G(t, x, y), (7.2)

and the associated sets

X(t) =

{
xt ∈ X : sup

y∈Y
G(t, xt, y) = g(t)

}
, (7.3)

Y (t) =

{
yt ∈ Y : inf

x∈X
G(t, x, yt) = h(t)

}
. (7.4)
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Figure 4. History of the objective function for p = 10

Note that inequality h(t) ≤ g(t) holds. If h(t) = g(t), the set of saddle points is
given by

S(t) := X(t) × Y (t). (7.5)

We state now a simplified version of a result from Delfour and Zolésio (1988),
derived from Correa and Seeger (1985), which gives realistic conditions that al-
lows for differentiating g(t) at t = 0. The main difficulty is to obtain conditions,
which make it possible to exchange the derivative with respect to t and the
inf-sup in (7.2).

Theorem 5 (Correa and Seeger, 1985; Delfour and Zolésio, 2011) Let X,Y,G
and ε be given as above. Assume that the following conditions hold :
(H1) S(t) 6= ∅ for 0 ≤ t ≤ ε.
(H2) The partial derivative ∂tG(t, x, y) exists for all (t, x, y) ∈ [0, ε] ×X × Y .
(H3) For any sequence {tn}n∈N, with tn → 0, there exist a subsequence {tnk

}k∈N

and x0 ∈ X(0), xnk
∈ X(tnk

) such that for all y ∈ Y (0),

lim
tց0,k→∞

∂tG(t, xnk
, y) = ∂tG(0, x0, y),

(H4) For any sequence {tn}n∈N, with tn → 0, there exist a subsequence {tnk
}k∈N

and y0 ∈ Y (0), ynk
∈ Y (tnk

) such that for all x ∈ X(0),

lim
tց0,k→∞

∂tG(t, x, ynk
) = ∂tG(0, x, y0).

Then there exists (x0, y0) ∈ X(0) × Y (0) such that

dg

dt
(0) = ∂tG(0, x0, y0).

Acknowledgement: The authors thank the referees for their helpful re-
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(c) (d)

Figure 5. (c) the temperature distribution of the initial configuration and (d)
the temperature distribution for the final configuration (p = 10)
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tionnels. Dunod, Collection Études Mathématiques.
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Figure 8. History of the objective function for p = 10

(g) (h)

Figure 9. (g) the temperature distribution of the initial configuration and (h)
the temperature distribution for the final configuration (p = 10)


