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Abstract: In this paper. we investigate the exact controllability
for a mixed problem for the equation
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in a non cylindrical domain. This model, without the resistance
represented for f(u), is a linearization of Kirchhoff’s equation for
small vibrations of a stretched elastic string when the ends are vari-
ables, sce Medeiros, Limaco, Menezes (2002). We employ a variant,
due to Zuazua (1990b), of the Hilbert Uniqueness Method (HUM),
idealized by Lions (1988a, b).
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Introduction

Let us consider a stretched elastic string with ends ag < fy on the = axis,

wi

th a < ap < fo < b, and fixed a, b. Suppose that the ends ag and Sy

move continuously to the position a(t) < ag and 8y < §(t), where a < a(t) <

B(

t) < b, and we consider the transversal vibrations of the string at the position

Ja(t), B(t)[. In Medeiros, Limaco, Meneses (2002), they obtained a nonlinear
model which describes this type of vibrations with moving ends, which contains
the Kirchhofl’s model as a particular case, sce Medeiros, Limaco, Meneses (2002)
part 2. When we linearized it, we obtained the equation

o[, ErO=w),

J?:'J‘_‘O!
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where 7y is the initial tension, m the mass of the string, £ is the constant
which depends on the material of the string, v (f) = 8(¢) — a (), ag = a(0),

o
Bo = f(0) and vo = v (0). By u' = u' (z,t) we represent the derivative ‘(’}Etf and
2
by uzz = ug, (z,t) the one dimensional Laplace operator —1:
We consider in our investigation the above model perturbed by a nonlinear
term of the type f (u). For T' > 0, we denote by @ the non cylindrical domain
of the plane R? defined by

Q={(z,t) eR: a(t) <z < (1), Vt€]0,T[},
with lateral boundary ¥ defined by
E=FuE, |
where
So={(t,a(t); Vt€]0,T[} and £, ={(t,8(t); Vt€]0,T[}.
In this work, we shall consider the mixed problem

T k~y(t) -
_o_l__‘}() Yo
0

" = . ~
R ure+ fW=0 in @

u=|¥ oOn 5 (1)
0 on ¥ '

u(0) =ug, ' (0)=1w in  Jao, Bol-

The exact controllability problem for (1) is formulated as follows: given
T > 0 large enough, find a Hilbert space H such that for each pair of initial and

final data {ug,u, }, {20, 21} belonging to H, there exists a control ¢ in L? (ﬁg),
sucn that a solution u = u(z,t) of (1) satisfies the condition

u(T) =2, u'(T)=2. (2)

Considering in (1), f(s) = os, we investigate this problem by mean of Hilbert
Uniqueness Method (HUM) idealized by Lions (1988a, b). See also Zuazua
(1990a), Komornik (1994) and Milla Miranda (1995) among others. In Milla
Miranda (1995), the author studied the exact controllability of (1), without the
linear non term in a particular domain. When we employ HUM, we need certain
inequality called ”inverse inequality”. In this one dimensional case, there is an
argument used by Zuazua (1990a) which we consider here, see 3.2. The argu-
ment was used by Medeiros (1993), when he investigated exact controllability
for Timoshenko’s system for beams.

In the general case, with f non linear, we employ a method idealized by
Zuazua (1990b) that consists in the fix point argument.

Concerning the simultaneous controllability of a pair of linear hyperbolic
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2. Notations, assumptions and results

As it was done in Medeiros, Limaco, Menezes (2002), when (z,t) varies in Q

—alt
the point (y,t), with y = £ 73)( ), varies in @ = ]0,1[ x ]0,T[. Then the

application
T:Q-Q, T(z.t)=(.t)

is of class C? and the inverse 7! is also of class C?. Therefore the change of
—a(t)
7 (2)

. 3 & £ :
variable u (z,t) = v (y,t), with y = , transforms the equation (1); into

the equivalent equation
o'~ [a(y,t)vy], + b (@, 1)V, +c(y,t) v, + £ (v) =0,

where

k4 (8) — 3
o) = e {2+ ETOZ )42},

b(y,t) = -2 [W]
and

c(y,t) = - [M]

v (t)

In this way, it is enough to investigate the exact controllability for the equiv-
alent problem

v" — [a(y,t) ‘Uy]y +b(y,t)vy, +e(y, vy +f(v) =0 in Q,
v(0,t) =w(t), v(l,t)=0 on ]0,T[, (3)
v(z,0) =v(z), v (x,0)=nu0(z) in ]0,1[.

