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A b s t r a c t :  The method of deriving the sufficient condition in 
a domain optimization problem is given. This method is based on 
the consideration of symmetry, namely, we take only the shape of 
domains into account and do not take the place of the domains on 
the plane into consideration. We apply this method to the two  
parameter family of domain optimization problems where the objec-
tive functions have quadratic and linear parts. For these problems 
we give the sufficient conditions and show when the unit circle is the 
solution of the optimization problem. In particular, we obtain that 
every unit circle is the solution of maximum torsional rigidity prob-
lem. Then we consider the general case with an arbitrary function in 
the integral and derive the sufficient condition which provides that 
the unit circle is a solution of the optimization problem. 

1. Introduction
In this paper we suggest the method of deriving the sufficient condition of op-
timality in some class of domain optimization problems. Domain optimization 
problems are problems in which the objective function depends on the domain 
through the solution of a boundary-value problem defined on the domain. There 
are many such problems in different branches of science and high-technology in-
dustry. When we try to find the best shape of some physical system we come to 
a domain optimization problem. Various examples can be found in Cea (1981). 
There exist quite a number of papers devoted to various aspects of domain opti-
mization problem including existence of solution, continuity and differentiability 
of the objective functional with respect to a domain and necessary conditions 
of optimality. Appropriate references can be found in Sokolowski and Zolesio 
(1992). However, effective sufficient conditions in these problems have not been 
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obtained yet. vVe mean that although some particular shape optimization prob-
lems are solved the methods of proving optimality in these problems cannot be 
applied in sufficiently general case. For example, Polya (1948) proved that a 
circle is an optimal cross section in the problem of maximum torsional rigidity 
of an isotropic uniform elastic bar. The geometric method of Steiner's sym-
metrization was applied, which is very specific and, as authors suppose, can not 
be used widely in domain optimization. 

We think that there arc some reasons explaining the difficulties which arise 
when someone tries to obtain sufficient conditions. If we consider domain opti-
mization problems from the point of view of multidimensional calculus of varia-
tions, we see that these problems are Lagrange problems with not fixed domain. 
The theory of sufficient conditions for such Lagrange problems does not exist 
yet. If we try to obtain sufficient condition of proper local minimum (maximum) 
by usual way, we have to establish uniform positive (negative) definiteness of sec-
ond variation (with respect to appropriate norm). However, almost all domain 
optimization problems have symmetry because objective functional depends on 
the shape of domains and not on the place of the domains on a plane. This 
means that, in any neighborhood of optimal domain, there are other domains 
having the same shape and providing the same functional value. Therefore, min-
immn (maximum) is not proper for these optimization problems and the second 
variation is not uniformly positiv(' (1wg-ativc) definite and even not positive (neg-
ative). The second variation is milY semi-definite. This article is about proving 
optimality in this case. We haw I u note here that the sufficient conditions in 
general case were obtained by Fujii (1994). However, these conditions require 
positiveness of the second variation and could not be applied to the problems 
having symmetry. Therefore, at least, the illustrative example in Fujii (1994) 
was not appropriate. That is why the attempt to apply this condition to the 
problem of maximum torsional rigidity was unsuccessful. We have managed to 
find the mistake in the illustrative example. As a result of discussion of this 
situation the present article appeared. 

First we consider following domain optimization problem: the functional 

(1) 

should be maximized (or minimized) with respect to domain D , where c1, c2
are given constants and v, is the solution of the boundary-value problem 

Llv,(x) = - 1  
v,(x) = 0 

(x ED), 
(x E f). 

