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Abstract: In this paper the sensitivity of optimal solutions to
control problems for the systems deseribed by stationary and evolu-
tion hemivariational inequalities (HVIs) under perturbations of state
relations and of cost functionals is investigated. First, basing on the
theory of sequential I'-convergence we recall the abstract scheme con-
cerning convergence of minimal values and minimizers. The abstract
scheme works provided we can establish two properties: the Kura-
towski convergence of solution sets for HVIs (state relations) and
some complementary I-convergence of the cost functionals. Then
these two properties are implemented in each considered case.
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1. Introduction

It is well known (Panagiotopoulos, 1985a, 1985h, 1993; Naniewicz and Panagio-
tovoulos, 1995;) that, many problems from mechanics (elasticity theory, semiper-
meability, electrostatics, hydraunlics, fluid flow), economics and so on can be
modeled by hemivariational inequalities (HVTs for short). The latter are general-
izations of partial differential equations (PDEs) and variational inequalities (Du-
vaut. and Lions, 1976) in the sense that besides the physical phenomena leading
to classical PDEs one has to take into consideration some nonlinear, nonmono-
tone and possibly multivalued laws (c.g. stress-strain, reaction-displacement,
gencralized forces-velocities, ete.) which can be expressed by means of the Clar-
ke subdifferential.

' Research supported in part by the State Committee for Scientific Research of the Republic
of Poland (KBN) under Grants No. 2 PO3A 003 25 and 1 'TOTA 027 26.
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In this paper, which in a sense is the continuation of Denkowski (2002),
where some of the results below were conjectured (see Theorem 4.2 and Remark
4.2 in Denkowski, 2002), we deal with control problems for systems governed by
the stationary (elliptic) as well as by the evolution first order (parabolic) HVIs.
More precisely, we consider

(CP), minimize {Fu(u, y) := FO(y) + T{E)(u)}
subject to
Ay+9dJ(y)3 f+Cu
7
(VL) {yEV, u€elU
or
(CP); minimize {f,,(u, y) = FO(y) + FO(u, yo)}

subject to

y' + Ay +9J(y) 3 f+Cu

HVI
(HVI) {Mm=ym YEWy =Y, u€l, 1/p+1/g=1,p22,

where A is a pseudomonotone operator (possibly multivalued in the existence
theorems), A is the Nemitsky operator corresponding to A, J is a locally Lip-
schitz superpotential (0.J denotes its Clarke subdifferential), C' is a controler
operator acting on the space of controls U and the cost functionals F () are in
integral form (for details and definitions of spaces V' and W,,, see Sections 4
and 5 below).

Our goal is to investigate the sensitivity of optimal solutions to these con-
trol problems; i.e. we are interested in the behavior of optimal solutions under
perturbations of systems (state relations; e.g. coefficients in equations or pa-
rameters in superpotentials are perturbed,...) as well as of perturbations of cost
functionals (e.g. integrands depend on parameters).

Our approach is based on the sequential I'-convergence (epi-convergence in
terms of Attouch, 1984) theory (see De Giorgi and Franzoni, 1975; De Giorgi and
Spagnolo, 1973; Spagnolo, 1975; Buttazzo and Dal Maso, 1982; Denkowski and
Mortola, 1993) in the sensitivity part, while for existence of optimal solutions
we use the direct method. The nonemptiness of the solution set for HVIs follows
from the theory of pseudomonotone operators (see Zeidler, 1990; Denkowski et
al., 2003b).

The basic properties assuring the convergence of minimal values and mini-
mizers of perturbed control problems to the minimal value and to a minimizer,
respectively, of unperturbed problem are: on one hand the Kuratowski conver-
gence of solution sets (which can be expressed as I'-convergence of their indicator
functions) and on the other hand some ”complementary I'-convergence” of cost
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We underline that nonemptiness of solution sets for HVIs can be obtained
(by surjectivity theorems for pseudo-monotone multivalned operators) for much
more general classes of operators, while for sensifivity results we have to restrict
ourselves to special classes of maximal monotone operators for which the notion
of G-convergence can be applied.

The sensitivity of control problems was largely considered in the literature
in papers on optimal control for systems governed by ordinary differential equa-
tions (Buttazzo and Dal Maso, 1982; Buttazzo and Freddi, 1993, 1995; Freddi,
2000), partial differential equations (Denkowski and Migdérski, 1987; Migorski,
1992a, 1992b, 1995, 1999; Chapter 4.2 of Denkowski et al., 2003b), partial dif-
ferential equations and differential inclusions (Denkowski and Mortola, 1993;
Briani, 2000; Arada and Raymond, 1999; Acquistapace and Briani, 2002). We
mention that the related control problems for systems described by HVIs were
studied by Haslinger and Panagiotopoulos, 1995; Migdrski and Ochal, 2000b;
Denkowski, 2002; Migorski, 2003, the shape optimization problems for HVIs
were considered by Denkowski and Migdrski (1998a, 1998b), Gasiriski (1998),
Ochal (2000), Denkowski (2000, 2001) and the corresponding inverse and iden-
tification problems were treated by Migdrski and Ochal (2000a).

The paper is organized as follows. In Section 2 we present an abstract
setting for the sensitivity analysis, which is based on the I'-convergence theory.
In Section 3 we recall some material on the sequential I'-convergence, the Clarke
subdifferential and the multivalued operators. Section 4 is devoted to control
problems for stationary hemivariational inequalities and contains the results on
the sensitivity of the solution sets to hemivariational inequalities and on the
stability of the control problems. In the last section the analogous sensitivity
results are provided for control problems for systems governed by parabolic
hemivariational inequalities.