To study (3), we need the hypotheses
a, B € W3 (]0, 00]) N W (10, 00])

loc
a(t)<pB(t), a'(t) <0< g'(t), Vte[0,T], (4)
o' )+ O3l < (52) YeDEQ, (5)
@ @+ 0 < TOELOL v eq (©)
and f satisfying
f(s)

ffeL®R); 3 lim ——= =g, (7)



240) FF.D. ARARUNA, G.O. ANTUNES, L.A. MEDEIROS

this is, f is asymptotically linear since it behaves like s as |s| — oo.

The problem (3) has a unique global solution. So, there exists a unique
global solution for the problem (1).

Setting

0%
= .o L 8
32m (b —a)’ ®)

we obtain

a(y,t) = Vho |b(y.t)] > ko >0, V(y,t)€Q. 9

In fact, from (5). we get

a(y,t) EE(TTQ—T) and by, 0] < = ETT
Therefore,
a(y,t) \/_Ib (Y1) > —— 2 ko >0, Y(y,t)€Q.
2m (b - a)
We have also by (6) that.
by (y,t) = ¢y (1) 2 pro >0, Y (y.t) € Q, (10)

see Medciros, Limaco, Menezes (2002), Remark 3.2.

3. Exact controllability

We are interested in obtaining the exact controllability of the following problem

= la( :,-,.-‘]uJ.] +o(y, ) vy +e(y, v, + f(v) =0 in Q,
v (() t)=w(t), v(l,t)= U on ]0,T[, (11)
v(y,0) =vy, v (y,0)=1u in ]0,1{.

We announce the main result.

2
TuroreMm 3.1 We assume the hypotheses (4)-(7) are satisfied. Let T > \/T'

0
ko given by (8), then for every initial data {vo,v,} € L* {(0,1)x H=' (0,1), there
exists a control w € L* (0, T) such that the solution v = v (y,t) of (11) satisfies

wilie TN e aag ad Lo TN = 4w 10O 1T {19%
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Proof. In the proof of this theorem we will use HUM. We will divide the proof
into cases.

Case 1. The lincar case f(s) = os, Vs € R with ¢ fixed in R.
Let us consider the operator

Lv=1v"=[a(y,t u,,] +b(y,t) vy, + c(y,t) v, + ov (13)
whose formal adjoint is

L2 = 2" —[a(y,t) w,,} +b(y,t)z, + [V (,t) —c(y, 8)] 2y +
+ by (y, 1) 2" + [l) y,t) — ey (y,8)] 2+ 0z (14)

By the linearity and reversibility of this case, we consider the null final data.
Step 1. Given {¢o,¢1} € D(0,1) x D (0,1), we consider the adjoint problem

L*¢p =0 in @,
$0,8) =¢(1,t) =0 on 10,77, (15)
¢ (2,0) = o (x), ¢ (2,0)=¢;(z) in ]0,1]

This problem has only one solution. Furthermore
¢, (0,t) € L* (0,T).

Step 2. Using the solution ¢ of the problem (15), we consider the backward
problem

Ly =0 in @,
¥ (0,t) =—¢,(t), %(1,t)=0 on ]0,T7, (16)
Pz, TY=9 (£,T)=0 in 0, 1[.

The problem (16) is well set.
The operator A. Starting from the solution of (16), we define the operator

{Po,¢1} = A{do, 1} = {¥'(0) +b(0) ¥, (0), =4 (0)} . (17)
Step 3. Multiplying both sides of (16), by ¢ and integrating in @, we obtain
(L, §) = = (&' (0) + b (0) 49, (0) . o) + (¥ (0), 1) +
+ /0 "0 (0,1) 16y 0.0 dt + (5, L")

Observing (15), (16); and (17), then

T
(A da. D1} Ada. b)) = / a (0.8 1 (0. DN At (1R)
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Let us define in D (0,1) x D (0,1) the quadratic form

9 d <
o, 1 } 1% = /0 a (0,) |6, (0,0)[2 dt. (19)

It follows from Holingren’s theorem that the quadratic form (19) defines a norm
in D(0,1) x D(0,1). The operator A defined by (17) is lincar and continuous
with the norm ||-||;. Then it has a unique continuous extension to the closure
of D(0,1) x D(0,1),with respect to ||-]|,-, which we will denote by F. Thus,
the bilinear formn defined by (18) is continuous and coercive in F' x F. Hence, as
consequence of the Lax-Milgram’s theorem, the operator