(2) 
(3) 

Here D is a smooth simply connected domain in R2 with boundary r of c2,a .

class and with prescribed area 

J(D) = ( dx = 1r 
Jn (4) 
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vVhen c1 = 0, c2 = 1 we have well-known problem of maximum torsional rigidity
of elastic bar (Banichuk, 1976) 1 .  In this paper we shall prove that unit circle 
provides maximum functional value not only for this particular case. If we 
suppose that c1 # 0 we can put c1 = 1 and in this case we will show that the
unit circle gives the maximum functional value if c1 = 1 and c2 ;::: -¼. If c1 = 1
and c2 < -½ a unit circle yields minimum in this optimization problem. We 
will show that unit circle is not a solution of the optimization problem provided
that c1 = 1 and -½ < c2 < -¼), and our method can help to find the solution
of optimization problem in this case. 

In Section 4 we consider the general problem with an arbitrary function g( v,) 
in the integral (1). Applying our symmetry method and doing almost the same 
calculations we derive the sufficient condition which provides that the every unit 
circle is the solution of the optimization problem. This sufficient condition is 
very simple for use in applications. 

2 . C a l c u l u s  o f  f u n c t i o n a l  v a r i a t i o n s

In this section, we shall obtain formula for the first and second Frechet derivative 
of objective function. Similar calculation has already been carried out in some 
other papers (see, for example, Fujii, 1990, or Sokolowski and Zolesio, 1992). 
However, for our purpose we need specific estimate of the rest in the final formula 
(29) so we give the outline of our calculations. First of all we can apply necessary
conditions of optimality (Fujii, 1990) for optimization problem (1)-( 4) and see 
that unit circle satisfies necessary condition for every c1,  c2. The first order 
necessary condition is that there exists a constant >. such that

op 8v, g(v,) - -;:,-;:, - >.h(x) = 0 (x E f ) ,unun 
(5) 

must hold for an optimal domain D with boundary r, where u(x) is the cor-
responding solution of the boundary-value problem (2)-(3) on D, n outward 
normal, g( v,) = c1 u2 + c2v,, h = l and p(x), the solution of the adjoint problem: 

dg 
Lip(x) - k(x)p(x) = -

d 
(v,(x)) 

V, 

p(x) = 0 

(x ED), 

(x E f ) .  

(6) 

(7) 

Note that the solution of boundary-value problem (2)-(3) for unit circle with 
ccnter D at the origin is 

1 2 
11, = - ( 1  - r ) 

4 
(8) 

1 B,michuk has considered more general problem for anisotropic elastic bar and shown that 
necessary condition is satisfied for elliptic cross-section. The method of obtaining sufficient 
condition that we suggest in this paper can be applied for this problem without any serious 
correction. 
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in polar coordinate (r, </>). Note also that this function is defined not only on D 
but everywhere. By solving the adjoint problem we obtain 

p 
op 
- l ron 

r 2 r4- 3 c2 2 2c1 ( - - - - - ) - - ( 1  - r )
16 64 64 4 (9) 

(10) 

So we have that necessary condition holds with A = ½ (  1 + cl) and the unit 
circle is the critical point for all c1, c2. 

Let us introduce a polar coordinate system with its origin at the center of 
the circle D. At every point x on the boundary r we plot segment h( x) in the
direction of outward normal. We will consider C2 ,a functions h(x). If h(x) 
is sufficiently small the end points of segment form c 2 ,a smooth closed curve 
rh which encloses domain Dh, Let v,h be the solution of the boundary-value 
problem: 

L1v, = - 1  (x E Dh), 
V, = 0 (x E fh)-

Let us consider the difference 

J(Dh, uh) - J(D, v.) = / g(uh) d.T - / g(u(x)) dx Jn,, Jn 
( / g(uh) dx - f' g(v,) dx) + ( / g(v.) dx - f' g(v,) dx) Jn,, Jn,, Jn,, Jn 
A1 + A2, 

Now we obtain estimate for A2. 

