
Control and Cybernetics
vol. 25 (1996) No. 1

Assortment problems with cutting policies

by

Pedro Castro Borges* and Jose Soeiro Ferreira**

* Universidade Católica Portuguesa, and 
Institute of Mathematical Modelling (IMM), Bldg. 321, 

The Technical University of Denmark, 
DK - 2800 Lyngby, Denmark,

** Faculdade de Engenharia da Universidade do Porto, and 
Instituto de Engenharia Sistemas e Computadores (INESC), 

Largo Mompilher 22 - Apart ado 4433,
4007 Porto, Portugal

Abstract: Assortment selection problems with cutting policies 
play an important role in several industries but, possibly due to 
their combinatorial characteristics, they did not receive as much at­
tention as cutting stock problems did, though the two problems are 
closely related. In this paper we graph several examples of cost func­
tions of one and two-dimensional problems which reveal that many 
local optima with cost close to optimum exist. Several implementa­
tions of known meta-heuristics are tested with a real problem. Two 
different neighbourhood structures are considered and the different 
performance of the implemented heuristics is briefly discussed.

Keywords: assortment problem, cutting stack problem, meta- 
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1. Introduction

When a product or raw material is produced in large quantities, some decisions 
must be made regarding the choice of characteristics of the units to be produced 
or stocked. Only a limited number of types can be produced or stocked and 
these units must meet client requirements while minimising waste or maximis­
ing profit. If the clients’ needs do not exactly match the produced units then 
something must be done to satisfy their demand with the existing stock, gene­
rating costs or value loss. The problem of determining the best set of units to 
offer or stock is generally known as the assortment problem and is frequently 
associated with cutting stock problems. A survey on assortment problems can 
be found in Borges and Ferreira (1994).
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The assortment selection problems are briefly presented in Section 2 while 
Section 3 discusses some issues that arise in assortment selection problems with 
cutting stock policies. In Section 4 we study the solution space by graphing some 
objective functions for both one and two-dimensional problems (multi-pattern 
and multiple stock sizes). This is important to better compare solutions and 
solution procedures. It is shown that, in some cases, solutions very close to the 
global optimum may be easy to find, as long as an optimising approach is used 
to plan the cut operation.

In an attempt to find a method that is able to deal with assortment problems, 
some meta-heuristics are employed, including simulated annealing and tabu 
search as briefly described in Section 5. Two strategies for neighbour generation 
are used and the results are discussed in Section 6.

2. Assortment selection

Assortment problems, or assortment selection problems, are often associated 
with raw material production, product planning and production planning and 
appear in many industries. Although different problems have been classified as 
assortment problems, it is possible to present a general formulation that groups 
them: Some products may be produced or bought in a set of different sizes or 
qualities, represented in Figure 1 as “candidates”. The produced or stocked 
articles are used to satisfy a deterministic or stochastic demand but economic 
and/or logistical reasons forbid that all the demanded types be produced or 
stocked; instead a subset of the “candidates” set must be chosen. This subset, 
referred to as assortment or catalogue, is used to supply the orders.

The demand for products that are not stocked is supplied from the larger, or 
in some way better or more valuable products in the assortment. This is done 
by simple substitution or through cutting operations, implying an additional 
cost or a loss of value.

The objective is to find the assortment that gives a balance between the 
stocking or production costs and the substitution or waste costs. The solution 
of the assortment problem might also include the planning of the operation 
referred to in Figure 1 as “Demand Supply Process”.

There are often practical restrictions that influence the decisions and gen­
erate problems with different characteristics, some of which are equivalent to 
problems in other areas, under other designations. A recent survey and bibli­
ography on assortment selection problems can be found in Borges and Ferreira 
(1994) and older ones in Hinxman (1980) or Pentico (1986).

In this paper we deal with assortment problems with deterministic demand 
and where cutting policies are used, i.e., where several of the demanded units 
can be obtained from one unit of the catalogue. It is important to distinguish 
the number of dimensions relevant for the assortment problem from the dimen­
sionality of the cutting operation, because cases exist in which they are different.
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Figure 1. Schematic representation of assortment problems

In the example shown in Figure 2 the cutting operation is two-dimensional but 
only one value can be chosen for the height of the stock parts.