A:F o F

is an isomorphismn. Therefore, for {v;, vy} € F', there exists a unique {¢o, ¢, } €
F such that

A{do, 41} = {o1 +b(0) (), —w} in F. (20)

By (17) and (20) we conclude that the unique solution of (16)satisfies (11);.
Then the unique solution of (11), with control

w (0,2) = —¢y (0,1) (21)
satisfies (12), with zg = z; = 0. To complete the controllabibility of the problem
(11), we characterize the spaces F and F' as being H} (0,1) x L?(0,1) and
H='(0,1) x L*(0,1), respectively. We will do it by the following lemmas:

LEmMA 3.1 There exists a constant C* > 0 such that

T
c /ﬂ a (0,2 |6, (0,)1 dt < lIgoll7pa 0,1y + 11611 720.1) - (22)

LiMMA 3.2 We assume the hypothesis of Theorem 8.1. Then, there exists a
constant C** > 0 such that

i
2 2 - 2
H‘f’ﬂ”ulg(a_” + |l ”;,2(0_“ <C a(0,1) |¢y (0,8)]" dt. (23)
Jo
Assuming the previous lemmas are true, we have that

1 2
o {0, ¢ }Hn;:m] x12(0,1) S

T
9 1 5
[ a(0,t)[¢y (0,8)]"di < C ”{%,Qﬁl}”}ftl,(o_”xum‘u .
Jao !

el ~ - rrl in oan TREEL AN s e S BeaxE T Tr=1 ¢/ 1y o T2/ 1)
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REMARK 3.1 Multiplying the equation L*¢ (t) = 0 by ¢' (t) and integrating on
10,1[, we obtain

1/t : i £ 5
E'(t) = 5/ a' (y,) |y (y, )| dy — ;;/ by (g, 1) ¢ (v, )] dy+
0 “JO
o1 1 o1
-0 (/)(va) ¢, (Uat) (11,1 *+ 5/ [blyl (Uvr) (7/7 )] |¢(l/) )| (lJ +
0 JO

- [ 000 =06, w0 w0 i,
where
B =3 [ (16608 + o016, 0 +
+ [0, 0,0 = e, )] 10 (0, OF ) . (24)

Note that by (9) and (10) the quadratic form E(t) is positive.
Therefore,

|E' ()| <C () E(1), (25)
with
a ()| w W (t) = ()]}
c(t):_____” ()25 QD 4 by )Ml o,y + I &) . ine S

IO~ Ol | (1+ L) ol.
o Ho

From (25) we obtain
—CHE@)SE () SCHE(). (26)

From the hypothesis (4), we have
00
/ C (t)dt < Cy. (27)
0

Combining (26) and (27), we conclude that
CiE(0) < E(t) < CE(0), Vtel0,T], (28)

with C; = e~ and Cy = €0

Proof of Lcmma J 1 In this ploof we use the mu1t1p11e1 method as in LlOl’lS

/1000 \ T~ 1. 1 VRRY
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obtain, after some calculations, that

1

T ’
—-] a(0,t) ¢y, (0, .“-]|2 dt = 1/ a(y,t) gy (y, t)[2 dydt+
2 /o 2Jg

1 2
+ 3 [ @000 (L= 016, (0 dy -
Q
,,.

- (#0+3p0s0.0-n0,0)| +
310w or a3 [ G0 G-pigGof - )
-3 jQ W (0:6) = e (3, ) (1 = ) |8y (9, DI eyt —
- /(;oqb('y,t)(l = y) ¢y dydt — %/Q [0, (1) = ¢, (y, )] o (y, )] dydt +
+3 ]Q [, (.6) = ¢ ()], (1= ) |6 9 1) dydt +
b3 0 (0= 0,04 (.00

From (26), we have by (20) that

T
%/ a(0,t) ¢, (0,8)]? dt < TCLE (0) +
1]

1 3
+ —/ ay (y,t) (1 = y) |y (y, £)|” dydt —
Q

2
I ,
- (q’)' (1) + .-)n’; (t) ¢y (), (1 —) &, (.“)) N
i 0
o 2
+ 5.[:?(;'r {?l, t) (1 = !;‘) I(;}y (y‘,f)l' (h}dt _ (30)

I . .
- 5/ b (y,8) = (1, )} (1= y) |y (v, 1) dydt -
Q
= j o (y,t) (1 —y) ¢ydydt +
Q
1 2
+ §/Q [b) (1) = ey (1)), (1 =) |6 (v, )] dyat +

