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Abstract: A new approach for construction of an object maneu-
vering model for evaluation of movement trajectory using Kalman
filter is proposed. The approach proposed is based on application
of the object’s dynamic equations. Such approach is better for ob-
taining adequate models of object maneuvering in comparison with
the known ones. The state equations of Kalman filter are derived
for describing the movement of a ship maneuvering by the heading.
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1. Introduction

The main disadvantage of the current approaches for construction of the object
maneuvering models is the following: the equations of object dynamics are not
used in them (Singer, 1970, Bar-Shalom and Birmival, 1982, Bogler, 1987, Moose
et al., 1979, Ramahandra, 1987). Therefore, the parameters of the maneuvering
movement model are treated as values not related to the parameters of object
dynamics. Such assumption causes difficulties in reasonable selection of the
above-mentioned parameters. In this paper, state equations of the Kalman filter
are derived starting from the ship dynamics equations. The equations proposed
are applicable for evaluation of trajectory and parameters of movement of a ship
maneuvering by the heading, using Kalman filter.

2. Problem formulation and its solution
We start from the differential equation of the ship velocity vector angle v(t):
P (8) + ey (t) = dp(2),

~ where ¢ = v/(aL), d = r?/(aL?), v — ship velocity vector modulus, L —
length of ship, a,r — parameters describing the dynamic performance of the
concrete ship (Basin, 1968); B(t) — process of shifting the helm.

1The investigations were partially sponsored by the International Scientific and Technical
Center (Project No. B-95).



64 B. BREZHNEV, V. MUKHA

Assume that ship maneuvering (change of the velocity vector angle v(t))
occurs because of random shifting of the helm A3(¢). The helm is shifted in
random moments ¢; at a random angle f3;, |3;| < Bmasz. Each shifting of the
helm implies reversing the sign of the shift angle. The number of reversals of the
angle sign during every interval ¢ is the Poisson random value with parameter o;;
Bi is a uniform random value distributed on the interval [—Bmaz, Bmaz]- It is
possible to show that in such conditions the random process () is stationary
in the broad sense; its mean value is zero, and its covariance function is

Rﬂ(T) — U%e—allﬂ, 0123 = %ﬁ?na:c‘

Consider the case when the ship executes maneuvers with some preset value
of relative bearing 1. Such movement may be considered as equivalent to the
movement of the ship in a pre-determined direction with automatic steering
device turned on, in conditions of random disturbance 3(¢). The flowchart of
the ship control system is shown in Fig. 1.
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Figure 1

For the above flowchart, the following expressions can be derived for the
covariance function and the mean value of the 1(t) process:

3
Ry(r) = A=Vl E(p(t)) = o, (1)
1=1
where
o3d? a102d?
A= 2 ﬂz 2 5, A2 = 2152 2\
201(af — a3)(af — a3) 2az(aj — aj)(a3 — o)
2 72
a0 d
As A >

~ 2a3(af - ad)(0f — i)’

c+ kds; + c+ kdsq 2
Qg3 =——5 _ — ) - kdsg.
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E is here the mean value operator. Indeed, the transfer function for the closed-
loop system (see Fig. 1) is described by the following expression:

Wo(p)
1+ Wo(p)Wis(p)W:(p)
d d

TP (c+kds)p+ kds,  (p—an)(p - a2)’

where a1, as are the roots of the following equation

Wyp(p) =

p% + (c + kds1)p + kds, = 0.

The spectral density of the input process 3(t) is the following:

Foo a?,
Sﬂ(w) = / e—]wTRg(T)dT = m,
—o0

therefore, the spectral density of the output process 9(t) is described by the
following expression:

0.2d2
s0(w) = 35@Was i) = o am 7 T el @ T o)

Applying backward Fourier transformation

+o0

Ry(1) = —217;/ e 5y (w) dw,

—00

we can derive the covariance function (1).
The projections of velocity vector on the axes of Cartesian coordinate system
are described by the following expre-sions:

2/(t) = va(t) = veos($(t) + o),

Y (t) = vy (t) = vsin($(t) + o),
where 1?)(15) = 9(t) — 0. Assume that () is a normal process (the output

process of a linear dynamic system) with the covariance function Ry (t1,%2).
Using the following table integrals (Prudnikov et al., 1981):