The results of this paper were partialy reported during the French-German-
Polish Conference on Optimization, Cottbus, Germany, September 8-13, 2002.

2. General setting

In this section we recall the abstract scheme based on the I'-convergence theory,
which we use to study the stability of optimal control problems.

We consider a control system governed by a relation R which links the state
y € Yr to the control variable u € U, Yz and U being the spaces of states and
controls, respectively. Generally, the relation R can be chosen as an ordinary
differential equation (ODE), a partial differential equation (PDE), a differential
inclusion (DI), a variational inequality (VI) and a hemivariational inequality
(1iVI).

The optimal control problem under consideration reads as follows: find
(u*,y*) € A which minimizes the cost functional F:
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where the set A of admissible control-state pairs is defined by:
A= graphSr = {(u,y) : y € Srp(u), uell}
and the solution map is given by
Sr:Udu— Sp(u)={y€IVr : (u,y) € R} C Vx.
The set of optimal solutions to (CP)g is denoted by 8%, i.e.

Sp={(w",y") € A : F(u*,y*)=m}.

B .

The sensitivity (stability) is understood as a "nice-continuous” asymptotic
behavior of optimal solutions to the perturbed problems, i.e. perturbed state
relations Ry and perturbed cost functionals F;.. So we consider the sequence of
optimal control problems indexed by k € N = NU {oc}, where the index k € N
indicates "a perturbation” and k& = oo corresponds to the unperturbed original
problem:

(CP)r, minimize {Fi(u,y) : (w,y) € Ay} (= Felup,yp) =:my)
and Ay = graph S, . We are looking for conditions which assure the following
stability results:

(i) MyE — Meo a8 k — 00,

(ii) K-limsup Sy, C Sj

where K-limsup stands for the Kuratowski upper limit of sets. It is worth to
recall (see e.g. Proposition 4.3 of Denkowski and Mortola, 1993) that (ii) is
equivalent to the following condition: if {k,} is an increasing sequence in N,
(up, »yr,) € S';\'—k,.’ ug, converges to uy, in i and yg converges to y3, in Vg,
then (ug,,y5,) € Sk -

In order to establish the conditions (i) and (ii), first we reformulate the
problem (CP)x, as the unconstrained optimization one:

(CP)r, minimize {Fi(w,y) + xa, (w0, ) @ (w,y) €U x Vr, },

where xa denotes the indicator function of the set A, ie.
'(’:‘)—{0 T €A
XME = V4oo z¢A

and then we apply an approach based on the theory of I'-convergence (epi-
convergence), see De Giorgi and Spagnolo (1973), Spagnolo (1975), Buttazzo
and Dal Maso (1982), and the references therein.

Another possible approach can be based on "discrete convergence”, see Grig-
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Now we are in a position to formulate
THEOREM 3.1 (De Giorgi and Franzoni, 1975) Let X be a topological space and
let fr: X - R=RU{£oo}, k € N be such that fo, = F(X_);._IEEO fio If
oo Sy =Unlaf ek e
(in this case Ty is called "quasioptimal”) and
Ty, = Too 85 N — 00,
then foo(Too) = i}{.f foolz) = JHIOIC fr(@r).
In the sequel we put
X=UxYr, R=(HVI)or (HVI),
Sk = 8w, and fi(z) = Fi(u,y) + xa. (0, y).

REMARK 3.1 If the topological space X satisfies the first axiom of countability,
then the sequential Ty, (X ~)-convergence coincides (see Proposition 8.1 of Dal
Maso, 1993) with the topological I'(X ~)-convergence introduced by De Giorgi
and Franzoni (1975). Moreover, the sequential I'-limit operation is not additive,
t.e. it is not enough to know I'-lim Fy. and I'-lim xa, in order to calculate
I-lim(Fy + xa,), see BExample 6.18 in Dal Maso (1993).

In order to calculate the I'-limit of the sum of two functions we use the
following

THEOREM 3.2 (Bultazzo and Dal Maso, 1982) If
Flu,y) = LoegU™, V) lim Fi(u,y),
=00

G(uay) = FSCQ{H) y_] k}i&}o gk(“j ?}):

then

-?(ua y) + g(“sy) = Fscq(u_»yr} (.7'-_{-_(15. ?)’) + gk(ua 3})) .

i
Thus, due to the above theorem, the convergences
(i) My = Moo (of minimal values) and

(ii) K-limsup Sy, CSp_,

follow from the following result (see also Propositions 4.1 and 4.5 in Denkowski
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PROPOSITION 3.1 Suppose
Fess :rscq(u_ay'l?.)hlnfln (1)
Xolkss, = Fscr/ (ua yﬁ) lim XAg- (2)

Let (g, yx) be optimal or ”quasioptimal” solutions to the problems (CP)g, such
that

lim inf Fy (g, yr) = lim inf ( inf .ﬂ) (3)
k—o00 k—oo \UXVr,

and
(Uk, Uk, ) = (Uoo, Yoo) as n — 00. (4)