+ [0, 0= 4,0, () dvds
Q

We will analvze each term that appears on the right hand side of (30).
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Analysis of %/ ay (y,t) (1 —y) oy (v, t)|° dydt:
Q

1 5
5/% (y,t) (1 = y) @y (y,t)|” dydt <
JQ

llayll Lo
& JWILR(G) / (0, ) |6y (3, O dydt.
Qko Q
if ,
Analysis of 5] c (y, 1) (1 = y) [@y (y, t)|” dydt:
Q

1/ 2
3¢ 000 =)l (0 dya <

; (32)
c oy 2
< “”;T(Q)/ a(y,t) ¢y (y,t)|" dydt.
0 Q

Analysis (}f] (b (y,t) — c(y,0)] (1 - y) ¢y (y,)|? dydt:
Q
[ @0 =010 =)ty 0,0 dyat <

b — =)
SLM/ (y,1) |y (y,1)|* dyat.

Analysis of / o (y,t) (1 —y) ¢y (y,t) dydt:
Q

/ 0 (y,t) (1~ 4) b, (4, 8) dydt <
) jo| -

1 .
Analysis of 5 | 1, (1,8) = &, ()], (1= ) 1 (0, 1)" dy
Q

1 2
3, 00— ey 0,0, (1= Io 0.0 dyie <

< Mﬂ_@/ [b ( = 2 _ (35)
T 2 1 0) = e (6] 10 0 O dy:
Analysis of fQ by (4,6) (1= ) & (3,8) 6, (4, ) dy:
/by (y,t) (1 = y) ¢ (y, 1) by (y,t) dydt <
(36)

byll o
< “”L—(m[ {16/ (. ) + & (5, ) 160 (. D12} .
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Now, set,
X0 = (60 306,0,0-6,0).
then
. Cy = b : D)
ons [ 10 ol [(awoe, el dyd-t}‘
Jo 0

_1__ i ”b”;,mlcg}
\/EE ko '

Thercfore

|X ()] < C3E(t)

with C3 =

and
[X(0) = X(T) S 2||IX (V| oo,y S 2C3E (D). (37)

Substituting (31)-(36) and (37) in (30) and using (26), we obtain that

T
1/ a(0,t) |6, (0,8))* dt < CLE(0),

2 Jo
where
Cy=CaT H”””LN:Q) + 1€l oo ) + IV = el () + ”h”“b*(fe}
B ko ko
1, = eull 2C:
g 20 el o 0L SR
210 VEorto r
concluding the proof of the lemma. i}

Proof of Lemma 3.2 Here we employ the argnment of Zuazua (1990a). Let us
define the functional

Gy) = %/T_Jy {]r.a’ 0" +

oy

+a(y,t) |{f}).’! (v f)f + [b:_a (y.t) = Cy (v, 3)] l@" (v, f’)lz} dt, (38)

1
nth § = — and ky given by (8).
with 7, = wmd Ay given by (8)

Note that

17 :
=2 ot Db (0 B2 at (39)
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The derivative of the functional G is

T—4d7
G’(:ﬂ;)=li {6 (1) @), {y,f)+f" .) |6y (y, 1) +
J iy

. by (y,t) = cyy (51

+a(y,t) oy (y,t) dyy (y,1) [ (J } 5 vy (0,1)
+ [b_:_; (yaf) — Gy ('.U', f)] {i’ (y! 't) rb!.f (?f?”}d" ==

*% ¥ {ch' (O +a (. 0) |y () +

t=T—dy, by

+ (b, 08) = ¢y (0] I (. O } (40)

6 (y, ) +

Integrating by parts, we get

T-dy T-d8y
[ ¢’ (y,t) &y, (y,t) dt = —/ ¢" (y.t) by (y,t) di+

Jiy oy

[#' (,t) by (1)1, (41)

Since

" = y ('y:f')d’y +“(?hﬁ)¢yy— (1;"1 (b _[.r} Y, t) c(:’;’;”lqjy_
— by (y,t) &' = [V, (y.t) — ey )] d—0d in Q.

we conclude, using (41), that

T—dy T—dy
G'(y) = —5/ ay (y,1) |6y (. 0)] r!f+/ b(y,t) @), (y,t) by (y,t) dt+

L'iy :5_!,'

