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Abstract: Tn this paper the sensiti vity of opti!ll a.l solu Licms to 
control problems for t he systems described by stationary all([ evolu­
tion hemivari ationa.l inequalities (HVIs) under pertmbations of st at P 
rel ations a nd of cost funct.ion als is investigated. First, basing on the 
theory of sequeuti al f-convergcuce we reca ll t he abstrac t scheme con­
cerning COlt vergence of minimal values a nd minimizers. The a bstract 
scheme works p rovided we can establish two properties: the K ma­
towski couvergence of solut ion sets for HVIs (state relations) and 
some complementary f- convergence of the cost functional s. Then 
these two properties a.re implemented in each considered case. 
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1. Introduction 

It. is well knowu (Pana.giotoponlos , 1!)85a, 1!)85b, 1993; Naniewicz and P anagio­
topoulos, 1!)95;) that lll any problerns from mechanics (elasticity theory, semiper­
mea bility, electrostatics, hydraulics , fluid flow), economics and so on can be 
modeled by ltemiva riational inequalities (HVIs for short) . The latter an~ general­
izations of partial differenti a l equations (PDEs) and variational inequalities (Du­
va.ut. anrl Lions , 1976) in the sense t hat besides the physical phenomena leading 
to classical PDEs Olle has to t ake iut.o consideration sonH) nonlinear , nonmono­
tone aud possibly rnultivaluecl l:Jws (e.g. stress-st.ra i11 , reaction-displacement, 
generali zed forces-velocit ies , etc.) wbiclt ca n be expressed by means of the Clar­
k,; snbdifferential. 

1 H.csearch su pported in par t. by til e S t. a t.e Connniltce fen .Sc icn t ifl c llcscarcli of t he Republic 
of l'oland (KBN) under G ra nts No. 2 I'O:lA 003 2G <tnd ' ' '1'07 A 027 2fi. 
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In this paper, which in a sense is the continuation of Denkowski (2002) , 
where some of the results below were conjectured (see Theorem 4.2 and Remark 
4.2 in Denkowski , 2002) , we deal with control problems for systems governed by 
the stationary (elliptic) as well as by the evolution first order (parabolic) HVIs. 
More precisely, we consider 

(CP) e 

subject to 

or 

(CP)p 

subject to 

minimize { :Fe(u,y) := :;:(l l (y) + :;:(2l(u) } 

{
Ay +8.l(y)3 j +Cu 
yEV, uEU 

{ 
y' + Ay + 8 J(y) 3 j + Cu 
y(O) =Yo, y E Wrq = Yr , u E U, 1/p + 1/q = 1, p 2: 2, 

where A is a pseudomonotone operator (possibly multivalued in the existence 
theorems), A is the Nemitsky operator corresponding to A, J is a locally Lip­
schitz superpotential ( 8J denotes its Clarke subdifferential), C is a controler 
operator acting on the space of controls U and the cost functionals :F(il are in 
integral form (for det ails and definitions of spaces V and Wp 11 , see Sections 4 
and 5 below). 

Our goal is to investigate the sensitivity of optimal solutions to these con­
trol problems; i. e. we are interested in the behavior of optimal solutions under 
perturbations of systems (state relations; e.g. coefficients in equations or pa­
rameters in superpotentials are perturbed, ... ) as well as of perturbations of cost 
functionals (e.g. intcgrands depend on parameters). 

Our approach is based on the sequential r -convergence (epi-convergencc in 
terms of Attouch, 1984) theory (see De Giorgi and Franzoni, 1975; De Giorgi and 
Spagnolo, 1973; Spagnolo, 1975; Buttazzo and Dal lVIaso, 1982; Denkowski and 
Mortola, 1993) in the sensitivity part, while for existence of optimal solutions 
we use the direct method. The nonemptiness of the solution set for HVIs follows 
from the theory of pseudomonotone operators (see Zeidler, 1990; Denkowski et 
al., 2003b). 

The basic properties assuring the convergence of minimal values and mini­
miz:ers of perturbed control problems to the minimal value and to a minimizer, 
respectively, of unperturbed problem are : on one hand the Kuratowski conver­
gence of solution sets (which can be expressed as f-convergence of their indicator 
functions) and on the other hand some "complementary r -convergence" of cost 
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We~ underline that nonemptiness of solu tion sets for I-IVIs can be obtained 
(by surjectivity theorems for pseudo-monotollc multi valued operators) for much 
more genera.! classes of operators , while for sensitivity results we have to restrict 
ourselves to special classes of maximal monotone operators for which the uotion 
of G-convergencc ca.n be applied . 

The sensitivity of control problems was largely considered in the literature 
i11 papers on optimal control for systems govemed by ordinary differential equa­
tions (Buttazzo and Dal Maso, 1982; Buttazzo and Freddi, 1993, 1995; Fr·eddi , 
2000), partial differential equations (Denkowski and rviig6rski, 1987; Mig6rski, 
1992a, 1992b, 1995, 1999; Chapter 4.2 of Denkowski eta!., 2003b), partial dif­
ferential equations and differential inclusions (Denko>vski and Mortola, 1993; 
Briani, 2000; Arada and Raymond, 1999; Acquista.pace and Briani, 2002). We 
mention that the related control problems for systems described by HVIs were 
studied by Haslinger and Panagiotopoulos, 1995; Mig6rski and Ochal, 2000b; 
Denkowski, 2002; Mig6rski, 2003, the shape optimization problems for HVIs 
were considered by Denkowski and Mig6rski (1998a, 1998b) , Gasi1iski (1998), 
Ochal (2000) , Denkowski (2000, 2001) and the corresponding inverse and iden­
tification problems were t reated by Mig6rski and Ochal (2000a). 

The paper is organized as follows. In Section 2 we present au abstract 
se t,ting for the sensitivity analysis, which is based on the f-convergence theory. 
In Section 3 we recall some material on the sequential f- convergence, the Clarke 
subdifferential and the multivalued operators. Section 4 is devoted to control 
problems for stationary hemivariational inequalities and contains the results on 
the sensitivity of the solution sets to hemivariational inequalities and on the 
stability of the control problems . In the last section the analogous sensitivity 
results are provided for control problems for systems governed by parabolic 
hemivariational inequalities. 

The results of this paper were partialy reported during the French-German­
Polish Conference on Optimization, Cottbus , Germany, September 8- 13, 2002. 

2. General setting 

In this section we recall the abstract scheme based on the r -convergence theory, 
which we use to study the stability of optimal control problems. 

We consider a control system governed by a relation R which links the state 
y E Yn to the control variable u E U, Yn and U being the spaces of states and 
controls , respectively. Generally, the relation R can be chosen as an ordinary 
differential equation (ODE), a partial difFerential equation (PDE), a differential 
inclusion (DI), a variational inequality (VI) and a hemivariational inequality 
(llVI). 