Problems that imply only substitution policies are usually easier than those 
involving cutting policies. Examples solved optimally can be found in Vidal 
(1994) or Pentico (1971).

3. Cutting policies

In assortment problems involving cutting stock operations, it is important to 
study the relation between the two decisions (assortment selection and cut plan­
ning) and to evaluate the consequences of the assortment selection. Assortment 
problems with cutting policies can be seen as a generalisation of cutting stock 
problems where the stock sizes are no longer fixed and so the selections of sizes 
and of cutting patterns are addressed together. This accentuates the combina­
torial nature of the problem.

In this paper we deal with one and two-dimensional orthogonal guillotine 
cuts, allowing the existence of multiple stock sizes. These classes of cutting­
problems are very common and we face them in our co-operation with metal and 
furniture industries, which motivated the investigation on assortment selection 
problems.

To classify and distinguish different kinds of assortment problems we use 
a subset of a simple notation described in Borges and Ferreira (1994) which 
indicates the number of dimensions relevant for the assortment selection and 
the type of demand supply process which in this paper is always represented
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Cut of Stock pieces

Figure 2. All stock sizes share the same height but several widths are allowed

by the dimensionality of the cut operation. So we employ the code 1/1 for 
problems where only one dimension is relevant for both the assortment and for 
the cut planning. We use the notation 2/2 for problems where two dimensions 
are relevant to both decisions. In this notation the example in Figure 1 would 
be noted 1.5/2 (this problem was considered in Chambers (1976)).

The problems addressed here can be stated in the following way:
From a set of sizes defined as the integers or pairs of integers inside intervals, 

choose a subset of N sizes that, when used to supply a demand of smaller parts 
with integer measures, yields the lower cost. The cutting process consists of up 
to three-phase guillotine cuts and no pre-assumptions are made on the cost of 
the stock parts.

In most cases, as in the examples presented ahead, the stock parts’ cost 
is proportional to their weight, i.e., proportional to length in one-dimensional 
cases and proportional to area in two-dimensional examples.

Several methods have been proposed to address assortment problems with 
cutting policies but the combinatorial characteristic of the problems forces the 
methods to only engage ‘limited’ versions of the problems. No algorithm has 
been proposed, to the knowledge of the authors, to solve practically and opti­
mally the general 2D/2D assortment problem with multiple stock sizes.

Gemmill and Sanders (1990) generate approximate solutions for a stochastic 
version of the problem, though that is not the case addressed here.

The quest for a general method that might be able to solve most assortment 
problems demands further efforts and the comparison of solution procedures; 
here some basic difficulties arise:

• The proposed methods are generally conceived to deal with specific prob­
lems that are particular in relation to demand satisfaction constraints, 
type of assortment, dimensionality or cutting procedures. This implies 
comparison biases that are difficult to eliminate.
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• The methods to optimise nesting and cutting procedures used when choos­
ing assortments influence the behaviour of heuristics for assortment selec­
tion. When comparing methods for assortment selection, a dilemma arises, 
between two arguments related to which cut planning methods one should 
use: One argument is that it is not fair to compare heuristics for assort­
ment selection using other cut planning procedures than the ones used by 
the original authors, in particular when the assortment selection heuristic 
relies on characteristics of the cut planning procedure, as in the heuristic 
of Chambers and Dyson (1976); the other argument is that in order to 
make a fair and consistent comparison, the same cutting method should 
be used for different assortment selection procedures, as done in Gemmill 
and Sanders (1991).

• What merit should be awarded to the solutions found by any method? 
When one has several solutions it is easy to compare them quantitatively, 
but how should one compare them qualitatively? Up to which degree a 
specific method gives better solutions than another? The answer to these 
problems demands a general knowledge of their structure that in many 
cases does not exist.

The above mentioned difficulties lead us to approach these problems in the fol­
lowing way: first we take a look at some objective functions in order to gain 
knowledge about the solution space and as a pre-requisite to evaluate and com­
pare solutions and solution procedures; then we employ some general search 
procedures and compare the results. Several methods are used: descent meth­
ods, simulated annealing, tabu-search and a variant of tabu-search, as described 
further on in Section 5.