+oo
/ exp(—q*z?)sinz dz = 0,

-0
+o0 )
/ ea:p(_q2;1;2)cos$ dz = —\/jexp(—-—2>,

and taking into consideration that one-dimensional and two-dimensional dis-
tributions of process v(t) are normal, we can derive the following auxiliary



66 B. BREZHNEV, V. MUKHA

formulas:

.o .o o o o's)(t)
E(sint(t)) = 0, E(siny)(t1)cosyp(t2)) =0, E(costp(t)) = exp (— 3 ),

Bleost(tn)easi(t)) = exp( 5 (Roltr,12) + Ryta,12) ) bR, ),

Blsind(tn)simi(t)) = exp (=5 (Roltr, 1) + Rylta,12) ) shRo (i ),

where sh and ch are, respectively, hyperbolic sine and cosine. Using these
formulas, we can derive the covariance functions and the mean values for the
z'(t), y'(t) processes:

’02 2, p ’U2 2 R
R, (1) = ?e‘% (efte (™) — 1) + 760522006_0"’ (e7fv() _1), (2)
2 2
Ry(r) = %e-ai (ef+ (™) —1) — %—6032¢06_”3’(6_R“’(T) - 1), (3)
E(z'(t)) = v cosppoe™"4/2 = ¢y, (4)
E(y'(t)) = v sine™4/2 = Cys (5)

where 012/) = A; + Az + A3 — variance of 9(t) process. In this paper, we neglect
the mutual covariance function of the processes z’(t),y’(t), i.e., we assume that
the processes z'(t),y’(t) are independent. For next transformations, instead of
the exact expression (1), the following approximating expression will be used:

Ry(r) = aie_“h', (6)
where
a = maz{ay,az, as}.

After expanding the exponential functions in (2), (3) into Taylor series in the
vicinity of Ry (7) = 0, using only linear terms and taking into consideration the
expression (6), the following expressions will be obtained instead of (2), (3):
Rar(r) = o2l )
Ry (r) = apelm, 8)
where
o2 = vzoisinzwoe_ai,
031 = vzaicoszwoe°”?ﬁ.

The processes with the covariance functions (7), (8) and mean values (4), (5)
are generated by the following differential equations:

z"(t) + az'(t) = cp + wa(t), (9)
y'(t) + ay'(t) = ¢y +wy(?), (10)
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where wg(t),wy(t), are white noises with spectral densities 2a0?2, and 2002,
respectively.

From the continuous time equations (9), (10), the discrete time state equa-
tions (Astrém, 1970) can be obtained. After such transformation, the following
state equations of Kalman filter will be obtained:

X(k+1)=FX(k)+ Wy(k), (11)
Y(k+1)=FY(k)+ Wy(k), (12)
where XT = (z,2,cz), YT = (y,9,¢y), T — transposition symbol, z,y —
ship coordinates in the Cartesian coordinate system, ', 3’ — projections of ship

velocity vector on axes X and Y, ¢z, ¢, — mean values of ship velocity on axes
X and Y, F — transition matrix described by the following expression:

1 (1-ezp(—al))/a (exp(—aT)+aT —1)/a?
F = 8 emp(O—aT) (1 - ezp(—aT))/a . (13)
1

Covariance matrices of noise vectors W, (k) and Wy (k) are described by the
following expressions:

2 2
Qa; — ( 20{0(')le g )7 Qy — ( 200(')le g ), (14)
_( (4e=°T =3 —¢~22T £ 2aT)/20° (1 -2e7°T +e72°T)/2a°
Q - (1 — 9T + e—2aT)/2a2 (1 _ e—QQT)/za ’

where T' — sampling time period. Taking into consideration that the processes
#'(t),y'(t) are assumed independent, equations (11), (12) are also independent.