Then Foo(lioss Teo) = 1nf]: (u,y) = lim <1nf]-](u y))

k—o00 Ak

REMARK 3.2 The condition (2) of Proposition 3.1 is equivalent (sec Proposition
4.8 of Denkowski and Mortola, 1993) to the Kuratowski convergence

(2" Sk (ug) gy Soo (1) for all wy LA
1.6,
(2")

K(Yr)-limsup Sk (ur) C Seo(u) C K(Yr)-liminf Sy (ur) for all wy Ky

while the condition (1) (the complementary T'-convergence), roughly speaking,
means a "continuous convergence” of cost functionals with respect to y and
TU™) convergence with respect to u. We recall that for a sequence of sets
{An}nen in the topological space X, by K-liminf A, we mean the set of all
limits of sequences {x,} such that x,, € A, while the set IX-limsup A, consists
of all limits of subsequences {xy} such that vy, € A,, for any increasing sequence

{ni} C {n}.

3.2. G-convergence of multivalued elliptic operators

Let © be an open bounded subset of RY with Lipschitz boundary. Following
Chiado’Piat, Dal Maso and Defranceschi (1990), for fixed m; € LY(), ¢; > 0,
i = 1,2, we introduce the following class of multivalued operators

MaRN) = {a: Q x RN - 28" guch that (i) - (iii) below hold}
(i) a(z,§) is maximal monotone with respect to € for all z € ;

(i) ais £(0) ® B(RY) @ B(RY) measurabl(,

(v =i ~ Pro > PrmNY e B N —
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(iii) for every (€,1) with 4 € a(z,€) we have
Inl* < ma(@) +ei(n, Orw (5)
€7 < ma(z) + c2(n. §)mrr. (6)
REMARK 3.3 The main examples of maps a € Mq(RN) have the form
a(z,€) = Beib(z, €) for some 1: Q2 x RN = [0, +00),
where 1 is measurable in both variables, convex in €, and satisfies
cil€l? < B(x,€) < calel? (7)
with suitable constants 0 < ¢; < ¢4.

DEFINITION 3.1 For every function a € Mq(R™) we define multivalued opera-
lors
AWP(Q) 3y - Ay := {n € LY RY) : y(z) € alz, Dy(z)) ae.},
AWEP(Q) 5y = Ay := {—divy : y € Ay} c (W'?(Q))".
In the space L(Q; RY) we define topology ¢ according to:
DEFINITION 3.2
= nin w— LY RY)
a . g
e — 1 if and only if
divay = divy in s — (WP(Q))".
For 1 < p < oc, we admit the following definition of multivalued G-conver-
gence.
DEFINITION 3.3 We say that a sequence {a;} € Mq(RN) G-converges to a €
Maq(RY) and we write ay Ly a if
K(w,0)-limsup GrA; C GrA.
We recall that the compactness of the class Mg (RY) with respect to the notion
of G-convergence given in Definition 3.3 was proved by Chiado'Piat, Dal Maso
and Defranceschi (1990). The definition of G-convergence and its properties for
linear operators go back to De Giorgi and Spagnolo (1973), Spagnolo (1967,
1975), and Colombini and Spagnolo (1977).
ProprosiTION 3.2 (sec Theorem 3.11 of Chiado’Piat, Dal Maso and Defran-
ceschi, 1990) If ax, a € Mq(R"N) are such that a; e a, then

K(w-V,s— V")—klim GrA = GrA.

K{w=V,s—V")
=

(For the latter we also write Gr Ay Gr4).

The inverse of the Proposition 3.2 does not hold (see Remark 3.13 of Chia-
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2.3. Clarke subdifferential

Given a locally Lipschitz function J: Z — R, where Z is a Banach space, we
recall (see Clarke, 1983) the definitions of the generalized divectional derivative
and the generalized gradient of Clarke. The generalized divectional derivative
of J at a point u € Z in the direction v € Z, denoted by J"(u;v), is defined by
J%(u;v) = limsup M
y=re, £40 i

The generalized gradient of .J at u, denoted by d.J(u), is a subset of a dual
space Z* given by 0J(u) = {C € Z* : J'(u;v) > ((,v) 4.4 for all v € Z}. The
locally Lipschitz function J is called regular (in the sense of Clarke) at v € Z
if for all v € Z the one-sided directional derivative J'(u;v) exists and satisfies
JO(u;0) = J'(usv) for all v € Z.

We recall a result concerning the Clarke subdifferential of the integral func-
tional (see Theorem 2.7.5 of Clarke, 1983). Let Q be a bounded subset of RV,
1 <p<ooandlet f:Qx RY 5 R. We assume that:

(i) f(-,€) is measurable for all £ € R, f(-,0) is integrable;
(ii) f(w,-) is locally Lipschitz for each x € €;
(iii) there exists a constant ¢ > 0 such that for every ¢ € d, f(z,v), we have

IClis < e (1+ lolis" ).

THEOREM 3.3 Under the above hypotheses, the functional F:LP(;RY) — R
defined by F(v) = [, f(x,v(x)) dz for v € LP(Q;RY) is well-defined and locally
Lipchitz (in fact, Lipschitz continuous on bounded subsets of L"(Q; RY)) and we
have

OF(v) C ]“ Ouf(x,v(x))dx for ve LP(RY).

The latter means that for any z € OF(v), there is a function ¢ € L7(%; RY),
1/p+ 1/q = 1 satisfying ((x) € d,f(x,v(x)) for a.e. © € Q and such that for
all y € LP(Q; RY) we have (C,y)paxpr = ]Q (C(x),y(z))ga da.