The optimal control problem under consideration reads as follows: find 
(u*, y*) E A which minimizes the cost functional F : 
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where the set A of admissible control-state pairs is defined by: 

A= gmphSn = {(u,y) : y E Sn(u), u E U} 

and the solution map is given by 

Sn : U 3 n---+ Sn(n) = {y E Yn : (u ,y) E R} c Yn. 

The set of optimal solutions to ( C P)n is denoted by SR_ , i.e. 

SR_ = {(u*,y*) E A : F(u*,y*) = ·m}. 

The sensitivity (stabi li ty) is understood as a "nice-continuous" asymptotic 
behavior of optimal solutions to the perturbed problems, i.e. perturbed state 
relations RA, and perturbed cost functionals Fk. So we consider the sequence of 
optimal control problems indexed by k EN= N U { oo }, where the index k E N 
indicates "a perturbat ion" and k = oo corresponds to the unperturbed original 
problem: 

minimize {h(u,y) : (u, y) E Ad (= h(u'k ,yZ) =: mk) 

and Ak = gmph Sn,,. We are looking for conditions which assure the following 
stability results: 

(ii) J( - lim sup SR.,, C SR.= , 

where ](- lim sup stands for the Kuratowski upper limit of sets. It is worth to 
recall (see e.g. Proposition 4.3 of Denkowski and Mortola, 1993) that (ii) is 
equivalent. to the following condition: if { kn} is an increasing sequence in N, 
( ur," , Y'k,.) E SR_k" , v.r,,. converges to ·u~ in U and Y'k,. converges to y~ in Yn, 

then (u~ ,y~) E SR.=· 

In order to establish the condi t ions (i) and (ii), first we reformulate the 
problem ( C P)n,. as the unconstrained optimizat ion one: 

(CP) nk minimize {h('a, y) + XA, (u, y) : (·n, y) E U x YnJ , 

where XA denotes the indicator function of the set A, i. e. 

() {
0 J:E A 

XA :~; = a A 
+oo :r 'F 

and then \Ve apply an approach based on the theory Of f -convergence ( epi­
convergence), see De Giorgi and Spagnolo (1973), Spagnolo (1975), Buttazzo 
and Dal Maso (1982) , and the references therein. 

Another possible approach can be based on "discrete convergence", see Grig-



Sens itivity of optimal solutions t.o co ntro l probl.,ms for f!Vls 215 

3. Preliminaries 

For the convenience of the reader in this section we recall some material from 
the r -convergence theory, the generalized Clarke sub differentia.! and the theory 
of multivalued operators of monotone type. 

3.1. Sequential f-convergence 

We quote here the definition of r seq-convergenCP for functions of two varialJles. 
The case of one variable follows easily lJy omitting the other. For the case of 
functions of many varialJles we refer to Buttazzo and Dal Maso (1982) . 

Let U and Y be two topological spaces. For u, E U and y E Y we put 
a" := {{7th:} C U : 1t~,: -t 'IL} and ay := { {yd C Y : y., -t y}. Given 
F,,:U x Y -t "i = IE. U {±oo}, kEN, we define 

fs eq(u-, y+) lim sup Fk(1t, y) = inf sup lim sup Fk(v.., yk), 
k--*00 au ay k--too 

and if both these extended numbers are equal, we say that there exists 

(j) 

Similarly, for other combinations of signs ( + and - denote sup and inf, respec­
tively) we have 

r .m,(u- ' y-) lim inf h(u, y) = inf inf lim inf h(uk, yk), 
k --t oo au ay k--t oo 

fseq(U-,Y-)limsupF.,(v.,y) = inf inf lirnsuph(v . .,yh), 
k--t oo C1 11 rry k-+ oo 

and if they are equal there exists 

(jj) 

In tum, if the numbers in (j) and (jj) are equal, W(~ say that there exists 

fseq(U - ,Y±) lim h(u,y) 
k-+oo 

and then we write simply 

r.w1 (U-, Y) lim h(u, y) = (j) = (jj). 
k-+oo 
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Now we are in a position to formulate 

THEOREM 3.1 (De Giorgi and Fmnzoni, 1915) Let X be a topological space and 
let ]k: X---* i: = lill. u { ±oo}, kEN be such that foo = r(x-) lim h.:. If 

I.: -t oo 

lim. inf fk( x J.:) = liminf (inf !J.: (:c)) 
k--t oo 1.: --t oo X 

{in this case Xk is called "quasioptimal") and 

then foo('Xoo ) = inf foo(x) = lim fk(xk) . 
X 1.:--+ oo 

In the sequd we put 

X= U X Yn, R = (HV Ie) or (H11 Ip), 

R EMARK 3.1 If the topological space X satisfies the fir·st axiom of cov:ntab'ildy, 
then the sequential r seq (X-) -conver:qence coincides {see Pmposition 8.1 of Dal 
M aso, 1993) with the topological f(X-) -convergence introduced by De Giorgi 
and Fmnzoni {1915). Moreover·, the seqv.ential f-limit opem.tion is not additive, 
i.e . it is not en01tgh to k·n. ow r -lim Fl.: and r -lim XA, in ordeT to calculate 
f - lim(h + XAJ, see Example 6.18 in Dal Maso {1993). 

In order to calculate the f-lirnit of the sum of two functions we use the 
following 

THEOREM 3.2 {Buttazzo and Dal Maso, 1982) If 

:F(u,y) = fs eq (U - ,Y) lim h(u ,y ), 
I.: -too 

9(u, y) = fs eq (U, y - ) lim 91.(u, y), 
k--t oo 

then 

Thus, due to the above theorem, the convergences 

(i) rn~.: 4 rn 00 (of minimal values) and 

(ii) K - limsup S-R" c S-R ,,, 
follow from the following result (see also Propositions 4.1 and 4.5 in Denkowski 
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PnoPOSITION 3.1 Suppose 

217 

(1) 

(2) 

Let (u~,,,fh) be optinwl ur· "qun.siophmal" solutions to the rnnblems (CP)n,. snch 
that 

(3) 

and 

(fit.:,, fit.:J -t (uoo, Yeo ) as ·n -t oo. (4) 

Th en F 00 (Ueo, Yeo ) = inf F:,0 (u, y) = lim (inf h(u, y)). 
Aco 1.:-t eo A;. 