T—dy X Gy
+/ (V' (y,t) = c(y,0)] |y (v, 5)|'ff-f+] by (Y1) @' (y, 1) by (y, t) di+
Sy ay
T—dy

T -8y
+'-’-j§ [0, (y,t) = ¢y (u,1)] & (y,1) Dy (y, 8 }fﬂ+0/ ¢ (y:t) @y (y,t) di+
u

oy

T— r)r,-
2/ _,u',p (?hi) (W (y t)] Id’ 'Us I df-}‘ {¢J (!}" Cli';,i (Jv “T Jy

é )
) Z {|¢'I(ln" 'f[ +a(y,t) o by (Y,1) l + [b (y, 1) = l’-'y(if,‘,t)] |¢’(?}JJ|-}-

t=T-dy.by



248 F.D. ARARUNA, G.0. ANTUNES, L.A. MEDEIROS

We have that

T-dy 1 T-6y "
[ b0 w0e,God=-3 [ Vw0l @l a
¥

oy
1 1|6y 1 [T :
+35 [ 1oy 0 0F] | s-—/ V' (5,1) oy (v, OF dt+ (43)
sy 2 oy
1
+3 > b Ollgy w0
t=T—-dy. 0y

and

MIC‘*—-

¢ (. 0) ¢y (0,0)] < v,_{|¢* W, OF +koly (0,0 } < 5 {16 ) +

+ [a (y,t) - lﬂﬁ—)] 6y (. + [b), (w,1) — ¢y (,8)] ¢ (y,t)lg} .
(44)

Thus, substituting (43) and (44) in (42), we deduce that

1 e 2
G'(y) < _E/ lay (y,t) + V' (y, 1) + 2¢(y, t)] |y (y,1)|” dt+
sy

T—dy

T-6y

[ w08 006, Godra[ o006, w0
o W (45)

T-dy

+?[6 (b (. 1) — ¢y (y,1)] & (y, 1) by (y. 1) }dt+

y

1 T—Gy 5
+§/.5 [b;,-y (y,t) = cyy (u,1)] | (y, t)|” dt.
y

We will analyze each term of the second member of (45).

T-dy .
e Analysis of ~% / [ay (y,t) + V' (y,1) + 2 (y,0)] |y (y, )" it -
dy

T—éby P
]6 [y (:8) + ¥ (0, ) + 2¢ 0, ] 16, (v, DI dit <

I b+ 2] s (46)

a, + + 2c e T—dy

< 4 L {Q)/ a(
¥

B 2ko Y, t) by (y,1)|* dt.

T—-dy
a Analvsis nf [ o lu. Y (u. 1) .. (u. t) dt:
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T—dy
/ by (y,t) &' (y,t) by (y,t)dt <

dy

TR R
<), {06or+awolmor}a.
T-dy
e Analysis of (T/ ¢ (y,t) oy (y,t)dt :
oy
T-by
a/ b (y,0) by (y, 1) dt <
dy
< [ 0016, 00 e+ 8 00 - 0,0] 16,0} e
-2 oMo J by . ¥ "
(48)
T-6y
o Analysis of 2/ [b; (y,t) — ¢y (v, t)] & (y,t) oy (y,t)}dt :
T—-6y &
2/5 [0, (1) = ¢y (,1)] @ (u, 1) by (y, 1)}t <
v
“ V E;r - C!""Lm(Q) T-oy 2 (49)
+ [0 (,8) = ¢ (0, 0] 16 (3,00 } .
1 "
e Analysis of 5/ [0, (s t) = cyy (4, 1)] 16 (y, )| dt :
L o8 ) )
i) 0= G0] b0 ar <
R Y
YUl Lo ] 2
e [ ) - e ) 1o

From (46)-(50), we get, by (45), that

G'(y) < CsG (y),

where
“ay + v + Qc”;,m.[Q) ”by“L“’(Q} * ” v E;J —Cy ILW(Q)
Cs = - i +
ko Vko

" ”b;.ry _'c!r’y”Loo(QJ P |r!]_
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Hence

with Cg = e“5.
Integrating (51) in ]0, 1[, we have

1

G (y)dy < CsG (0). (52)
0

2
Since T'> —= = 24, we obtain, by (28), that
T y (28)

T—6 1 [T-¢
(T—25}E(0}=/ E(o)dtg—-/ E(t)dt =
Jé Ci. &
1 [T-6 5 "
i) [ {1 wor +awole ol +
+ [, (y,t) — ¢, (1, 1)) |9 (3, t)l"’} dydt. (53)
From (38) and (52) we modify (53) to obtain
(T - 26) E (0) < -l_/lc(y)fzy <%q0),

which implies in the inequality (23). O

Case 2. The general case with f nonlinear.
Using the solution ¢ of the problem (15), we consider the backward problem

& ~la(y,t)v,], +o (1) &+, )&+ () =0 in Q,
£(0,t) =—¢y(t), &(1,t)=0 on 0,7, (54)
E(T)=20, £ (T)=2n in  ]0,1[.