3.4. Multivalued operators

We give the basic definitions for multivalued operators and then we quote two
main surjectivity results for the operator classes under consideration (see e.g.
Denkowski et al., 2003b; Naniewicz and Panagiotopoulos, 1995; Papageorgiou
et al., 1999).

Let Y7 be a real reflexive Banach space and Y™ be its dual space and let
T:Y = 2" be a multivalued operator. We say that T is:
(1) upper semicontinuous if for any closed subset C' C Y'* the set T (C) =
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(2) pseudomonotone if the following conditions hold:
a) the set Ty is nonempty. bounded, closed and convex for cach y € Y7
b) T is upper semicontinuous from each finite-dimensional subspace of ¥
to Y* furnished with the weak topology;
c)if {yn} C Y,yn = yweaklyin¥, y: € Ty, and limsup (y5;, y» — ) <0,

n—+oo
then for cach element v € Y there exists y*(v) € T'y such that

liminf (y7, yn — y) 2 (y*(v),y — v);
n—+o00

Let L: D(L) C Y — Y™ be a linear, densely defined and maximal mono-
tone operator.

(3) T is L-generalized pseudomonotone if the following conditions hold:
a) for every y € Y, Ty is a nonempty, convex and weakly compact subset
of Y7,
b) T is upper semicontinuous from each finite-dimensional subspace of Y’
into Y* equipped with the weak topology,
¢)if {yn} € D(L), yo — y weaklyinY,y € D(L), Ly, — Ly weakly in
Y™, yn € Tyn, yn, — y* weakly in Y™ and limsup (yn,yn — y) < (4", 1),

n—+o0

then y* € Ty and (yy;, yn) — (¥*,y)-

The crucial point in the proofs of the existence of a solution to the liemi-
variational inequalities considered below are the following surjectivity results.

PROPOSITION 3.3 If Y is a reflexive Banach space, and T:Y — 2Y" \ {0} is a
pseudomonotone and coercive operator, then T is surjective.

ProrosiTiON 3.4 If Y is a reflexive, strictly convex Banach spuce, L: D(L) C
Y — Y* is a linear, densely defined, maximal monotone operator and T:Y —
27\ {0} is a bounded, coercive and L-generalized pseudomonotone operator,
then L+ T 1is surjective.

The proof of Proposition 3.3 can be found in Denkowski et al. (2003b), Theorem
1.3.70, while the proof of Proposition 3.4 can be found in Papageorgion et al.
(1999), Theorem 2.1, p.345.

4. Control problem for elliptic hemivariational inequality

In this section we deliver a sensitivity result for optimal control problem for
systems governed by stationary hemivariational inequality. First we give an
existence theorem for elliptic HVI, then we provide results on the sensitivity of
the solution set and on the convergence of the cost functionals.

Given an open bounded set Q C RN with Lipschitz boundary, we introduce
the following spaces V = Wa'(Q), Z = LP(Q), H = L*(Q), Z* = LI(Q),
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evolution fivefold of spaces VC Z C H C Z* C V* with compact embedding
VcC2Z.

We consider the following sequence of hemivariational inequalities
(HVIL,) (Ary,v=y) + ;v —y) > (fe + Cru,u—y), Vv eV,

The hypotheses on the data of (HV ), are the following:

H(A): Ap:V = 2" are multivalued pseudomonotone, bounded
and coercive operators;

H{J): Jy:Z — R are locally Lipschitz functions such that

(i) |0k (2)||z- <& (1 + ||z||?"") for all z € Z and for some ¢; > 0;
(i) J2(2;—2) <T(1+||2||") for all z € Z with r < p and & > 0;
(Ho): freVr.

H(C): Cy € L(U,V*), where U is a reflexive separable Banach space
modeling the control space.

We remark that the problem (HVI,); is equivalent to the following diffe-
rential inclusion

{ Ay + 0Ji(y) 3 fr + Cru
yevVv

where 8J;, denotes the Clarke subdifferential of Ji.. Given u € U, by a solution
of (HVI.)r we mean an element y € V such that Ay + . = f + Cru with
some 1y € 8Ji(y) and n € Z*.

ProprosITION 4.1 If hypotheses H(A), H(J), H(C) and (Hp) hold, then for a
fired k € N and for all u € U, we have Si(u) := Sy, (u) # 0. Moreover,
if AV = 2Y" is strongly monotone and 8.J; is monotone, then Si.(u) = {yx)
(i.e. we have the uniqueness of solution).

Proof. The above existence result follows from Proposition 3.3 (see also Chapter
4.3 of Naniewicz and Panagiotopoulos, 1995). To this end, it is enough to remark
that if the operator Ay is coercive, i.e. (Agv,v) > a(|v||)||v]| for all v € V with
a:RY = R*, a(t) & +oo0 as t — +o0) and JP(z;—2z) < G(1 + ||2||7) for all
z € Z, then Ay + 0.J;, is a coercive operator. The uniqueness is a consequence
of the strong monotonicity of 4y + 8.J;. |

REMARK 4.1 A simple example of a superpotential Jy, which satisfies H(J) is
an integral functional Ji.: Z — R,