REII'!AR.K 3.2 The conrlit·ion {2} of Proposition 3. 1 is eqv:ivnknt {see Proposdiun 
4.3 of Denkowski and Mor·tola , 1993) to the Kv:ratowsk:i convergence 

(2') 
1\ (Yn) U 
--7 Soo (u) for· all 1.Lk --7 'l.l 

i.e. 
(2") 

K(Yn) - limsupS~,: (ut.:) C S00 (u) C K (Yn )- limiufSt.:(·ut.:) fur· all Ut.: ~ 11. 

while the condition {1} (the cornplementar·y r -convergence) , roughly speaking, 
means a "r:ontinuov.s convergence" of cost fv:nctionals with respect to y and 
r(u- ) convergence wdh respect to ?L. We recall that for· a sequence of sets 
{ An}nEN in the topological space X , by K - lim inf An wc mean !;he set of all 
li·rnits of sequences {.Tn } such that :en E An, while the set J( - lim sup An consists 
of all limits of subsequences { x~,,} such that Xt.: E An" for any increasing sequence 
{nd C {n} . 

3.2. G-convergence of multivalued elliptic operators 

Let 0 be an open bounded subset of ffi.N with Lipschitz boundary. Following 
Chiado'Piat, Dal Maso and Defranceschi (1990) , for fixed mi E £l(O) , Ci > 0, 
i = 1, 2, we introduce the following class of multivalued operators 

Mo(IR.N) = {a.: O x IR.N -t 2 1R N such that (i)- (iii) below hold} 

(i) a.(x, 0 is maximal monotone with respect to ~ for all .x E 0; 
(ii) a is £(0) ® B(ffi.N) ® B(IR.N) measurable 

(; " ,.. -l({'f\ r rf() \ , -,., l? tTri> f\l \ r ___ - . ,.,...._ - ""'"'' 
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(iii) for every (C17) with rJ E nCr,t:) we have 

lrJI'' ~ rn1 (:r) + c1 (77 , O JR N 

I~IP ~ m.2(x) + c2(7J,0JRN· 

REMARK 3.3 The main c:wmples of maps a E Mn(IRN) have the fonn 

a(x, 0 = 8~4J(X, 0 for some 1/J: n X IRN--+ [0, +oo), 

wher·e ·1/J is measnr·able in both var·inhles, conve:J: in ~ , and satisfies 

with suitable constants 0 < c1 ~ c2 . 

(5) 

(6) 

(7) 

DEFINITION 3 .1 For ever-y function a E /vtn(IRN) we define multivalued opera­
toTs 

A:W1·P(fl) 3 y--+ Ay := {77 E L'1(0;1RN): 1J(.r,) E a(.r- , Dy(:c)) a.e.} , 

il: W 1·P(fl) 3 y--+ A.y := {- div17 : 11 E Ay} c ( vl' 1 ·~'(0))*. 

In the space U(O; JRN) we define topology a according to: 

DEFINITION 3.2 

{ 

1]k --+ ·rJ in w- L'1(0 ; IRN) 
'T]k ~ 17 if and only if 

diV1]k--+ div17 ins- (H1 1 · ~'(0))*. 

For 1 < p < oo, we admit the following definition of multivalued G-conver­
gence. 

DEFINITION 3.3 We say that a sequence {ad E Mn(IRN) G-conveTges to a E 

M n (JRN) and we wr·ite ak ~ a if 

K(w,a) - limsupGTAk C GTA. 

We recall that the compactness of the class .M12 (JRN) with respect to the notion 
of G-convergence given in Definition 3.3 was proved by Chiado'Piat, Dal Maso 
and Defranceschi (1990) . The definition of G-convergence and its properties for 
linear operators go back to De Giorgi and Spagnolo (1973), Spagnolo (1967, 
1975) , and Colombini and Spagnolo (1977) . 

PROPOSITION 3.2 (see Theo1·ern 3.11 of Chiado 'Piat, Dal Maso and Defmn­

ceschi, 1990) If a~, , a E /vtn(IRN) are such that ak ~ a, then 

K(w- 11, s- 11*) - lim GrAA: =OrA. 
k-t oo 

. K(w-\l,s - \1·) 
{For the latter· we also wnte G1·Ak --t GrA.). 

The inverse of the Proposition 3.2 does not hold (see Remark 3.13 of Chia.-
. . . 
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3.3. Clarke subdifferential 

Given a locally Lipschitz function .J: Z -t IR, where Z is a 13aua.ch space, we 
recall (see Clarke, 1983) the definitions of the generalized directioual derivati"<~ 

and the geueralize<.l gradient of Clarke. The gener;tlizr·d directional derivative 
of .J at a point v. E Z in the direction v E Z, dcnoi, •d hy f \ a;v ), is defined by 

. J(y +tv)- .l(y) 
.!0 (u; v) = lun sup . 

y --+11., t . .j.O t 

The generalized gradient of J a t ·n, denoted by DJ(v.), is a subse t of a dual 
space Z* given by 8.l(u) = {C E Z*: f 1(u;v) 2 ((,v)z· xz for all v E Z }. The 
locally Lipschitz function .! is called regular (in the sense of Clarke) at u E Z 
if for all v E Z the one-sided directional deriva tive J' ( u; v ) exists and satisfies 
J 0 (n; v) = .J'(u; v) for all v E Z. 

We recall a result concerning the Clarke subdifferent ia.l of the integra l fum:­
tional (see Theorem 2.7.5 of Clarke, 1983). Let it be a bounded subset of IRN, 
1 ::::; p < 00 and let f: n X !Rd -t IR. We assume that: 
(i) f(-,0 is measurable for all ~ E JR<~, f(· , O) is integrable; 
(ii) f( :J;, ·) is locally Lipschitz for each .1: En; 
(iii ) there exists a constant c > 0 such that for every ( E 8,,f(:c , v), we have 

IICII ~ " ::::; r: ( 1 + ll v l l~:7 1 ) . 

THEOREM 3.3 Under the above hypotheses, the functional F: D'(il; !Rd) -t IR 
defin ed by F(v) = .f~ f( :c, v(x)) rl.1; for · v E D'(il ; !Rd) ·is well- defined awl locally 
Lipch1:tz {in fact, L-ipschitz cont'imwns on bounded subsets of £1'( il ; IR")) anti we 
have 

8F(v) C / D.,f(:r;, v (:c )) d1: for v E U(O.; !Rrt) . ln 
The latter· means that for any z E 8F(v) , there is a function ( E L'1 (0. ; !RrL), 
1/p + 1/q = 1 satisfying (( :c) E o,.f(x, v(:c)) for a. c. :r E it and .mch that for· 
ally E £1'(n ;!Rd) we have ((,y)u, x U' = ./~2 ((( :c),y(.1:))1Rd d:c. 

3.4. Multivalued operators 

We give the basic definitions for multiva lued operators a nd theu we quote two 
main surj ectivi ty results for the operator classes under consideration (see e.g. 
Denkowski et al. , 2003b; Naniewicz and Panagiotopoulos, 1995; P apageorgiou 
et al. , 1999). 