4. Objective function

The analysis of any optimisation problem benefits from the knowledge of the 
solutions space which, in many cases, cannot be represented. In the examples 
of 1/1 and 2/2 assortment problems, it is possible to generate a graphical repre­
sentation of the cost or objective function. To do so one must find the optimal 
cutting strategies for each possible assortment.

Calculating the cost functions demands intensive use of computer resources. 
To solve the cutting stock problems, both in one and two-dimensional cases, the 
PLACORTE software developed and commercialised by INESC was used. This 
software is based on a fast column generation technique (Oliveira and Ferreira 
(1994)) which improves the traditional Gilmore and Gomory (1965) delayed 
column generation by solving the LP problems to optimality in about half of 
the time. This algorithm uses specialised heuristics for the placement of the 
last pieces, in order to obtain integer solutions. Integer programming could 
have been used to solve the cutting stock problems, but the time cost would 
have been prohibitive for this kind of analysis, particularly in 2D problems. 
Furthermore, it is known that the round up property holds in many instances
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Demanded width Units demanded
16 2
67 32
75 1
84 1
182 10
194 7
207 5
220 5
245 7

Table 1. Problem AQOS1 

of cutting stock problems (see Marcotte 1985 and Washer and Gau 1993). A 
problem is said to have that property if the number of stock parts used in the 
optimal integer solution can be obtained by rounding up the number of parts 
used in its relaxed (LP) version. In our examples this property holds for most 
assortments. For the example shown ahead under the designation ACOS1, the 
round-up property is verified in more than 97% of the assortments, as shown in 
Borges (1994) by comparing the solutions of the relaxed problems with upper 
bounds for the integer ones.

As an example of a simple 1/1 problem we take the problem ACOS1, whose 
data is presented in Table 1. This example deals with the width of steel rolls 
and originated from the metal industry (F.Ramada S.A.). Figure 3 shows the 
cost values for the possible stock widths when only one width is to be used. The 
data for its generation was obtained by solving a cutting stock problem for each 
possible stock width. The cost of a solution with no waste is represented by a 
horizontal line and an arrow indicates the stock size originally used.

The cost function exhibits a saw pattern behaviour, because it measures the 
cost or total width, which increases with the stock size but drops abruptly each 
time the cutting patterns accomplish using one stock unit less. The graphic 
has two regions: when the stock size is small the cost behaves more irregularly; 
and for bigger stock sizes it becomes regular and predictable. These two regions 
correspond to different zones in the solution of the relaxed cutting stock problem, 
an similarly irregular first region followed by an almost flat line as shown in 
Borges (1994). Contrary to what is observed for smaller stock sizes, the minima 
for larger stock parts have very similar costs which are very close to the ideal 
cost (no waste), though they never reach it. As would be expected, the distance 
between local minima increases as the stock size increases, as do the maximum 
costs.

The original roll width (1030 mm) is clearly inadequate to the demand since
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Figure 3. Objective function for problem ACOS1

it leads to a cost so close to a maximum that the company could reduce the 
steel cost by about 8% if a better choice of the roll width was made, i.e., by 
improving the assortment.

As the next example, we graph the total cost of a problem using the list 
of small sizes from Gilmore and Gomory (1963), reproduced in the test data 
collected in Washer and Gau (1993). The problems considers 30 different de­
manded sizes, which makes the cut and stock problems much bigger and difficult 
to solve. That data generated Figure 4, where the displayed zone corresponds 
to the initial part shown in Figure 3. This curve also shows high initial costs 
but here the amplitude of the jigsaw patterns is like noise if compared with the 
global variations. The original stock size and the value of the ideal solution 
are again indicated by an arrow and a horizontal line, respectively. We can ob­
serve that the stock size used by Gilmore and Gomory is good for the demand 
considered.

Cost values for two-dimensional assortment problems can be represented as 
3D polygon meshes. To represent those surfaces the number of cutting stock 
problems that need to be solved is bigger than in the previous examples since 
two dimensions must be swept. The time necessary to solve a two-dimensional 
cutting stock problem is also longer.