Julz) = / idr 2oV dr. € 7 = T.P(O)
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where the integrand ji: Q x R — R is given by ji(x,€) = min{g;(£), 92(€)}. We
suppose that gi: R = R, gi(z) = a;2° + i, a; > 0 fori=1,2. Using Theorem
2.5.1 of Clarke (1983), we know that 3jy.(z,€) C co{g{(£),95(€)} and hence the
subdifferential Oj;.(x,-) has ot most a linear growth. So, by exploiting Theorem
3.3, we obtain H(J)(i). Next, by Proposition 2.1.2 of Clarke (1983), we have
Iz, &m) = max{¢*n : € € jr(x,€)}. Therefore

Jk(@,& =€) = max{€" (=€) : € = Agy(€) + (1= Ng3(€), A€ (0,1)} <0,

because g:(€)€ > 0, i = 1,2. Hence and from the inequality
J(z;v) < / JN(z, z(z);v(x))dx for all z,v € Z
Q

(which is a consequence of the Fatou lemma), it follows that H(J)(ii) holds with
23'2 =).

4.1. Sensitivity of solution sets for (HVI,);

We are now in a position to state the result on the Kuratowski convergence of
the solution sets for elliptic hemivariational inequalities.

PR0oPOSITION 4.2 In addition to the hypotheses of Proposition .1, we suppose
the operators Ay in (HV 1) correspond (see Definition 3.1) to multifunctions
ar € Mq(RY) and assume

, K(w—=V,5=V*)
) Graz ™ =3 GrAs

(i) K(s—Z,w-Z")-limsupGrdJy C GrdJ
k=00

(iii) Ci, Coo € LU, V"), Cr — Co continuously

(iv) fr = foo ins—V",

Then
1 for every k € N, Si(u) = Sy, (u) # 0 for all w € U;
20 K(w — V)-limsup Si(ur) C Seo(tso), for all ux -5 use.
k—o0
Moreover,

(v)  if Seoltuoe) = {Yoo} and for every up — uyx we can find weakly
compact sequence of solutions yr € S(ur), k € N,
then

3 Solu)c Klw—=Vi-liminf Silu).
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REMARK 4.2 The hypothesis (i) of Proposition 4.2 follows, for instance, if

ag o a~ (see Proposition 3.2). The assumption (i1) holds, for example,
if i:Z — R are locally Lipschitz, equi-lower semidifferentiable, locally equi-

hounded and Jj, L) Joo (see Theorem I of Zolezzi, 1994). The continuous
u
convergence of Cy to Cw in (iii) means that for every up — u we have

Crug 6" Cats. The condition (v) is satisfied in the case {Si.(u)} are equico-
ercive for all w € U and k € N (which happens if Ay are equicoercive; e.q.
Ap = —divay, ap € Mqo(RV)).

COROLLARY 4.1 Under the assumptions (i)~(v) of Proposition 4.2, we have

K [u

Sk () 2 Soolttag)  for all uy, Hs iy,

Proof of Proposition 4.2. The existence of solution to the problem (HVI, )y

follows from Proposition 4.1. For the proof of 2°, let wy 5 U and Yoo €
K(w — V)-limsup;_, ., Sk(ur). Thus we can find a sequence {k,} C N and
{yr,} C V such that y, € Sk, (ug,) and yp, = Y~ weakly in V. Clearly
Apoyk, e, = [, + Croug, with ng, € 9Jy, (yg, ). From hypothesis H (J)(i),
we know that {7, } lies in a bounded subset of Z* and so we may assume that

M, —* oo Weakly in Z* (8)

for some 1., € Z*. Since (yp, ,nk,) € GroJy, and (yr, ,,.) = (Yoo, Teo) in
(s = Z) x (w— Z*) topology, by the assumption (ii) we deduce that

N € aJoo('Uoo) (E]]

Next, from hypotheses (iii) and (iv), (8) and the compactness of the embedding
Z* C V=, it follows that

Aoy = frn + Crytthy, = M, = foo + Cooliog — )0 in V™.

By the assumption (i), we obtain fo, 4+ Coglicg — oo = Aol which, together
with (9), implies yo € S (uso) and finishes the proof of 2°.

Finally, the conclusion in 3 follows from 2? and the following Urysohn prop-
crey of the Kuratowski convergence: Si(uy) : (5‘ ) Sooltao) for uy M e if
and only if every subsequence of Sg(uy) contains a further subsequence which
K(w — V)-converges to Se(teo) = {yao}- The proof of the proposition is fi-
nished. =

We close this section by providing the sufficient conditions for the integral
functionals under which the hypothesis (ii) of Proposition 4.2 holds. Consider

the functionals Jip: Z — R, k € NU {oo} of the form

Jul2) = [ e 2laoVNdr for > 7 = TP
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We admit the following assumption:
H(j): jxQxR—R, k€ NU{oo}, are such that
(i)  jk(-,€) are measurable for all £ € R and ji(-,0) € L}(Q);
(ii) jr(z,-) are locally Lipschitz for all z € {;
(i) || < e (1+ [€]P7Y) for all n € Ojx(z, ) with ez > 0;
(iv) Jeo(z,-) is regular in the sense of Clarke;
(v) K—-]i:n sup Gr j(z,+) C Grdju(m,-) for z € Q.
:— 00

PROPOSITION 4.3 Under hypothesis H(j), we have
K(s-Z,w-Z*)-limsup GrdJ; C GrdJ.