Let us consider the process of deriving model (11), (13), (14) from model (9).
The equation (9) can be presented in the following vector normal form:

X'(t) = AX (1) + Wa(t),

where
0 1 0
XTt)=(z vz o)y WIt)=(0 wy 0), A=| 0 —a 1
0 0 0

The following discrete time state equation corresponds to the above equation
(Astrom, 1970):

X(ti+1) = F(t,;+1, ti) X(ti) + Wm(ti),
where F(t;y1,t;) matrix is a solution of the following differential equation:

’d_F‘((i'tt—,—til = AF(tyt'L)) ti S t S ti+1> (15)

F(t;,t;) =1, (16)
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I — identity matrix, W, (¢;) — series of independent random vectors with zero
mean value and the following covariance matrix:

Qe = EW,(t:)WI(t:)) = /t.tiﬂ F(tit1,8) R(s)FT (tiy1,s)ds, (17)

R(s) — the intensity of white noise W,(t),

0 0 0
R(s)=| 0 2a0% 0 |. (18)
0 0 0

By solving equation (15) with initial conditions (16) under t;1; —t; = T, we
can obtain the following matrix exponential expression:

F(T) = F = exp(AT),

from which expression (13) is obtained. Substituting the matrices (13), (18) in
integral (17) and taking this integral, we obtain the expression for matrix Qs
in (14).

Similarly the model (12), (13), (14) is derived from the model (10).

Assume that the values of the distance between the observer and the object D
and the angle of direction to the object (bearing) ¢ are measured. The results
of measurements can contain errors. The observed values 23,2y of the object
coordinates z,y are defined by the following formulas:

2z = Dcosyp, z, = Dsine. (19)

Starting from these formulas, the following expressions for observation equations
are obtained:

Zz(k) = Hy X (k) + vz (k), Zy(k) = HyY (k) + vy (k), (20)
where 2, z, are the observed values of the z,y coordinates,
H,=(1 0 0), H,=(1 0 0),

vz (k), vy (k) are the series of independent random values (measurement errors)
with mean values equal to zero, and variances defined by the following expres-
sions:

02 = og%cos’p + Dzaisinzw, 05 = o5 sin’p + chrf,coszgo, (21)
o} is an error of distance measurement, 03, is an error of angle measurement.
The expressions of variances (21) are obtained by linearization of functions (19)
in the vicinity of exact values of distance and angle, by calculation of variances
for linear forms obtained, and by substitution of the observed values in place of
the exact ones.
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As a result, the state equations (11), (12) and the observation equations (20)
are obtained. The Kalman filter for them is described by the following expres-
sions (Kalman, 1960):

Xo(k) = FXp(k - 1),

Pro(k) = FPys(k — 1)FT + Q,,

Ty (k) = Pre(k)Hy(Hy Pre(k)HE +02)71,

X5(k) = Xe(k) + T(k)(22(k) — He Xe(K)),

Pog(k) = Pre(k) — To(k) Hy Pre(K),

Ya(k) = FYj(k—1),

Pye(k) = FPys(k — 1)FT + Qy,

T, (k) = Pyo(k)Hy (H, Pye (k) HE +02)7,

Y7(k) = Yo(k) + (k)2 (k) = H,Yo(k)),

Py (k) = Pye(k) = Ty (k) Hy Pyelh).
In these expressions X(k),Y.(k) are one-step predictors of the state vectors
X,Y, Pye(k), Pye(k) are error covariance matrices, I'z(k), T'y (k) are filter gains,
X¢(k),Ys(k) are corrected state vectors X,Y, Pys(k), Pys(k) are error covari-

ance matrices. The calculations in the above expressions are to be executed in
the order in which these expressions are presented.
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3. Simulation

For the problem discussed above, the computer simulation was executed with
the following parameters: v = 8.22, a = 1.3, r = 1.0, L = 130.91, k = 1.429,
ar = 0.033, Braz = 35° 9o = 45° op = 100, 0, = 1.7°, T = 15. The
process of movement illustrated on the flow chart (Fig. 1) was simulated. The
results of simulation are presented in Fig. 2, where the movement trajectory, its
observations and filtration evaluation of trajectory are shown. The accuracy of
filiration can be estimated by the value of total deviation from trajectory over
all steps. For observations shown in Fig. 2 this value is equal to 5980, and for
filtration evaluation it is equal to 5589. In spite of simplifications used in model
construction (11), (12), the results of simulation confirm the applicability of the
proposed model for evaluation of the maneuvering object’s trajectory.
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