Table 2 presents data for a 2/2 example, named PINHO30, that originates 
from the furniture industry (Moveis Machado S.A.). In the cutting operation 
no rotations are allowed. Figure 5 shows the corresponding cost surface whose 
behaviour is of the same type that was observed in the 1/1 examples. In two- 
dimensional problems found in this kind of industry the size of the stock parts



82 P.C. BORGES & J.S. FERREIRA

Stocked size

Figure 4. Objective function when using Gilmore and Gomory data

Table 2. Demanded sizes for example PINHO30

Width (cm) Height (cm) Quantity
900 380 30
800 510 30
1870 600 60
1340 600 30
920 410 60
900 38 58

is seldom of a much higher magnitude than the sizes of the demanded parts. 
Because of that, the working size is usually in the more mountainous area of 
the graph, i.e., in the region where the waste could be higher if precautions are 
not taken in the choice of a good assortment.

The examples discussed until now have assumed that only one stock size is 
selected but in many examples the assortment is composed of several sizes. If 
only material cost is taken into account, any assortment of two sizes a an b will 
have a lower or equal cost than the lowest of the costs obtained if size a or size b 
are considered alone. The cost function of an assortment with n sizes provides 
an upper bound of the cost functions obtained with assortments composed of 
more than n sizes. The more sizes we are allowed to have, the closer to zero 
waste we can get!
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Figure 6 shows the costs for problem ACOS1 when two stock sizes are con­
sidered. Two areas can still be identified and a diagonal cordillera can be seen, 
corresponding to the solutions where the two sizes are similar, the peak values 
corresponding to the values found in Figure 3.

In Figure 6, one can identify more flat areas corresponding to bigger but still 
different stock sizes, where a high density of local minima exists. In these areas 
it seems almost if any search procedure would find solutions that are ’relatively’ 
close to the optimum. Here it would be necessary to choose a poor search 
strategy to end up in an assortment with 1% more waste than the optimal! 
In some problems the situation could be more extreme, for example in a small 
problem named EIL60-1 after data collected in Washer and Gau (1993) and 
shown in Borges (1994), where most solutions lie in an interval of about 3%o 
from the optimal, when allowing for two stock sizes. From an optimisation point 
of view, heuristics whose stopping rules rely on a comparison between the best 
solution found so far and a lower bound (see for example Yanasse, 1994) demand 
some knowledge about the problem in order to chose an adequate value for the 
admissible error. This kind of observations shows the importance of the study 
of the objective function to allow the comparison of solution procedures. The 
global optimum can still be difficult to find and, in many cases, one must work 
in the more mountainous zone of the cost functions, as in many 2/2 examples.

5. Meta-heurist ics

It is theoretically possible to extensively calculate the cost of all feasible as­
sortments if software to plan the cutting operation is available; this was done 
in Section 4. However, such a solution is impracticable because of the time it 
demands, particularly if multiple stock sizes are considered.

There are many factors that complicate real problems; the existence of dif­
ferent cost structures, non-linearities, suppliers’ behaviour or specific costs per 
cutting pattern. This discourages, at an early stage, the investment in problem­
specific methods. For that reason we chose to use two well-known general search 
procedures, which have gained popularity in the last decade, namely simulated 
annealing and tabu search. It is not our intention in this article to tune the meth­
ods to a particular problem, but simply to compare the different approaches with 
some fixed parameter sets, which were believed to be adequate for the problem 
we address, as would happen in a real application.

The search procedures we will compare are:
® simulated annealing;
• descent methods;
• tabu search;
• a variant of tabu search.
All these methods take an assortment as their starting point. From that 

solution, described as a set of one or two-dimensional stock sizes, the method 
will iterate, moving to a new solution in each iteration until the process stops.
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Figure 5. Cost function for example PINHO30 with one stock size
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Figure 6. Total cost for example AQOSl, with two stock sizes
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The assortment obtained in each step is called the current solution and can be 
‘modified’ to a number of other assortments we call neighbours of the current 
solution.

The performance of these search procedures is influenced by many factors; 
the number of neighbours considered in each iteration, the way those neighbours 
are generated and the cost of evaluating a solution (in time or other resources). 
The time required to evaluate each solution can be long in assortment problems 
since one cutting stock problem must be solved to evaluate each solution. This 
means that the kind of cutting operation is significant.