k—oo

Proof.  Let (u,v) € K(s-Z,w-Z")-limsup GrdJ,. Then there is a sequence

{kn} of N and (ug,,vs,) € Z x Z* sutl-:aat
vk, € OJ, (ur,) (10)
up, < u in Z (11)
vk, — v weakly in Z*. (12)

We will prove that (u,v) € Gr J«. Since the integrands jj, satisfy H(5)(i), (ii)
and (i1i), we apply Theorem 3.3 to the functional J and we obtain that it is
bounded on every bounded subset of Z and for every k € N, we have

dJr(z) C / Oji(z,2(z))dz forall z € Z. (13)
Q

From (10) and (13), we have vy, € [, 9jk(z,us, (x)) dz. The latter means (see
Theorem 3.3) that there exists a sequence sy, € Z* satisfying

Sk, € Oj, (z,up, (z)) ae z € (14)
and such that, for every p € Z,

(0har) = [ 51, (pla) da (15)
Using H(j)(i7i) from (14) we obtain

sk lz= < ea (14 flu, 57)  with ¢4 >0, (16)

From (16) and (11) we know that {s, } remains in a bounded subset of Z* and
hence we may suppose
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Again by (11) for a next subsequence, we have
uy, () = u(z) for a.e. x € Q. (18)

Combining (14), (17), (18) and applying Theorem 7.2.1 of Aubin and Frankowska
(1990), we get

s(x) € Conv K-limsup. _, ,(z) k—009Jk (2, 2) C Ojoo(z,u(z)) ae. z € .
(19)

The latter inclusion follows from H(j)(v) since Oj (2, ) has convex and closed
values. Moreover, due to (12) and (17) we pass to the limit in (15) and we have

(v, ) = / spdz for every ¢ € Z. (20)
Q

From (19) and (20) we now infer v € [, Ojoo(x,u(x)) dz. Applying again The-
orem 3.3 to Ju, by exploiting the regularity assumption H(j)(iv), we have
0Jo(u) = fn Joo(x,u(x)) dz which implies that v € dJoo(u). This means that
(u,v) € GrdJ and completes the proof. @

4.2. Complementary I'-convergence of cost functionals

The goal of this section is to give conditions under which the cost functionals in
the control problem (CP)yv7y,), for systems described by elliptic HVIs satisfy
the convergence condition

fm = Fseq(u-—,yﬁ) li!‘rl Fk

of Proposition 3.1. The functionals Fj.: U x Y, — R have the form

Filu,y) = FD @) + FO(u), veld, ye .=V, (21)
FO ()= fn FO(z,y(2)) de, (22)
f,‘f’(u):/QFE}(I,(C‘._U)(:L-))(:;L«. (23)

Our aim is to assure that

1° for every k € N, .7",51}(-) is (w-V)-lIsc, }f]{-) is my-lsc

a2

Poeq(w-V*E
g g Tl g g FO

To this end we admit the hypotheses &/ = L(Q2) with2<p<ocosol<qg<2
and Cy, is the embedding of LY(Q) into V* = W~14(Q).

T 1 51 ~ " . 1

I‘Jii(_b;‘_}
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H(FW) . F,.(,_”:Q x R — R is measurable in z € , FA(:”(.?:, 0) € LP(02) and

|F (2, 2) = FM (2, 20)| < e5(1 + |21])] 21 — 22| with ¢5 > 0;
FV(,2) — FO(,2) w-L(R) for all z € R;

2

M: {2) : 0 x R = R is measurable in z € 2, convex in z € R and
0< Ff](z, z) < Alz|¢  for some A > 0;
FP(,2) — F@(,2) w-L(Q) for all z € R.
PROPOSITION 4.4 If hypotheses H(F1)) and H(F*)) hold, then
1° forkeN, .5'-‘,;(__”(‘) is (s-LP(Q))-continuous and also sequentiolly
(w-WhP(Q))-continuous, and ff)(-) is (s—L9(Q)))-continuous;

I‘aaq(s_—_L:(Q}"}

2 FO () = FOWo), Vi =5 oo and FD (u) F& (w).
Proof. Ad 1°. From the hypotheses it follows that the intergrands Fél), Ff}
(k € N) are Carathéodory type functions, i.e. they are measurable in x, continu-
ous in z and bounded by integrable functions on bounded sets. So the function-
als {1, }f) (k € N) are continuous, respectively on L?(2) and L?(f2) in the
strong topologies (see the Carathéodory Continuity Theorem in Example 1.22
ot Dal Maso, 1993). Then, }',E” is also sequentially (w — W1P(Q))-continuous
owing to the compactness of the embedding W*'?(Q) into LP(f2).

Ad 2°. For the first convergence (continuous convergence) of L' in 2°,
assume Y — Yoo in w — WHP(Q), so also in s — LP(Q) (and in s — L*(Q) as we
have p > 2). By the direct calculation we have

IFD () = FO oo)l < 1F (wr) = FEO (ool + 1F (B0) = FE (yeo) -

The first term of the right hand side can be estimated (see H(F")), by using
the Hélder inequality, as follows

[|F‘”( £,9¢) - FO(z, ymndx<r:5[(1+|Jm(x)n|m) Yoo(2) dz <
< esll1 + yoollL2(a) Iy = yoollz2(0)

so it tends to zero, since yr — Yoo in s — L*(N). The convergence of the
second term to zero can be proved in the similar way as the convergence (13)
in Lemma 4.1 in Denkowski and Staicu (1994). For the second assertion in
20 observe that F ) 45 convex and locally equibounded functions are locally
equi- Llpschlta contznuous Hence, owing to Proposition 5. 9 of Dal Ma.so (1993]‘