Le t. Y be a real reflexive Ba nach space and Y * be its dual space a nd let 
T : Y -t 2y· be a mult.iva.lued operator. We say t hat Tis: 
(1) upper semicontinuous if for any closed subset C c:::; Y * the set r-(C) = 
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(2) pseudornonot.one if the following conditions hold: 
a.) the set Ty is nonempty, bounded, dosed and convex for each !I E Y; 
b) T is upper sernir.ontinuous from each finite-dimensional subspace of Y 
to Y* furnished with the weak topology; 
c) if {Yn} ~ Y, Yn ---7 y weakly in Y, y~ E Tyn , am! lim sup (y~, Yn- y) :::; 0, 

n-++oo 

then for each element v E Y there exists y* (v) E Ty such that 
liminf (y~,Yn- y) ~ (y*(v), y - v); 
n-++oo 

Let L: D(L) C Y ---7 Y* be a linear , densely defined and maximal mono­
tone operator. 

(3) Tis £-generalized pseudomonotone if the following conditions hold: 
a) for every y E Y, Ty is a nonempty, convex and weakly compact subset 
of Y*, 
b) T is upper semi continuous from each fi nite-dimensional subspace of Y 
into Y* equipped with the weak topology, 
c) if {Yn} ~ D(L ), Yn--+ y weakly in Y , y E D(L), Ly11 --+ Ly weakly in 
Y*, y~ E Ty11 , y.~, --+ y* weakly iu Y* and lim sup (y .~, y, - y) :::; (y*, y), 

n--l + oo 

then y* E Ty and (y~, Yn) --+ (y*, y). 

The crucial point in the proofs of the existence of a solution to the hemi­
varia.tional inequalities considered below are the following surjectivity results. 

PROPOSITION 3.3 If Y is a rejle.1:ivc Banach space, and T: Y ---7 2y· \ {0} 1,s a 
pseudomonotone and coer-cive operator, then T ·is surjective. 

PROPOSITIO N 3.4 If Y is a n;fie:cive, str-ictly conve.'E Banach space, L: D(L) C 

Y ---7 Y* is a linear, dens ely defined, ma:t:imal monotone opemto7' and T: Y ---7 

2y· \ {0} is a bounded, coercive and L-yenemlized pseudomonotone opemtoT, 
tit.en L + T is SU1jective. 

The proof of Proposition 3.3 can be found in Denkowski et al. (2003b), Theorem 
1.3.70, while the proof of Proposition 3.4 call be found in Papageorgiou et a!. 
(1999), Theorem 2.1, p.345. 

4. Control problem for elliptic hemivariational inequality 

In this section we deliver a sensitivity result for optimal control problem for 
systems governed by stationary hernivariatioual inequality. First we give an 
existence theorem for elliptic HVI, then we provide results on the sensitivity of 
the solution set and on the convergence of the cost functionals. 

Given an open bounded set n c ]RN with Lipschitz boundary, we introduce 
the following spaces F = W~' 1'(D), Z = D'(n), H = L 2 (fl), Z* = L"(fl), 



Sensitivity of opt.ilnal solutions to control problems for HV!s 221 

evolution fivefold of spaces 1/ C Z ~ H ~ Z* c 11* with compact embedding 
Vc Z. 

We consider the following sequence of hemivariational inequalities 

(Aky, v- y) + Jf(y; v- y) ~ (fk + Ct.:u, v- y), 't/ v E 11. 

The hypotheses on the data of (HV Ie)k are the following: 

H(A) : A~.:: V-+ 2v· are multivalued pseudomonotone, bounded 
and coercive operators; 

H(J): 

(i) 

(ii) 

(Ho) : 

H(C): 

J~.:: Z-+ IR are locally Lipschitz functions such that 

II8Jk(z)llz· ~ c1(1 + llzll~") for all z E z and for some cl > 0; 

Jf(z; -z) ~ c2(1 + llzln for all z E Z with r < p and c2 ~ 0; 

fk E V*. 

C~,, E £(U, V*), where U is a reflexive separable Banach space 
modeling the control space. 

We remark that the problem (HV Ie )~.: is equivalent to the following diffe­
rential inclusion 

{ 
Aky + 8Jk(y) 3 !k + ck·u 
y E V 

where 8J~.: denotes the Clarke subdifferential of J~.:. Given u E U, by a solution 
of (HV Ie)k we mean an element y E V such that Aky + 171.: = fk + Cku with 
some 1Jk E 8Jk(y) and 7]1.: E Z*. 

PROPOSITION 4.1 If hypotheses H(A), H(J), H(C) and (Ho) hold, then for a 
fixed kEN and for all u E U, we have S~,,(u) := S(JJVI,),.(u)-:/= 0. Moreover, 
if A~.:: V -+ 2 v· is strongly monotone and 8.h is monotone, then S~.: ( u) = {yk} 
(i .e. we have the uniq·u.eness of solution). 

Y'oof. The above existence result follows from Proposition 3.3 (see also Chapter 
4.3 of N aniewicz and Panagiotopoulos, 1995). To this end, it is enough to remark 
that if the operator Ak is coercive, i.e. (A~.:v, v) ~ a(llvll)llvll for all v E V with 
a: ]R+ -+ ]R+, a(t) -+ +oo as t -+ +oo) and Jf(z; -z) ~ c2(1 + llzln for all 
z E Z, then Ak + 8Jk is a coercive operator. The uniqueness is a consequence 
of the strong monotonicity of Ak + 8Jk· • 

REMARK 4.1 A simple exam.ple of a superpotential Jk which satisfies H(J) is 
an integral functional Jk: Z-+ IR, 

.Jz.(z ) = l id.r. . z (x))dx . z F 7, = {,P([).) _ 
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where the integm:n.d j~,:: n X~ ----7 ~is given by .h(:r:,O = min{gi(0,92(0}. We 
suppose that g;: ~ ----7 ~. g;(x) = o:;.:r2 + (3;, et.; > 0 fur ·i = 1, 2. Using Theor-wm 
2.5.1 of Clarke (1983), we know that ojk(:c,O c co{g~(0,g2(~)} and hence the 
subdiffer·ential ojk(x, ·) has at most a linear growth. So, by exploding Theor·em 
3.3, we obtain H(J)('i). Next, by Proposition 2.1.2 of Clar-ke (1983), we have 
jp(x,~;rJ) = max{C77: c E ojk(x,O}. Therefore 

jp(.T,~;-O=max{C(-0: C=>.g~(O +(l-,\)g~(O, ,\E(O,I)}::;o, 

because g;(~) ~ 2': 0, ·i = 1, 2. Hence and from the inequality 

JP( z; v) ::; i jp(x, z(x); v(:c)) dx for all z, v E Z 

(which is a conseq·nence of the Fatou lemma), it follows that H(J)(ii) holds with 
c2 = 0. 