As the methods are well known (see for instance Pirlot, 1992) we describe 
the implemented procedures only briefly:

5.1. Descent Methods

In descent methods, each successive current solution must have a lower cost 
than the precedent. In our implementation a greed parameter was introduced 
(named GREED in sequel). While searching the neighbourhood of the current 
solution, if the number of already searched neighbours that would lead to a cost 
improvement is equal to GREED, then the selection of a new current solution is 
forced without searching the current neighbourhood any further. If the GREED 
parameter is equal to one, the procedure behaves as a greedy algorithm and if 
set to infinity, the procedure becomes a steepest descent method, searching the 
entire neighbourhood before moving on.

5.2. Tabu Search

Tabu search includes mechanisms to overcome being trapped in local minima 
and to avoid cycling. To ‘step out’ of local minima it allows adopting the best 
neighbour, even if that leads to a cost degradation. To avoid cycling, a tabu 
condition is attributed to the most recently visited solutions so that moving 
to a solution with tabu status is prohibited. In practice this can be done by 
placing the last visited solutions in a tabu list that is looked up when generating­
neighbours. There are many variants of this method.

In the case of assortment problems, it was easy and efficient to keep a tabu 
list with the complete solutions and so the basic version of the search procedure 
was implemented. As a stopping criterion, we set a limit for the number of 
iterations without improving the best solution so far. A greed parameter with 
the same role as in descent methods was also introduced.

5.3. Tabu Search with infinite list of calculated solutions

Taking advantage of the existing code, we can efficiently store and search for all 
assortments we calculate along the way. This avoids solving the same cutting­
stock problems more than once and also allows simulating a tabu list of infinite 
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length. We made the search even more restrictive by assigning tabu conditions 
to all calculated solutions, including the ones that were never selected to be 
‘current solutions’. In each iteration, if a neighbour was calculated but not 
chosen to be the new current solution since a better solution existed ‘near’ it, 
then that worse solution is also assigned a tabu status. This procedure results 
in pushing the search forward to unexplored areas. Again the greed parameter 
was introduced.

5.4. Simulated Annealing

We do not describe simulated annealing; descriptions of this heuristic be found 
in Pirlot (1992) or Kirkpatrick, Gelatt and Vecchi (1983).

From the many possible cooling strategies we chose a convex quadratic de­
creasing function as suggested in Andersen (1993). • The only reason for this 
choice was that it achieved better results while solving the problem considered 
in that paper in comparison with other cooling strategies.

The temperature Ck in each iteration K is given by:

Ck = aK2 + bK + C

Where the parameters a, 6, and c are calculated as follows:

_ C0-CF _ 2(Cy - Co) _
(max J)2 max/ 0

The maximum number of solutions to search (‘stopping rule’) is represented 
by ‘max/’. The parameters Cq and Cf (initial and final temperatures) were, as 
in Andersen (1993), determined after an initial phase where a few solutions were 
tested. We chose to test three different temperature values that we think are 
reasonable and cover the range the thumb-rule used by Andersen would suggest.

The simulated annealing procedure can be written in the following way:

Function Simulated annealing:
x j // Current solution x is initialised with initial solution J
a (cO — cf)/(maxi2)
b 2(cf — cO)/maxi
c cO
iteration 0
do

do
temperature a • iteration2 + b • iteration + c
iteration iteration + 1
t = neighbour(x) // Random sequence without repetition, 
will-change <— 1
if cost_of_solution (t) > cost_of_solution(rr) and random [0,1] >
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exp(difference_cost_between_solutions(t, x)/temperature) 
wilLchange <— 0

while there_are_more_neighbors(rr) and wilLchange = 0
x t
if global_improvement()

best_x x
while wilLchange = 1 and iteration < max I 
return bestjx

5.5. Neighbour generation

To evaluate the importance of the neighbour generation we tested the same ex­
amples with two different ways of generating neighbours, one being an enhance­
ment of the other. We call the way neighbours are generated the neighbourhood 
structure.

The first neighbourhood structure is very simple: a neighbour is generated 
by increasing or decreasing one of the current assortment parts’ size in one of its 
dimensions by a step that could be equal either to the highest common factor of 
the measures of the demanded sizes in that dimension or to the smallest value 
observed in that dimension.