The solution £ of the (54) can be written as
E=z+4+0+n,
where z, 8 e 7 are solutions of the following problems:
2" = [a(y,t) z), +by,t)z, +c(y,t) 2y +0z =0 in Q,
2(0,8) =z (1,8) =0 on 0,77, (55)
z2(T) =29, 2'(T)=2 in ]0,1].

0" —[a(y,t) 0y, +0(y, 1) 0y +c(y, 1) 0y, +00 =0 in Q,
0(0,t) = =, (t), 6(1,£)=0 on 10,7[,  (56)
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and

[m/J] +by, +eny+f(z+0+n)=0c(z+0) in Q,
71 (O,f) = 17(1 1) =0 on 0,T[, (57)
n(T) =7 (T)=0 in ]0,1[.

We can see in Milla, Miranda (1995) that the solutions z e 6 of (55) and (56)
belong to the class

z,0 € C([0,T);L*(0,1))nC* ([0,T); H™' (0,1)) , (58)
and that for T > 0, there exists C = C (T') > 0, such that

||'3HL°"((),T;L3(0,1)) + HZIHLOO((),T;H—1(0‘1)) S CH{ZOaZI}HLZ(UJ)XH—I((U) (50)

and

1611 Lo 0,75 22¢0,1) F 16| Lo 0.7 11-1 0,1y € Cl{¢0, 61 1z 0,1)x L2(0.1) - (60)
For the solution 7 of the (57) we have the following result:

LEMMA 3.3 For every {do,¢1} € H{ (0,1) x L‘)( 1), {z0,21} € L*(0,1) x
H='(0,1) there exists a unique solution 1 = 1 (y,t) of (57) in the class

n€C([0,T);L%(0,1))nC' ([0,T); H'(0,1)) . (61)
Moreover, for any e > 0, there exists a positive constant C (&) > 0 such that

||"1”1,°e(0,7‘;113(0,1)) F 'l oo 0,502 (0,1)) S

<e€ {|I{¢(]’¢1}HH&(0,1)><L3(0,]) + {0, 21 } 1,'2(0,1)><n—1(o,1)} +C(e).

Proof. We remark that by (7), the function 5 — f (2 4+ 6 + ) is Lipschitz. In
this way, we can see in Milla, Miranda (1995) that there exists a unique solution
77 in the class (61).

Consider the energy

(62)

i
Bon =g [ {0 wof +aomwor}a, v, (©)

Multiplying the equation in (57) for ' and integrating on (0,1) we obtain

H(L ||1°° Q) Hby”Lw ¢ H
B (1) < —#/ Iy 31 8)] dy + ——J/ I (y, 8 dy+
2 ) % Jo
el (! lell oo
+—‘%—Q/ ny (y, )] ay + 1—2(@/ [n' (y,t)] dy— (64)
= . JO

i 1
—/ fz+6+n)n"dy+ / o(z+6)n'du.
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Using (9), we have

lla'[| oo ot llell oo o)
B'(1,1) < [ 4 Wllimg) +lellnqo)| B 6)-

(65)
1 o1
—] f(z+9+?;)1;’dy+] o(z+8)n'dy.
0 0

Now,

1 1
f(Z+9+n)?}’dy+/a(z+9)r,:’dy§
0 0

1
<1 lgmqey [ QI+ -4+ 17 O + ol 2+ 61} 'l dy <
0
<N Ny (1 L) (2l oo 2,2y + 181 e 0705y ) +

e
O o) [ Py +

Nl o ry 5 , 2
#2044 L e O,
by (59), (60) we get
1 1
- f(z+9+n)n*dy+/a{z+9)n*dys
0 0
S ”f'”L“’(R) (1 + |Ul) {“{zﬂs zl}“Lz(U‘UxH—'(a.l) t ”{9’50, ¢1 }”Hé{o,l}xt,"’(o,l)} +