4.1. Sensitivity of solution sets for (HV Ieh 

We are now in a position to state the result on the Kuratowski convergence of 
the solution sets for elliptic hernivariational inequalities. 

P:WPOSITION 4.2 In addition to the hypotheses of Propos-ition 4.1, we suppose 
the operators Ak in (HV Ie )~.: corr-espond (see Definition 3.1) to multi/unctions 
ak E Mn(~N) and assume 

(i) Gr-A" I<(w-~-v·) Gr-Aoo 

(ii) K(s- Z,w- Z*) - limsupGr8J" C Groloo 
k--Too 

(iii) Ck, Coo E £ (U, V*), C~.: ~ Coo continuously 
(iv) /J.: ----7/00 in s - V*. 

Then 
F for every kEN, Sk(u) = s(HV I. )Ju) =j:. 0 for all 'U E U; 

2° K(w- V) - limsup Sk(uk) C S00 (n00 ), for alluk ~ Uoo. 
k--Too 

Moreover·, 

( v) if Soo ( U 00 ) = {Yoo} and for ever·y u~,, ----7 'U00 we can find weakly 
compact sequence of sol11tions Yk E Sk(uk), kEN, 

then 

3° S~ ( n~ ) c- J( ( w - V) -lim inf S,. ( u,.). 
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RE IVIA!lK 4.2 The hypothesis (i) of Pr·oposition 4.2 follows, fo r instance, if 

ak ~ a _ (sec Pmposdion 3.2). The assumption (ii) holds, for· cJ:ample, 
if Jk: Z -+ IR an~ locally Lipschitz, eqv:i-lower serniriiffer·entiable, locally equi-

hounded and Jk ~ }00 (see Th eor'cm 1 of Zolezz·i, 1994). Th e cont'irwous 

convergence of C~,; to Coo in (ii'i) means that for eve·ry Uk ~ u00 we have 

C~,;nk ~ C'00 u00 . Th e condition (v) is satisfied in the case {Sh(u )} are equico­
en:ive fm· all v, E U and k; E N (which happens if A.k m·e equ.icoer'Ci-oe; e. g. 
Ak = - div ak, a~,; E JVl Q(IRN)). 

COROLLARY 4 .1 Under· the assumptions (i) - (v) of PmrJOsdion 4.2, we have 

Pmof of Pmpos'ition 4.2. The existence of solution io the problem (H11 Ie)k 

follows from Proposition 4.1. For the proof of 2°, let ·uh, ~ u 00 and Yoo E 
K (w - 11)-- lim sup" __, 00 Sk(uk). Thus we can find a sequence {k:n} C Nand 
{yk..} C 1i such that Yk , E S~,; , (u~,;J and Yk, -+ Yoo weakly in 11. Clearly 
A k,Yk, + 1)k, = h , + C~,;, U k, with TJk, E a.h , (y~,;..). From hypothesis H(J)(i) , 
we know t ha t {r)k, } li es in a bounded subset of Z* and so we may assume that 

TJk, -+ 1]00 weakly in Z* (8) 

for some 1)oo E z·. Since (Yk,, 1Jk ..) E Gr· f)Jk, and ( y~,; ,, rJ ~,;..) -+ (Yoo , 1)oo ) in 
(s - Z) x (w- Z*) topology, by the assumption (ii) we deduce tha t 

(9) 

Next, from hypotheses (i ii) and (iv) , (8) and the compactness of the embedding 
z· c 11* , it follows that 

Ak,Yk, = h, + C'~,;, 'Uk,- TJk, -+ f oe + C'00 1l00 -1]00 in V* . 

By the assumpt ion (i), we obtain f oo + C'00 u00 - 1)00 = A00 y00 which , together 
with (9), implies Yoo E S00 (u00 ) and finishes the proof of 2° . 

Finally, the conclusion in 3° follows from 2° and the following Urysohn prop-
. . K(w - V) U . 

etGy of t.he Kuratowski convergence: Sk(v.J.) ----* S00 (u00 ) for 11.1,; ----* '11. 00 tf 
and only if every subsequence of Sd uk) contains a further subsequence which 
K(w- F)-converges to S00 (u00 ) = {y00 }. The proof of the propositiou is fi­
nished. • 

We close this section by providing the sufficient conditions for the integral 
fun ctionals under which the hypothesis (ii ) of Proposition 4.2 holds. Consider 
the functionals h,: Z -+ IE., k E N U { oo } of the form 

.J,.( z ) = ( ·i,_(x . z(:r:) ) rh: fnr 7 1== 7. = T.PrOI 
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We admit the following assumption: 

H(j): jk:f! x ~ -t ~' k E NU {oo}, are such that 

(i) ik(·,~) are measurable for all~ E ~and jk(·,O) E L1 (f!); 

(ii) jk(x, ·) are locally Lipschitz for all x E f! ; 

(iii) j17j :S C3 (1 + ~~~p- 1 ) for all7] E ojk(x, 0 with C3 2 0; 

(iv) j 00 (x, ·) is regular in the sense of Clarke; 

(v) K - lim sup Gr 8jk(x, ·) c Gr 8joo(x, ·) for X E n. 
k-too 

PROPOSITION 4.3 Under hypothesis H(j), we have 

K ( s-Z, w-Z*) -lim sup Gr 8Jk C Gr 8Joo. 
k-too 

Proof. Let (u,v) E K(s-Z,w-Z*)-limsup Gr 8 Jk· Then there is a sequence 
k-too 

{kn} ofN and (uk .. ,vkJ E Z x Z* such that 

Vkn -t V weakly in Z*. 

(10) 

(11) 

(12) 

We will prove that (u, v) E Gr ] 00 . Since the integrands jk satisfy H(j)(i), (ii) 
and (iii) , we apply Theorem 3.3 to the functional Jk and we obtain that it is 
bounded on every bounded subset of Z and for every k E N, we have 

8Jk(z) C L 8jk(x, z(x)) dx for all z E Z. (13) 

From (10) and (13), we have Vkn E In ojk(x, Uk .. (x)) dx. The latter means (see 
Theorem 3.3) that there exists a sequence SJ.,n E z· satisfying 

and such that, for every <p E Z, 

(vkn, <p) = L sk .. (x)<p(x) dx . 

Using H(j)(iii) from (14) we obtain 

JJsdJz· :S c4 ( 1 + JJudJi- 1
) wit h c4 > 0. 