In the second neighbourhood structure, the solution parts’ sizes can also be 
modified in each dimension by the highest demanded value in that dimension 
or by the size of the most demanded part. This second structure allows bigger 
jumps and the use of the modal measures in the demand can also be seen as 
an intelligent attempt to explore the distance between ‘good’ sizes, which is 
eventually more frequent.

. Section 6 presents numerical tests and results using both neighbourhood 
structures.

6. Numerical results

We tested the meta-heuristics mentioned above with several parameterizations, 
resulting in a total of 13 particular implementations. The parameters used are 
indicated, together with the designation we will use in the rest of the paper to 
refer to each of the particular heuristics:

• Descent methods (D)
— DI GREED = oo Steepest descent
— D2 GREED = 1 Greedy algorithm
- D3 GREED = 3

• Tabu search (TS)
- TS1 GREED = OO

— TS2 GREED = 1 Greedy tabu search



Assortment problems with cutting policies 89

Table 3. Frequencies of being the best among the 13 heuristic (1200 initial 
assortments)

DI D2 D3 TS1 TS2 TS3 kTSl kTS2 kTS3 SAI SA2 SA3 SA4
10 8 10 52 36 136 297 33 198 183 153 115 309

0.83% 0.67% 0.83% 4.33% 3.00% 11.33% 24.75% 2.75% 16.50% 15.25% 12.75% 9.58% 25.75%

- TS3 GREED = 3

• Variant of tabu search (kTS)

- kTSl GREED = oo

- kTS2 GREED = 1

- kTS3 GREED = 3

• Simulated Annealing (SA)

- SAI cO = 2000 maxI = 1500

- SA2 cO = 1000 maxI = 1500

- SA3 cO = 300 maxI = 1500

- SA4 cO = 1500 maxI = 2500

The size of the tabu list in the TS heuristics is of 7 solutions. In TS and kTS 
heuristics, the limit for the number of iterations without global improvement 
was set to 120. In the SA heuristics, the final temperature OF was set to zero.

As a test problem, we use the data presented in Table 1 (ACOS1) and fix 
the number of sizes in the assortment to two. The maximum width allowed is 
600, which makes the objective function correspond approximately to the one 
presented in Figure 6. 1200 initial solutions were randomly generated (uniform 
distribution) and used as starting assortments for the 13 heuristics described 
above, i.e., the same initial set was used with all the heuristics.

The boxplots in Figure 7 summarise the results distributions. A cross indi­
cates the mean values and small dashes signal the 10th and 90th percentiles.

The mean values lie inside an interval of relatively small amplitude (a little 
above 1% of the cost values). The SA heuristics behaved well, namely SA4, 
and show the lower results dispersion. The variant of tabu search seems to 
behave better than the other TS heuristics. Table 3 presents the number of 
runs in which each heuristic was the best (i.e.: achieved solutions with lowest 
cost, including ties) among the thirteen heuristics, when starting from the same 
initial assortments. Analogously, Table 4 gives the number of runs in which the 
global optimum was found. Relative frequencies are also given.

Finally, in Figure 8, we compare the effort required by the implemented pro­
cedures. Descent methods behave well, especially if the small number of cutting



90 P.C. BORGES & J.S. FERREIRA

C
os

t

9550

9530

9510

9490

9470

9450

9430

9410

9390

9370
DI D2 D3 TS1 TS2 TS3 kTSl kTS2 kTS3 SAI SA2 SA3 SA4

Figure 7. Results with the first neighbourhood structure

Table 4. Frequencies of finding global optima (1200 initial assortments)

DI D2 D3 TS1 TS2 TS3 kTSl kTS2 kTS3 SAI SA2 SA3 SA4
1 3 1 10 0 18 27 2 28 7 9 7 14

0.08% 0.25% 0.08% 0.83% 0.00% 1.50% 2.25% 0.17% 2.33% 0.58% 0.75% 0.58% 1.17%
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stock problems is taken into account. This behaviour is somehow expected af­
ter the discussion about the cost functions taken in Section 4. It would be of 
interest to experiment with descent methods with multiple initial solutions and 
choosing only the best results. Could it be preferable? That issue is discussed 
further on.

The costs obtained using the second neighbourhood structure are summarised 
in Figure 9 while the number of cutting stock problems solved by each implemen­
tation are represented in Figure 10. The new results are generally better than 
the ones obtained employing the first, more simple, neighbourhood structure.