! 1 !
1 ooy (o1 + ko +3) E (1) + 5 1 iy 1f OF . (66)

From (66) and taking in consideration that E (n,T) = 0, we obtain from
(65) that

L (7}':3) <Cq {ll{ﬁf’fl:ﬁf’l }”HJ (0,1)x L2(0,1) + H{Zﬂszl}”[,‘-’(u,uuf—l(o.l) + 1} ’ (67)
where

Cr = Cr (116'llz= gy s IBull e gy » Iell ey Kos I oy | (O)] 101, T) >0,

for every t € [0,7T), {¢o,¢1} € H3 (0,1) x L2(0,1) and {z0,21:} € L?(0,1) x
H-1(0,1).
From (59), (60) and (67) we have

2 2
€1 ze0 0,7L2(0,1y) F € oo 0, 750-2 0,1y <
(68)

e Jura. a2 L me Y112 p 1l
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where Cy = Cs (C7,T) > 0, for every {do,¢n} € H}(0,1) x L*(0,1) and
{z0,21} € L2(0,1) x H™' (0,1).
To prove (62) we write the equation corresponding to 1) as follows

7' - [m;y]y +bgy +eny+on =o(z+0+n)—f(z+60+n)

=ot+f() i Q. ©9)
Multiplying (69) by #' and integrating from 0 to 1. we obtain
E'(n,t) <
””i_:tm 10yl e + el (: ) +1o| ( L, 1) %3
E (1) + +3 o€ = [ Ol o000y (70)

By the change of variables s = T — ¢ and solving the equation in (70) it
follows that

) J—_— .
E (”rt} S @‘;CC"T “gf = f{£)||f/"‘"(ﬂ.'r;l_-2(0.l)l y Yt € [U,T],

where

””;HLN(Q) 1
O = =D 4 | gy + el = (h ) + o] ( ¥ 1) #1.

From (7), it follows that for each & > 0,
Emt)<e ||f||i”—°(u,r-.f,ﬂ{o.|); , Vte[0,7]. (71)

Using (68) and (71), we obtain the inequality (62). &

To conclude the exact controllability of (11) it is enough to prove that the
operator

p: HY (0,1) x L*(0,1) — H~1(0,1) x L? (0,1),
defined by

{do, 1} = {€(0) +b(0) & (0),—£(0)}, (72)

is surjective.
We can write the operator p as follows

pA{do,d1} = {0 (0)+0b(0)n, (0),-n(0)} +
+{6'(0) + b(0)8, (0),—6(0)} + (73)

£ or e
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We will denote by K the operator from H}(0,1) x L?(0,1) in H~1(0,1) x
L*(0,1) defined by

By Lemma 3.3 and the compact immersions H} (0,1) ¢ L?(0,1), L*(0,1) C
H='(0,1), the operator K is compact.
We can write (73) as

#{do,é1} = K {do,¢1} + A{do, 1} + {2' (0) +b(0) 2, (0), —z (0)},

where A : H} (0,1) x L?(0,1) — H~'(0,1) x L?(0,1) is the isomorphism of
the linear case.

Showing that the operator p is surjective is equivalent to solving the following
problem:

ATHE (0) +0(0)& (0),—€(0)} = AT'K {do,d1} + {do, 1} +
+A—l {Z’(U)ﬁ-b( )zy 0)= D)}:
that is,
{do,d1} = AT {€(0) +b(0)& (0) - 2 (0) — b(0) 2 (0), € (0) + 2 (0)} —
—AVK {¢o, 1 } -
By setting

O {0, 01} = AT{E(0)+b(0)&, (0) — 2" (0) — b(0) 2, (0),—£(0) + 2 (0)} —
~A"K {¢o, $1} (74)

we are looking for a fixed point of the operator
©: Hy (0,1) x L* (0,1) — Hj (0,1) x L*(0,1).