(14) 

(15) 

(16) 

From (16) and (11) we know that { s k .. } remains in a bounded subset of Z * and 
hence we may suppose 
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Again by (11) for a next subsequence, we have 

Ukn (x) -+ u(x) for a.e. xED. (18) 

Combining (14), (17), (18) and applying Theorem 7.2.1 of Aubin and Frankowska 
(1990), we get 

s(x) E convK- limsupz--)u(x),Hcx/:ljk(x ,z) C 8j00 (x ,u(x)) a.e. xED. 

(19) 

Ti1e latter inclusion follows from H(j)(v) since 8j00 (x, ·) has convex and closed 
values. Moreover, due to (12) and (17) we pass to the limit in (15) and we have 

(v, cp) = L scp dx for every cp E Z. (20) 

From (19) and (20) we now infer vEIn 8j00 (x, u(x)) dx. Applying again The­
orem 3.3 to ] 00 , by exploiting the regularity assumption H(j)(iv) , we have 
8J00 (u) = In j 00 (x, u(x)) dx which implies that v E 8J00 (u). This means that 
(u , v) E Gr 8]00 and completes the proof. • 

4.2. Complementary f-convergence of cost functionals 

The goal of this section is to give conditions under which the cost functionals in 
the control problem (CP)(HVI. )k for systems described by elliptic HVIs satisfy 
the convergence condition 

Foo = fs eq(U-, Yn)lim:Fk 

of Proposition 3.1. The functionals Fk : U x Ye -+ IR have the form 

Fk(u,y) = F~1 l(y) +F~2l(u) , u E U, y EYe= V, 

F~1 )(y) = L Fi 1)(x,y(x ))dx, 

F~2 ) (u) = L F?)(x, (Cku)(.1:) ) dx. 

Our aim is to assure that 

(21) 

(22) 

(23) 

To this end we admit the hypotheses U = U(D) with 2 :S p < oo so 1 < q :S 2 
and Ck is the embedding of U(D) into V* = w-1,CJ(D) . 
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!!(F(ll) : F~,(l): n X IE.---+ IE. is measurable in X E n, F~,(l) (:r, 0) E D'(D) and 

IFP\x,zl)- F,~ 1 )(x,z2)l :S cs(1 + lzJI)Izl- zzl with Cs > 0; 

FP)(·,z)----+ F~l(-,z) w-U(D) for all z E IE.; 

H(F(2l): F?): n x IE.---+ IE. is measurable in x En, convex in z E IE. and 

0:::; F?1(x,z):::; >-lzl" for some>.> 0; 

F?l(-,z)----+ F~l(-,z) w-L1 (D) for all z E R 

PROPOSITION 4.4 lf hypotheses H (FOl) and H(F(2l) hold, then 

1° fork EN, ;:pl(-) is (s - D'(D))-continuous and also sequentially 

(w-W 1·P(D))-continMns, and Fk2
)(-) is (s-Lq (D))-contirmons; 

20 ,.,-(1)( ) __~. r(l)( ) w w-IV
1

·P 1 ,.,-(.2)(· ) r, . q(s-Lq(o)-) ,.,-(2)( ) 
.rk Yk -r .r 00 Yoo , v Yk ----+ Yoo anc .rk u ----+ .r 00 u . 

Pmof. Ad 1°. From the hypotheses it follows that. the intergrands F2), F?1 

(k E W) are Caratheodory type functions, i.e. they are measurable in .1:, continu­
ous in z and bounded by integrable functions on bounded sets. So the function­
als .r2l, Fk21 (kEN) are continuous, respectively on D'(D) and L''(D) in the 
strong topologies (see the Caratheodory Continuity Theorem in Example 1.22 
ot Dal Maso, 1993). Then, Fkl) is also sequentially (w- W 1·P(D))-continuous 
owing to the compactness of the embedding W1·P(D) into LP(D). 

Ad 2°. For the firs t convergence (continuous convergence) of F~l) in 2°, 
assume Yk ---+ Yoo in w- W 1·P(D), so also ins- D'(D) (and ins- L2 (D) as we 
have p ~ 2). By the direct calculation we have 

IF21(yk)- ;:~l(yoo)l :S IF2\Yk)- F21(Yoo )l + 1Fk
1
)(Yoo)- F~l(y=)l. 

The first term of the right hand side can be estimated (see H(F(ll)), by using 
the Holder inequality, as follows 

In IFP)(x,yk)- FP) (x,yoo)l dx :S Cs In (1 + IYoo(x)l) IYk(x)- Yoo(x)l dx :S 

:S csll1 + Yooll£ 2 (0) IIYk- Yooll£2(0) 

so it tends to zero, since Yk ---+ Yoo in s - L2 (D). The convergence of the 
second term to zero can be proved in the similar way as the convergence (13) 
in Lemma 4.1 in Denkowski and Staicu (1994). For the second assertion in 

2° observe that .r21 as convex and locally equibounded functions arc locally 
equi-Lipschitz continuous. Hence, owing to Proposition 5.9 of Da.l Ma.so (1993), 

- __ (•)) _ {•)' 
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convergence Fi2 J(u) -t :F~) (u) for allu E L"(D) , and the latter again can be 
proved as (13) in Lemma 4.1 in Denkowski and Staicu (1994) which completes 
the proof. • 

Thus, according to Proposition 3.1 , from Propositions 4.2 and 4.4, applying 
the direct method, we get 

THEOREM 4. 1 Under the assumptions of Proposition 4. 2 concerning the oper­
ators A~.: and su.perpotentials J~.: appearing in (HV Ie)k we set U = L'1(D) with 
the strong topology, C~.: = ·id: L'1(D) -t V* and we admit hypotheses H(F(Il) , 
H(F(2)) for the cost fnnctionals given by (21}-(23). Then 

(i) for· every k E N the contr·ol problem (CP){lnlf.)k has at least one 
optimal solution (ui.,,y;) (so s; = srH\iJ,)k ::j:. 0) with minim.al value mk · ­

:Fk(u;:, yk); 

(ii) if the original pmblem (HV Ie )00 has the ·uniqueness proper·ty i.e. 

and S ( HV J, )= (u) are equicoercive (u E U, k E N), then every accumulation point 
of the sequence (v.;,, yjJ is an optimal sol·ution to the pmblem (CP){I-IVI, )oo , ·i.e. 

{(ui.,,yk) E s;, (ui.,,yZ) -t (u~ ,y~ )} ===} (u~, y~) E Soo; 

Mor·eover, in this case, we have also 
(iii) mk -t m 00 as k -t oo. 

5. Control problem for parabolic hemivariational 
inequality 

In this section we consider optimal control problem for systems described by 
evolution of first order hemivariational inequality. Similarily as in the previous 
section, we first recall the notion of parabolic G-convergence of operators, then 
we state a result on the sensitivity of the solution set and on the convergence 
of the cost functionals. 