The tabu search heuristic with intermediate greed (TS3) outranks the steep­
est descent implementation of tabu search (TS1). The kTS3 heuristic also be­
haves well but it was the steepest descent implementation of the kTS heuristic 
(kTSl) that found an optimal solution in 21.5% of the runs, as shown in Ta­
ble 6. This advantage is derived from the stronger effort this implementation 
demanded (see Figure 10). The simulated annealing implementations reacted 
modestly to the improvement of the neighbourhood structure; SA4 demanded 
more effort but yielded better results than SAI, SA2 or SA3.

One conclusion is that the implementations inspired on tabu search improved 
further when the neighbourhood structure was enriched, in comparison with 
simulated annealing, where improvements were more modest. It seems that tabu 
search heuristics took more advantage of the knowledge about the problem that
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Figure 9. Results using the second neighbourhood structure

Figure 10. Number of solutions evaluated



Assortment problems with cutting policie 93

Table 5. Frequencies: best among the 13 heuristics (second neighbourhood 
structure)

DI D2 D3 TS1 TS2 TS3 kTSl kTS2 kTS3 SAI SA2 SA3 SA4
17 14 17 100 9 290 350 6 287 109 125 121 173

1.42% 1.17% 1.42% 8.33% 0.75% 24.17% 29.17% 0.50% 23.92% 9.08% 10.42% 10.08% 14.42%

Table 6. Frequencies: global optimum found (second neighbourhood structure)

DI D2 D3 TS1 TS2 TS3 kTSl kTS2 kTS3 SAI SA2 SA3 SA4
9 10 11 32 2 112 258 1 126 33 37 45 51

0.75% 0.83% 0.92% 2.67% 0.17% 9.33% 21.50% 0.08% 10.50% 2.75% 3.08% 3.75% 4.25%

was introduced in the search process. Tabu search would be placed somewhere 
between simulated annealing and problem dependent specialised heuristics as 
far as use of problem knowledge is concerned.

The performance of the descent methods suggested using them with several 
initial solutions and selecting the best assortment found in a group of runs. We 
use the same 1200 starting assortments considered in the comparisons above 
and group them sequentially in groups of 30 elements. Inside each group, the 
steepest descent algorithm is used and the best result obtained within each 
group is chosen. This yields 40 final assortments whose statistics are also shown 
in Figure 9 and Figure 10, under the designation DDD. Care should be taken 
in comparing those boxplots with the others as they only represent 40 solutions 
and not 1200. Descent methods do seem to perform well; this is due to the 
shape of the objective function in this kind of assortment problems (see Figure 
6). However TS3 and kTS3 still solve less cutting stock problems for a similar 
result.

7. Final remarks

The decisions that need to be made for assortment selection have a complemen­
tary role to the ones in cutting stock problems. Both problems are relevant to 
the operation of many industries although assortment selection problems have 
not received as much attention as cutting stock problems.

The graphical inspection of ID and 2D cost functions indicates that in many 
cases, discovering a reasonable assortment is not difficult if an optimal cutting­
procedure is used, though the optimal assortment might still be difficult to 
find. There may exist many minima close to the global optimum and still other 
solutions that impose a considerable amount of unnecessary waste. In these 
cases, extra care must be taken when comparing solution procedures because 
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the simple cost of the solutions alone might be a poor comparison criterion.
The existence of distinct variants of assortment problems leads to experi­

mentation with meta-heuristic methods instead of investing in the conception 
of specialised problem dependent heuristic methods for each problem variant. 
If the neighbourhood structure is poor, simulated annealing might have some 
advantage but when the neighbourhood structure is enriched with problem de­
pendent knowledge, then the implementations based on tabu search seem to 
improve more, in particular a variant with infinite list of calculated solutions. 
Anyway, it was not the intention to tune the heuristics’ parameters and the 
quality of the solutions seems to be quite correlated with the computing effort 
they demanded. This suggested trying the simple descent method with several 
initial points; and the obtained results were not worse than the ones produced 
by other heuristics. This was due to the kind of cost function in the considered 
assortment problems.

Writing of the present paper was partially supported by grant CIENCIA/ 
BD/2510
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