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The book is devoted to the investigations of the rigorous lower bounds on the
complexity of some number theoretic and cryptographic problems. The methods
and techniques used are based on bounds of character sums and solutions of some
polynomial equations over finite fields and residue rings. The main object of
investigations is the discrete logarithm modulo a prime p. The lower bounds
are obtained (exponential in terms of logp) on the degrees and orders of the
following functions:

e polynomials,

e algebraic functions,

e Boolean functions,

e linear recurring sequences

approximating the discrete logarithm modulo a prime p at sufficiently many
points. These functions are considered over the residue ring modulo p and
over the residue ring modulo an arbitrary divisor d of p — 1. The case d = 2
corresponds to the representation of the right-most bit of the discrete logarithm.
These results are used to obtain lower bounds on the parallel arithmetic and
Boolean complexity of computing the discrete logarithm. The similar results
are obtained for the complexity of breaking the Diffie-Hellman cryptosystem.

Part I of the book has a preliminary character. It contains the Introduction
where the results presented in the book are summarized and their relations
are given to the earlier results with the detailed indications of the references,
Chapter 2 which contains the basic notations and definitions, and Chapter 3
with auxiliary results.

In Part IT of the book the approximation and complexity of the computation
of the discrete logarithm are investigated. Chapter 4 presents theorems showing
that polynomials and algebraic functions approximating the discrete logarithm
modulo p on sufficiently large sets must be of sufficiently large degree. The
first theorem of this kind (Theorem 4.1) says that if f(z) is a polynomial with
integral coefficients of degree n = deg f and of sparsity ¢ = spr f approximating
the discrete logarithm:

ind(z) = f(z) mod p, z € S,
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for aset S C {1,...,p— 1} of cardinality |S| =p—1—s, then
n>p—1-2st>(p-1)/(2s+1)-1.

The above theorem is non-trivial if the set S is dense enough. The next
theorem (Theorem 4.2) gives the lower bound for the degree n and is applicable
to sparse sets .S beginning with |S| > 1/2p. Theorem 4.3 gives the upper bound
for the probability Pi(p,m) of finding the polynomial f of degf < m—k
(k = 1,2,...) approximating the discrete logarithm on the set of m random
elements picked uniformly from the set {1,...,p —1}.

In Theorems 4.5, 4.6, 4.7 the possibilities are considered of representing the
discrete logarithm via algebraic functions of the form

t
F(X,Y) =Y X™f(Y),
=1
where 0 <n; <...<n¢ < p—1and the polynomials f;(Y) € Z[Y],i = 1,...,¢,
are of at most degree n and not all identical to zero modulo p. The above
theorems consider the representations of the form

F(z,ind(z)) =0mod p, z € S,

foraset ScC {1,...,p—1}.

In Chapter 5 various approximations and representations of the discrete
logarithm modulo a divisor d of p — 1 are investigated. The case d = 2 is
of special interest because it corresponds to representation of the right-most
bit of ind(z). In this chapter instead of polynomials a much wider class of
representations is considered via recurring sequences. Let wu(z) be an integer
recurring sequence of order n such that

ind(z) = a(z) mod d, = € S,

where d is a divisor of p — 1 and S is a set of cardinality H — s contained in the
interval

{N+1,...,N+H}c{1,...,p—-1}.
Then, Theorem 5.1 says that
n> H/(2s+2+V2logp) — 1.

It is interesting to note that this lower bound does not depend on the divi-
sor d; in particular, for d = 2 the right-most bit of ind(z) cannot be given by a
linear recurring sequence of small order. This theorem implies the lower bound
on the linear complexity profile of the discrete logarithm modulo a divisor d
of p—1:

L(H) = Q(Hp~'/?log™" p).
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One can obtain also the lower bound on the length on non-linear recurrent
relation which the right-most bit of the discrete logarithm may satisfy.

Chapter 6 deals with the bitwise approximation of the discrete logarithm
given the bit representation of the argument. When we concentrate on the
right-most bit of ind(z), that question is equivalent to deciding about quadratic
residuasity of z.

We define the following Boolean function of r = |log p| Boolean variables

Blus,...,u) = {0 if X is a quadratic residue modp,

1 if X is a quadratic non-residue modp,

where 1 < 2 < 2" —1 and £ = u;...u, is the bit representation of z. Theo-
rem 6.1 states the bound:

spr B > 2*3/2p1/4 log_1/2p -1

The next theorem of this chapter gives the lower bound for the depth of the
Boolean circuits (deciding about the residuasity of ) belonging to the different
classes introduced in Chapter 2. The estimations of the various complexity
values from Chapter 2 related to the above Boolean function are also obtained.

In Chapter 7 the questions of approximation of the discrete logarithm by real
and complex polynomials are considered. Theorem 7.1 gives the lower bound:

_ 1/2
Cx(1) (55108 (25 —)) -1

for the additive complexity C(f) of a real polynomial f(z) = ind(z) for z € S
and S being a subset of {1,...,p — 1} of cardinality |S| = p—1—s. The
other theorems of this chapter are related to decision about residuasity of z and
describe this by suitable real polynomials which in tern are investigated and
estimated.

In Part III of the book the complexity of breaking the Diffie-Hellman cryp-
tosystem is investigated. Let g be a primitive root in a finite field Fy of ¢ ele-
ments. There is the unproved assumption that recovering of the Diffie-Hellman
private key

K(z,y) = g™

from the known values of g® and gY is equivalent to the discrete logarithm
problem.
The identity

2 _ 2 .2 -

g@ty) g==" g=v" = g2y
implies that the general problem can be reduced to the one of computation of
g® from g®. It is shown that this cannot be realized by an algorithm having
polynomial time. Several theorems formally similar to those of Chapter 4 are
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proved on the computation of discrete logarithm. Theorem 8.1 says that if
f(z) € Fy[X] is a polynomial such that

9 = f(g%),

where S C {N +1,...,N + H} is a subset of cardinality |S| = H — s with
H < q-1, then

deg f > H —2s — 3.

The next theorem describes the approximation of the above problem by
polynomials on sparse subsets of {0,...,q — 1} and also approximations by
algebraic functions.

In Chapter 9 the Boolean complexity of the recovering the Diffie-Hellman
key is investigated. In general, the arithmetic models of computations presented
in Chapter 8 seem more powerful than the Boolean models, but in some spe-
cial cases of parallel computations over finite fields of small characteristic the
Boolean model appears exponentially stronger than the arithmetic model.

Part IV of this book introduces other applications of the theory presented
in Part II. These are:

e Trade-off between the Boolean and arithmetic depths of modulo p func-
tions.

e Special polynomials and Boolean functions.

e RSA and Blum-Blum-Shub generators of pseudorandom numbers.

Part V of the book contains some generalizations of previous results, as well
as open problems, and presents possible further directions of investigations.
The main value of the book is the presentation of rigorous proofs of theo-
rems describing the computational security of various cryptographic functions
important for applications.
Janusz Szmidt

L. Shparlinski: Number Theoretical Methods in Cryptography.
Birkhduser Verlag, Basel-Berlin—Boston, 192 pages, 1999.
ISBN 3-7643-5888-2. Price: DEM 156.— (hardcover).