"\ I
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convergence .7—";\_21 (1) = fc(.z}('u) for all uw € L9(£2), and the latter again can be
proved as (13) in Lemma 4.1 in Denkowski and Staicu (1994) which completes
the proof. [ |

Thus, according to Proposition 3.1, from Propositions 4.2 and 4.4, applying
the direct method, we get

THEOREM 4.1 Under the assumptions of Proposition 4.2 concerning the oper-
ators Ax and superpotentials Jy. appearing in (HV'I,.); we set U = LI(S) with
the strong topology, Cy = id: LY(Q) — V™ and we admit hypotheses H(F(1),
H(F®) for the cost functionals given by (21)-(23). Then

(i)  for every k € N the control problem (CP)(uvr.), has at least one
optimal solution (uy,yi) (s0 Sp = Sy, # 0) with minimal value my, =
Fre(up, ur);

(i)  if the original problem (HV I.)s has the uniqueness property i.e.

S(hv 1) (W) = {Yoc(u)} for allu € U

and Sgyv i,y (1) are equicoercive (w € U, k € N), then every accumulation point
of the sequence (uy,yy) is an optimal solution to the problem (CP)yvi,. . i-e.

{(ug,up) € 8§, (up,yp) = (s, Y5)} = (Ul, ¥5) € Sc;

Moreover, in this case, we have also
(#it) g — Moo as k — 00.

5. Control problem for parabolic hemivariational
inequality

In this section we consider optimal control problem for systems described by
evolution of first order hemivariational inequality. Similarily as in the previous
section, we first recall the notion of parabolic G-convergence of operators, then
we state a result on the sensitivity of the solution set and on the convergence
of the cost functionals.

Let €2 be an open bounded subset of R and let V' = W&"’(Q), Z = LP(%),
H=L*Q), 2" =L"N), V*=W14(Q), where2 < p< oo and 1/p+1/q = 1.
Then V.C Z C H C Z* C V* with compact embedding V' C Z. Given
0<T < 400, let @ = (0,T) x 2. We introduce the following spaces V =
POTV), 2 =I"0.T:2), % = L0, T; H) = LAQ), 2* = LU0, T 2",
V' = LY0,T;V®), Wy, = {v € V : v € V'}. It is well known (see, for
instance, Zeidler, 1990) that

Wy CYCECHCZ CV,
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We consider the following sequence of parabolic hemivariational inequalities
') + Ar(t, y(t), v = y(0)) + R (w(®);v — y(t) >
(AV )k > (fi(t) + Cru,v — y(t)) forallv €V and ae. t € (0,T)
y(0) =), y€Vp =Wy

5.1. PG-convergence of parabolic operators
Following Svanstedt (1999) we start with the following definition:

DEFINITION 5.1 Given nonnegative constants mg, my, my and 0 < a < 1 we
sel

M = M(mg,my,my,a) = {a:Q x RY - R" such that (7) — (2v) below hold}

() lalt,2,0)| < mo a.c.in Q;

(ii) a(-,-,£) is Lebesque measurable on Q for all £ € RN;

(it1) la(t,,€) - a(t,z,m)| < my(L+[€] + n)P~1=2l¢ = nl® a.e., for all €, n;
(i) (a(t,z,€) —a(t,z,n), € — gy > mal€ —n|* a.e. in Q for all ¢, n € RN.
REMARK 5.1 If a € M, then the following inequalities hold

la(t,z,€)| < cs(1 + |€])P! a.e. in Q, for all € € RN

€] < er(1 + (alt, 2,£),€)rn) for all € € RY

so the mappings from the class M are uniformly bounded, coercive and mono-
tone.

DEFINITION 5.2 A sequence of maps ar € M is PG convergent to a map
Qoo € M, wrilten as ay i Ao, tf for every g € V* we have

w—=Wpy,
Yk P Yoo

a(t,z, Dyi) w-LHQRY) Qoo(t, 2, DYoo),
where yx, k e N=NU {00}, is the unique solution to the problem
y' —divai(t,z,Dy) = g, y(0)=0. (24)
REMARK 5.2 Given a; € M, it can be shown that the Nemitsky operators
Ap:V = V* of the form
(Ary)(t) = Ac(t,y), te(0,7)

corresponding to the family of operators Ay (t,y) = — divay(t,z, Dy) are boun-
ded, coercive, hemicontinuous and monotone. Therefore, for every k € N and
g € V", there exists a unique solution yr € Wy, to the problem (24). The
compactness of the class M with respect to the PG-convergence was established
by Svanstedt (1999). The Definition 5.2 generalizes the one given for a class of

PP
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5.2. Sensitivity of solution sets for (HVI,);

In this section we provide the result of the sensitivity of the solution sct of
the parabolic hemivariational inequality. First we observe that the problem
(HVI,)x is equivalent to the following inclusion

y'(8) + (As)(t) + 0Jk(y (1)) 3 fi(t) + C(t)u, k€N
(H‘/Ip)l\' {y(o) — :I/LO’ Y € y], = qu,

where Aj:V — 2V is the Nemitsky operator corresponding to Ay, Ji: Z — R
is a superpotential, fr € V*, Cj:U = V* and yo € H.