(11) 

(12) 

Remark.  Here and below a(h) ---+ 0, if llhllc2,"' ---+ 0. This estimate of the rest 
is important for our purpose. 
In order to estimate the expression A1 we consider function Vh defined by 

This function is the solution of the following boundary-value problem: 

L1vh = 0 (x E Dh), 
1 2 

Vh, = - 4 ( 1 - (1 + h) ) = ½h + ¼h2 . (x E rh)

(13) 

(14) 

(15) 
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Then, from Green's formula we have: j. 
og 1 J o2g 2 -;:,-(v,)vhdx+- "' 2 (v,)vhdx 

01,, u U 2 01,, UV, 

l oph l 
lr vh B ds + 

} ,  
C1 v  dx 

r1,, nh o,. 

where Ph is the solution of the boundary-value problem: 

49 

(16) 

(17) 

(18) 

Let us introduce the function Fh as solution of the boundary-value problem: 

iJ.Fh = 0 (x E Dh), 
Fh = ½h (x E fh)-

Then we can rewrite A1 in the form 

(19) 
(20) 

(21) 

We used here the global Schauder's estimate (Gilbarg and Trudinger, 1983) for 
differences vh - Fh and Ph - p, which satisfies the boundary-value problem: 

Ph -p= 

0 

- op lrh -   02P 
(0)h2 

on 2 on2 

(we used in (23) the mean-value theorem). 

(22) 

(23) 

Hence, after using interior Schauder's estimate for derivatives Ph - p + ½( l + 
T )Fh, global Schauder's estimate and the maximum principle, we have 

If we consider function F which satisfies equations: 

LJ.F = 0 (x ED), 
F= ½h ( x E f ) ,  

we can obtain ( using again Schauder's estimates) 

F h - ds = F   ds + a(h) h2 ds. 1 oA /4' oF 1 
r h Onh , r un r 

(25) 
(26) 

(27) 
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Note that p is the fixed function defined by ( ). After simple calculations we 
obtain: 

/ .  op 1 / '  c 1  c 2  1 / .  2 J 2 F 8 d s = - ( - + - ) h d s + - c2 h d s + a ( h )  h ds, 
r,, nh 2 r 8 2 2 r r 

where a(h)-----+ 0, as llhllc2,a -----+ 0. 

(28) 

Now using (12), (16), (21), (24), (27), (28) we can rewrite the right hand side 
of formula (11) •as 

where a(h)-----+ 0, if llhJlc2,a -----+ 0. 
For functional J(O) the appropriate formula is 

I(Oh) - I(O) = hds + - h2 ds/, 11· r 2 r 

3. Proof of optimality
3.1. New representation of the second derivative 

(30) 

Now we consider again the difference of the objective functions on Oh and 0, 
where 0,h satisfies the constraint (4). Then 

(.J(Oh, uh) - >J(Oh)) - (.J(O, u) - AI(O)) 
L(Oh, uh, >-.) - L(O, u, >-.), (31) 

where L denotes Lagrange function and A is an undefined multiplier. Comparing 
formulas (29),(30) we obtain 

L(Oh, V,h, >-.) - L(O, v., >-.) 

where a(h)-----+ 0, if llhllc2,a -----+ 0. 

(32) 

(33) 

Let us consider the function F as a function of polar coordinates r arid cj;. 
Using Fourier series we can rewrite the boundary conditions ,(25) as follows 

1 0 0  

F(l, c/;) = -h(cj;) = I ) a n cosnc/; + bn sin nc/;) 
2

0 

(34) 
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The solution of the boundary-value problem (24)-(25) in this case can be rep-
resented in the form: 

and 

F(r,cp) = I:rn(ancosncp+bnsinncp) 
0 

After simple calculations we can rewrite expression (32) in the form: 

3.2. · The nearest domain 

(35) 

(36) 

(37) 

Let us consider again the unit disc D with the boundary r and introduce 8-
neighborhood/of the unit circumference r :  

(38) 

Let r h E B ,s and let D be an arbitrary unit disc with boundary I' which belongs
to B26 . Now we are able to introduce h, which plays for r such a role as h for 
r .  Namely, i f  we introduce new polar coordinates with the origin at the center 
of the disc n then h will be the distance between r and r h , Let now f * '  h* be 
such that 

(39) 

Roughly speaking, f *  is the boundary of the unit disc D* which is nearest to 
the domain Dh in some sense. It is easy to see that f * ,  h* exist. 