We will apply the Shauder’s fixed point theorem. As the operator @ is
compact, it is enough prove that the image of © is limited, that is, there exists
a positive constant M, such that

1© {#0, ¢1}l 13 (0,1)x L2001y £ M, (75)

for every {¢o, ¢1} € Hy (0,1)x L?(0,1) such that |[{¢o, é1 Hlz13 0,1)x £2(01) £ N
with NV being constant.
From (74) we have

19 {o, ‘f’l}“f-f,;(u,uxz,ﬂ(o,l} 5 "A_]K {¢0’¢1}|l Hi(0,1)x L2(0,1) *
+]|A™1 {€' (0) + b(0) &, (0) — 2" (0) = b(0) z, (0), —€ (0) + z (0)} H3(0.1)XL3(0,)
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Reminding that f = z + 0 + 7 then
JA= € (0) +b.(0) & (0) = 2/ (0) = b(0) 2 (0), ~€ (0) + 2 (O)H] 3 01y 220y <
<A {Iln +(0) 1y Ol -1.0.1) + 116 (0) + b (0) By O ;-1 0.1, +
+ 10 (0) + 6 (O)ll 20,1} (77)

where ”A—l” denote ”A_l“L(H—l(0,1)xLﬁ(o.l);Hg(o.l)xLz(o,l))'

By (77), we obtain
[ATH{E'(0) +b(0) & (0) — 2" (0) = b(0) 2 (0), £ (0) + 2 (O} s 0.1y x £2(0,1) &
< Cro [|A71) {nn' O)llz2(01) + I Ol gy 0.1y +
16 (0) + b (0) 8y ()l -10,1) + 18 Ol ooy } (78)

where Co > 0 depends on the constants of the continous immersions H} (0,1) C
L%(0,1) and L'“)( 1) C H1(0,1). Using (62) in (78), we get

1A= {€ (0) +5(0) & (0) = 2’ (0) = (0) 2, (0), =€ (0) + 2 (O} 113 0,11 12(0,1) &
< Cio ”A_IH {E [ll{%’¢1}H!15(0,1)xL2(0,1) + “{307Zl}||1,2(0,1)><n—1(o,1)] +C(e) +
+116(0) +0(0) 8y (0)ll -1,y + 1I6 (O)HL'-’(O,I)} :

Therefore, by (60), we have

||A_l {€(0) +0(0) & (0) — 2" (0) = b(0) 2 (0), € (0) + 2 (0)}“H(1,(0,1)x1,'2(0;1) 5

<Ci||A7Y|e {H{(me4)1}||11(§(0,1)x1,2(0,1) + ”{zo»21}||L2(0,1)><H-1(0,1)} +
+[|ATY C1oC (o), (79)
where C1y = Cy (T, llb(0)||Lw(o,1))'
Choosing ¢ = [QC“ ”A‘1
from (79) that

A€ (0) +5(0) & (0) — 2/ (0) = b (0) 2 (0), =€ (0) + = O} s o1y 201y <

-1
“c(H—I(0,1)xL?(o,l);Hg(o,l)xLﬂ(o,l))] , it follows

p—

= = (f)(17(/51}||11! o.nx£20,1) {20, 21 20,1y xr-10,1) + [A=H]| C10C (e)
(80)

[SV]

Substituting (80) in (76) we obtain

10 {0, f/’l}”ul 0,1)xL2(0,1) ”A 'K {9’0’¢1}”111(01 xL2(0,1) T
i

Tz s ] our AR o W=l e N
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therefore,

1 e
l© {Cbﬂud’l}l|ugqo.t}xm(n,l} % (§ + ”A g ) N+ Cu,

where Cpy = Cya ({z0,21}, ||;\ 2 || ,Ch9) > 0, proving (75). [End of proof of

Theorem 3.1] [ |

REMARK 3.2 By (21) and the change of variable u (x,1) = v (y,t), with y =

1 —a(t)
v (t)

, we obtain that the unigue solution of (1), with control

olalt).t) = 7%3,% (a(t),1)

satisfies (2), where p is solution of the problem (15) after a transformation. from
Q toQ, by p(x,t)=¢(y,t) with x =a(t) +v(t)y.

REMARK 3.3 An ezample of non eylindrical domain is given by

1 1
H=ag—+/— —, t20,
a(t) =ag "’tn+”t+tu >
1 1
= — >
B (t) ﬁ0+\/tu "/t+tg’ t>0,

with

And

a.:ao—“;- and b:ﬁg-}-‘/%.
0 0

This example can be scen in Medeiros, Limaco, Menezes (2002).

REMARK 3.4 In our paper we study exact controllability for vibrating strings
when the ends are variable with the time, with mild nonlinearity. Qur control
act on the moving boundary. In Kangsheng, Yong (1999) the authors studied
controllability, for the linear wave equation, when the control act on a domain
in the interior that is variable with the time. These two seem to be different
questions.
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