Let D be an open bounded subset of IR and let V = W~ ·P (D), Z = LP(D), 
H = L2 (D), Z* = Ui(D), V* = w - l ,q (D) , where 2 :S p < oo and 1/p+ 1/q = 1. 
Then V C Z <;:; H <;:; Z* C V* with compact embedding V C Z. Given 
0 < T < +oo, let Q = (0 , T) X n. We introduce the following spaces v = 
LI'(O ,T;V), Z = LI'(O,T ;Z), 11. = L2 (0,T ;H):: L 2 (Q) , Z* = £'1(0,T;Z*), 
V* = £'1(0, T; V*), Wpq = {v E V : v' E V*}. It is well known (see, for 
instance, Zeidler, 1990) that 

Wpq c v c z <;:; 11. <;:; z• c v·, 
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We consider the following sequence of parabolic hemivariational inequalities 

{ 

(y'(t) + Ak,(t, y(t)), v- y(t)) + Jf(y(t); v- y(t)) ~ 
(.dV Ip)k ~ (fk(t) + Cku, v- y(t)) for all v E V and a.e. t E (0, T) 

y(O) = yg, y E YP = Wpq· 

5.1. PG-convergence of parabolic operators 

Following Svanstedt (1999) we start with the following definition: 

DEFINITION 5.1 Given nonnegative constants m0 , m1 , m2 and 0 < a ::; 1 we 
set 

M = M(mo,m1 ,mz,a) := {a:Q x IRN-+ IRN such that (i)- (iv) below hold} 

(i) la(t,x,O)I::; mo a.e.in Q; 
(ii) a(·,·,~) is Lebesgue measurable on Q for all~ E IRN; 
(iii) la(t,x,~)- a(t,x,ry)l::; mi(1 + 1~1 + lryi)P- 1 -a l~ - ryla a.e., for all~' 7]; 

(iv) (a(t,x,O- a(t,x,ry),~ -ry)RN ~ m2!~ -ryla a. e. in Q for all~' 77 E JRN. 

REMARK 5.1 If a E M, then the following inequalities hold 

{ 

la(t,x,~)l::; c6(1 + I ~ I)P- 1 a.e. in Q, for all~ E IRN 

I~J P ::; C7 (1 + (a( t, x, ~), OIRN) for all ~ E IRN 

so the mappings from the class M are uniformly bounded, coercive and mono­
tone. 

DEF'INITJON 5.2 A sequence of maps ak E M is PC convergent to a map 

aoo EM, written as ak ~ a00 , if for every g E V* we have 

{ 

Yk w~q Yoo, 

w-Lq(Q IRN) 
ak(t,x,Dyk) ~· a00 (t,x,Dy00 ), 

where Yk, k E N = N U { oo}, is the unique solution to the problem 

y'- div ak(t, x, Dy) = g, y(O) = 0. (24) 

REMARK 5.2 Given ak E M, it can be shown that the Nemitsky opemtors 
Ak: V -+ V* of the form 

(Aky)(t) = Ak(t, y), t E (0, T) 

corresponding to the family of operators Ak (t, y) = - div ak(t, x, Dy) are boun­
ded, coercive, hemicontinuov.s and monotone. Therefore, for every k E N and 
g E V* , there exists a unique solution Yk E Wpq to the problem (24). The 
compactness of the class M with respect to the PG-convergence was established 
by Svanstedt (1999). The Definition 5.2 generalizes the one given for a class of 
. . . .. /_, ..... ....,....., \ 
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5.2. Sensitivity of solution sets for (HV Ip )k 

In this section \ve provide the result of the sensitivity of the solution set of 
the parabolic hemivariational inequality. First we observe that the problem 
(HV I,)k is equivalent to the following inclusion 

{ 
y'(t) + (A~.;y)(t) + 8Jk(y (t)) 3 h(t) + Ck(t)'U, kEN 
y(O) = y?,, y E Yr = Wpq, 

where A~.;: V--+ 2v· is the Nemitsky operator corresponding to A.b Jh,: Z--+ IR 
is a superpotential , hE V* , C~.;:U--+ V* and Yo E H . 

RG rviARK 5.3 The c:r:istcncc of solutions to (HV Ip)k, kEN can be establ'ished 
under "mild" assv:rnptions, e. g. that A~.; + 8J~.; is bounded, coetC'ive nnd psev.­
domonotone with respect to the rlonwin of fh operator. Thes e conditions iu1.ply 

that the opcmtm· -/b + A~.; + 8J~.; is surjective (sec Proposition 3.4). In order­
to study the sensitivity of the system we consi rla a special class of operators 
A~.; :V--+ V* of the fonn (A~.;y)(t) = Ak(t,y) w'ith Ak( t , y) = - divak(t ,:c, Dy) 
for· a~., E JVI . 

For the existence resul ts for parabolic hemivariational inequalities we refer 
the Readers to Micttinen and Panagiotopoulos (1999) , Mig6rski (2000 , 2001, 
2003), Mig6rski and Ochal (2000b) and Denkowski (2002). 

The hypothc~scs on the data of (HV Ip)k are the following: 

H(A)p: A,,,: (0, T) x V--+ 11* arc the operators of the form 
fJ G 

Ak(t,y) = -divak(t,x , Dy) with a~.; EM, kEN and ak ---+ u00 ; 

H (J )p : J~.;: Z --+ IR are locally Lipschi t:~; functions such that satisfy 
uniformly in k the condi tions 

(i) 11 8J~.;(z )ll z · :S cs( l + llziiV'') for all z E Z with some cs > 0; 

(i i) J2 (z; -z) :S c!J (1 + liz II") for a ll z E Z with r < p and c9 2: 0; 

(iii ) K(s-Z,w-Z*)- Iimsup GroJ~.; C Gr8J00 ; 

k --+oo 

( { ) o u f V I w o w - V o f s- v· J ~: Yk E v, . k E *, ;; E t'l, '!J~.: ---+ '!J00 ,. 1.: ---+ 00 ; 

!!_ (C) 1,: C~.: E I. (U, V*), kEN, vvhere U is a reflexive separable Banach 

space modeling the control space and C~.: ----'=--7 Coo continuously. 

PROPOS IT ION S.1 Under the above hypotheses from any sequence 

{y~.: E S u-t v 1" ),. ( ttk} h with 'Ilk ~ v.00 , one can extr·act n convergent subseq?Lence 
w - VVPfl 

YJ.:" ---+ Yoo and '!Joo E S(I-t ll t,, leo ( 1100 ) , so we have 
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Mo1·eover, if we have the un·i.qucness of solntion to the limit problem (HFip) oo, 
then we have also 

Proof. The proof of the first part of the proposition is contained in Theorem 
4.1 of Migorski (2000). Equicoercivity of s(H V l p)k (u) , (u E u, k E N) follows 
from the a priori estimates which we establish below. Let ·u E U, k E N and 
Yk E Scuv I,,)Ju). Then Yk E YP = Wpq and 

{ 

y~,. (t) + (A"yk) .(t ) + wk(t) = jk(t) + Ck(t)u a.e . t E (0, T) 
wk(t) E 8Jk(y~.(t)) a.e. t E (0, T) 
JJk(O) = y?,. 