Let us introduce other polar coordinates,r*, cp* with the_origin at the center 
of the disc D*. The function h* has 'important property: 
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L e m m a  1 In the FoV,rier expansion 
0 0  

h* ( </>*) = a  + I ) a   cos n</>* + b  sin n</>*), (40) 

a1 = bi = 0 holds.

Proof .  Suppose the contrary. Then we can consider unit circle D with 
boundary f and with its center at (at, bi). The boundary f is placed in B 28 ; 
this follows f rom inequalities: 

0 0

0 < a i 2 + b;' 2   a i2 + 2 ) a  2 + b 2 )

=   
1 ·

2n 
h*2 d</>* 1•

2n 
h2 d</>   2152 . 

7f O 7f 0 
We used here property (39) (rh E B 8) and Parseval's equality. 
If we represent the equation of the circumference f in the form: 

r* = l + /(</>*), 

after simple calculations we will obtain: 

( 41) 

(42) 

f(</>*)=-l+a;'cos</>*+bisin</>*+(l (a;'sin</>+b;'cos</>*) 2 )½. (43) 

Indeed, the equation of the boundary f in the polar coordinates r*, </>* is given 
by 

(r* cos</>* - a*) 2 + (r* sin</>* - b*) 2 = l .  

Solving this equation with respect to r*, we obtain ( 43). 
Let us rewrite f (  </>*) in the form 

f(</>*) = g(</>*) + A(a;', b;'),

where 

_g(</>*) = a;' cos</>*+ b;' sin</>*, I A I  2(a;" 2 + b;'2 ). 

Here we used 
1 1 

( l + x ) 2  1 + 2 1x l ( x 2 : - l ) .

(44) 

(45) 

Note now that I h*(</>*) - /(</>*) I is the distance between the points on rh and 
f which is placed on the polar ray. Let us consider the difference 

1
2n 

h*2 d</>* - 1
2n 

(h* - / ) 2 d</>* 

= f
2
n h*2 d</>* - 1•

2
11" (h* - g) 2 d</>* - f

2
n (2(h* - g)A + A2 ) d</>* 

lo o lo 
= 1r(a;'2+ b;'2) + K(ai, b;'), ( 46) 
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where 

I K I::; const(ai2 + b;'2)8. 

We used the formulas (40),(41),(44),(45), Parseval's equality and Holder in-
equality. Now if we put 8 sufficiently small we have that left side of the formula 
( 46) positive, which contradicts optimality. Lemma 1 is thereby proved. 1111!1 

3.3. The sufficient conditions 

For any admissible domain D,h the following equality holds 

Then, 

{ 1 ds - { 1 ds = f
2 7f 

(h* + ! h * 2 ) dcp* = 0. Jn" Jn• Jo 2 (47) 

ai2 = ( 2 _  f
2 7f 

h* dcp*) 2 = (2_ f
2 7f 

! h * 2 dcp*) 2 = a(h) f
2 7f 

h* 2 dcp* (48) 
2n J0 2n lo 2 Jo 

Let us consider now c1 = 0, c2 = 1. Note that this case is the classical problem 
of maximum torsional rigidity. If we take formula (37) and the last formula into 
account we have 

J(D,h , 'll,h ) - J(D,, u) = J(D,h , uh ) - J(D,*, u*)
L(Dh , uh , >..) - L(D,*, u*, >..) 

< - I ) a  2 + b 2 ) + a(h) f
27f 

h*2 dcp* 
2 Jo 

- f
27f 

h*2 dcp* + a(h) f
27f 

h*2 dcp.* < 0lo Jo (49) 

if 8 is sufficiently small, because a(h) _ ,  0. So we have proved that a unit circle 
is the solution of maximum torsional rigidity problem. 

Let now c1 #- 0, then we can put c1 = 1 without loss of generality. Then
from (37),(48) we easily obtain that if c2   -¼ ,then

Hence 

1 00 
127f J (Dh , v,h ) - J(D,v.) : : ; - - I)a;,* +b;,*) + a ( h )  h*2 d(cp) < 0, (51) 

12 2 0 

if h is sufficiently small, and we see that a unit circle provides maximum func-
tional value. 

If c2 < -½ after similar considerations we have that a unit circle provides
minimum functional value. Thus, we have the following theorem 
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Theorem 1 Every v,nit circle attains the local maximum for the functional (1) 
provided that c2 > -¼ c1 = 1. It attains the local r'ninimv,m provided that 
c2 < -½ (c1 = 1). Note that we can put c1 = 1 without loss of generality. 

I f - ½  < c2 < -¼, a unit circle is riot a solution of the optimization problem
(1)-(4) (c1 = 1) ,because members of the sum in (37) have different signs and, in 
this case, formula (37) will be useful for finding the solution of the optimization 
problem. 

4. The general problem
Now we are ready to derive the sufficient conditions in the following general 
optimization problem 

J(D., v,) = { g(u(x)) dx, 
.In 

where v,( x) is the solution of 

Llv,(x) = - 1
u(,T) = Q 

(x ED.), 
(x E r ) ,  

under the constraint 

J(D.) = lo 1 dx = 1r

(52) 

(53) 
(54) 

(55) 

Without loss of generality we can count that g(O) = 0. We will obtain here 
. that if function g satisfies some condition, then a unit circle is the solution of 

optimization problem. 
First of all we will show that a unit circle satisfies the necessary condition 

(5) for all functions g (h = 1). Indeed, solving the adjoint problem (6)-(7) in 
the polar coordinates, we have

op · 1 
- l r  = 2g(-)on 4 (56) 

Substituting  p to (5) we obtain that the unit circle satisfies the necessary 
un 

condition with constant 

(57) 

Using the same calculation as in Section 2 we obtain the formulas for the dif-
ference of the Lagrange functions: 

+ 

f. og 2 .t· 1 oF - F  d s - 4  g ( - ) F - d s
r OU r 4 on 

  " '  F
2 dx + a (h) h2 ds,lj'o2 1· 2 D, UV, r (58) 
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where a(h) -----+ 0, if llhllc2," -----+ 0. Using the representation (35) of the function 
F we can evaluate these integrals (using integration by parts in the third term). 
After simple calculations we obtain: 

1   2 2 L(Dh, uh,>.) - L(D, v,, >.) = -4g(-)7r L n(an + bn )
4. 

2 

+27r f ( r 1 
 g I = l - r 2  r 2n- l d r )  n(a;. + b;.) + a(h) r h2 ds. (59) 

2 Jo uv, u 4 J r  

Here we used the fact that the first terms (n=l) are equal and have different 
signs and also that a0 is small. Using Lemma 1 we obtain the main result of 
this paper: 

T h e o r e m  2 I f  for every n   2 the following inequalities are satisfied 

( [ 1 8 ) 1 -
Jo 0 lu=1-,;2 r 2n- l dr - 2 g ( 4 ) > 0(< 0) (60) 

then a unit circle is the local minimum (maximum) in the optimization problem 
(52)-(55). 

It is very easy to use this sufficient condition in particular problems. As a 
matter of fact, if we consider the objective function (1) we immediately see that 
Theorem 1 is a corollary of Theorem 2. 

From Theorem 2 we have a simple but interesting result: 

ag T h e o r e m  3 Let ov, > 0( < 0) for all u E [0, ¼]. Then if

(61) 

every v,nit circle is the local maximum (minimum) of the optimization problem 
(52)-(55). 

Note that we can obtain from this theorem the result for maximum torsional 
rigidity mentioned in 3.3. 
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