Using the integration by parts formula (see Proposition 3.4.14 of Denkowski et 

al., 2003b), we have 2 for (y~,(t), Yk(t)) dt = jyk(T)I J1 -lv?:l~ · From H(J) 11 (ii) it 
follows that 

-(w~;(t), yk(t)) :S Jf(yk(t ); -yk(t )) :S c (1 + liYk(t)iiz) :S c (1 + jjyk(t)iiv) 

where c 2: 0 denotes the generic constant and r < p. Hence 

('wbyA:}z 2: c(1 + ii11kiiv) · 

By exploiting the coercivity of Ak (see Remark 5.1) from the equality 

(y~, Ydv + (A~; y<:,Yk)v + (wbyk)z = (h + Cku,y~;)v 

we obtain 

Thus 

ciiYkllt :S ~IYWJ + c (1 + llhllv·) IIYkllv + c (1 + llv~;llvl 
which implies that {yk} is bounded in V uniformly with respect to k. Next , 
since Ak and 8Jk are bounded operators, from y~ = h + C~;n- A~;yk - w~; we 
deduce that {YU is boundE!d in V* . Therefore we infer that {yk} is bounded iu 
vVPv. Finally, we remark that the second part of the proposition can be proved 
analogously as in the proof of Proposit ion 4.2 by using the Urysohn property of 
the Kuratowski convergence. Thus, the proof is completed. • 

In the parabolic case, besides control ·u E U (distributed coutrol C11. E V*) , 
we cau admit the initial value y0 E Vas an additional control in (CP)(JIVJ),,· 
So in the next subsection we consider the cos t functionals \Vhich depend on 
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5.3. r -convergence of cost functionals 

In this section we state conditions which guarantee the suitable f-convergence 
of the cost functionals in the control problem (CP)(HVTpk 

We consider the following costs 

where 

Fk1)(y) = j~ F?)(t , x,y(t,x))dtd:t, 

Fk2)(u) = ; · F2)(t,x,(Cku)(t,x))dtd:t:, 
·Q 

F},;1)(y 0 ) = / F?>(x,y0 (x),Dy0 (:r:))d:r:. 
.In 

(2G) 

(21) 

(28) 

In the following hypothesis the conditions (i) and (ii) hold uniformly with resp<~ct. 

tokEN. 

H(F(l))p: 

(i) F~~ 1 ) : Q x IR--+ IRis measurable in (t ,:r) E Q, pp>(t, x, O) E D'(Q); 

(ii) IF2)(t,x, zl)- FP)(t,.T,z2)l::; c10(l + lzll)l z1- z2 i in Q for some c10 > 0; 

( "') (1 ) ( ) w-L
1
(Q) (!)( ) . . . m F~, ·, ·, z ---+ F00 · , ·, z fm c1ll z E IR, 

H(F(2 l)p: 

(i) F~~ '"): Q x IR--+ IRis measurable in (t , x ) E Q, convex in z E IR; 

(ii) 0 ::; F? ) (t , x, z ) ::; Al z l" a. e. in Q with some A > 0; 

"') (2) ) w - L
1

(Q) (2) . (m Fk (-, ·, z ---+ F 00 (-, ·, z) for all z E IR, 

H(F(3) )1,: 

(i) F?): 0 x JRN + 1 --+ IR is measurable in x E 0, convex in z E JRN + 1; 

(ii) 0 ::; F2)(:r, z)::; Ai ziP a .e. in 0 with some A> 0; 

(" ' ) F'( :l)( · ~ ) 111 - L' (ll) p (3) ( · ) f' ll IIDN + l . m ~: , ~ ---+ 00 , z or a z E m , 

PROPOSITI ON 5.2 For eveTy fi:r:erl k E N nnde·r reyu.laT"i l.y asswn.ptions (i) , (ii) 
of H(F(J ))1' , H(F(2 l)1' and H(F(3l) 1, r·espectively, we have 

t · \ ,.,-( li t\ r 'I ll A\ 
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(jj) ;:p) (-) is s- £'1 ( Q) continuous, 

(jjj) .r?l(·) is w -V conl!:nuous. 

Z. DENKOWSKI , S. i\1JG6RSKI 

While, nnder· convergence conditions (iii), we have 

-r(3)( 0) f ,. q(w - Wl.P(f!)-) -r( 3)( 0) 
.rk Y --+ .roo Y · 

So for fu.nctional :FJ.:(y, u, y0
) defined by (25) we obta·in 

(jv) Foo(Y, ·u, y0
) = 

= fseq (w-w;, , s-·U(Q) - ,w-11-) lim :Fk(y,u,y0
). 

k--+ oo 

Pmof. The proof goes along the same lines like that of Proposition 4.4 with !1 

replaced by Q in cases of :F~l) , .1'~2 ) , and with similar arguments for .1'~31 . 

Now, the main result on the sensitivity of optimal control problems for 
parabolic hemivariationa.l iuequalities follows from Propositions 3.1, 5.1 and 
5.2, and from the direct method for the existence part: 

THEOREM 5.1 Under the assumptions of Pmposit·ion 5.1 for (HVIp)k withU = 
U(O,T;£'1(!1)) :::::: U(Q), Ck = id:U--+ Z* :::::: L'~(Q) c V*, we admit the 
hypotheses H(FUl)p , j = 1, 2, 3 for cost functional :Fk(y, u, y0 ) given by (25). 
Then 

(i) For every k E N the problem (CP)(HVI,,)k has at least one optimal 
solution (yk., ·uj,,, yg•) E Sj; , mk := :Fk (yk_ , ui,,, v2* ) being its minimal value. 

(ii) If the limit (original) pmblem (CP) (HI'Ip) oo has the "uniqueness of 
solu.tion pmperty" i.e. fo-r all tL E U, Swvip)oo (u) = {y00 (u)}, then every 
ar:cumulation point of the sequ.ence (yk_, uk,, v?) is an optimal solution to the 
pmblern (CP)(H\1 Ip) oc , i.e. 

( • • o.) ( • • o.) . 1 ( • • a.) s· 
Ykn>11kn>Ykn --+ Yoo, 1loo ,Yoo > a.nu. Yoo ,11oo ,Yoo E oo· 

(iii) We also have 
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