REMARK 5.3 The existence of solutions to (HV 1,)r, k € N can be established
under "mild” assumptions, e.q. that Ax + 0.J) is bounded, coercive and pseu-
domonotone with respect to the domain of 1—;’,— operator. These conditions 1mply
that the operator (—’,’7 + A + 0Jy. is surjective (see Proposition 3.4). In order
to study the sensitivity of the system we consider a special class of operators
AV = V* of the form (Ary)(t) = Ap(t,y) with Ap(t,y) = —divag(t, z, Dy)
for ar € M.

For the existence results for parabolic hemivariational inequalities we refer
the Readers to Miettinen and Panagiotopoulos (1999), Migérski (2000, 2001,
2003), Migérski and Ochal (2000b) and Denkowski (2002).

The hypotheses on the data of (HV I,), are the following:

H(A),: Ap:(0,T) x V — V™ are the operators of the form
Ap(t,y) = = divag(t,z, Dy) with a € M, k € N and ay ik, Qlsers
H(J),: Jr:Z — R are locally Lipschitz functions such that satisfy
uniformly in & the conditions

1) 0T (2)]]z < eg(1+ ||z||‘)Z/q) for all z € Z with some ¢g > 0;

(i) JP(z;-2) < ey(1+||2]|") for all z € Z with r < p and ¢y > 0;

(i) K(s-Z,w-Z")-limsup GrdJ, C GrdJy;

k=00

" w g w-y sV
(fIO)p . ?/2 & V, fk eV, keN, 7/2 kl—> ygov fk = foo;

(C)y: Cr€ LU, V), keN, where U is a reflexive separable Banach

. ¢ .
space modeling the control space and Cj, — Cx continuously.

ProrosiTION 5.1 Under the above hypotheses from any sequence

" : u
{yr € Stvi,), (ur) i with w, — ua, one can eatract a convergent subsequence

w—W,,
Yr — Yoo nd Yoo € Sirv i,y (Uoo), S0 we have
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Moreover, if we have the uniqueness of solution to the limit problem (H VL)oo
then we have also

Soc(too) C K (w-Wp,)-liminf Sy (uy),

K(w-wW,
‘[“im} ra) Soo(teo)-

Proof. The proof of the first part of the proposition is contained in Theorem
4.1 of Migérski (2000). Equicoercivity of Sipvz,), (u), (v € U, k € N) follows
from the a priori estimates which \w establish below. Let uw € U, k € N and
Y € b(mq )e (). Then y. € Y, = W, and

Y () + (Aeyr) (t) + wi(t) = fi(t) + Cr(t)u ae. t € (0,T)
wy(t) € OJi(yi(t)) ae. te(0,T)
yi(0) = yj.

so0 in this case Sy (uy)

Using the integration by parts formula (see Proposition 3.4.14 of Denkowski et

al., 2003b), we have qu Y (), yk(®) dt = lye(T)|% — |yRl3;- From H(J),(ii) it
follows that

—(wie(t),y (1)) < JR k() =y (1)) S c(L+ llyw(®)ll7) < (1 + [lyx@)IIF)
where ¢ > 0 denotes the generic constant and r < p. Hence
(Wi yk)z > e (1+ [lyelly) -
By exploiting the coercivity of A; (see Remark 5.1) from the equality
Wi v )y + (Aryies yedy + (wey yi)z = (fr + Cruyyi)y

we obtain
%lyk(T)ﬁ{ - %l?fﬁﬁ; +ellyellh — e (L + llyellp) < (1fellve + NCrullv-) lyellv.
Thus

cllyellyy < %iyﬁlf; +e(L+ I fillve) llyelly + e (1 + [lyllb)

which implies that {y;} is bounded in V uniformly with respect to k. Next,
since Ay and dJ; are bounded operators, from y), = fi + Cru — Apyx — wy we
deduce that {y;} is bounded in V*. Therefore we infer that {y} is bounded in
W,y Finally, we remark that the second part of the proposition can be proved
analogously as in the proof of Proposition 4.2 by using the Urysohn property of
the Kuratowski convergence. Thus, the proof is completed.

In the parabolic case, besides control u € U (distributed control Cu € V*),
we can admit the initial value yo € V' as an additional control in (C.P)“,rv!),-.
So in the next subsection we consider the cost functionals which depend on
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5.3. T'-convergence of cost functionals

In this scction we state conditions which guarantee the suitable I'-convergence
of the cost functionals in the control problem (CP)gv1,), -
We consider the following costs

Frly,u,g°) = F ) + FO ) + F P (o), y € Vy, uecld, y° € V(25)

where
. / FOt, o,y(t, 2)) didz, (26)
Q
FP(u) = / FP(t,z, (Cru)(t, x)) didz, (27)
JQ
FOu) = / F¥ (,y°(z), Dy’ (x)) da. (28)
JQ

In the following hypothesis the conditions (1) and (i) hold uniformly with respect
to k € N.

H{FO, ;
(i) F,E”: @ x R — R is measurable in (¢,z) € Q, F,fl)(t,z,O) € LP(Q);
(ii) |F£I)(t,w,z1) - F,Sl)(t,x,z-z)l < co(l + |z1])]z1 — 22| in Q for some ¢19 > 0;

1

(iii) F,f])(-, z) " 2 FWU(,. 2) for all z € R;

H(F®),
(i) FAS")): @ x R — R is measurable in (t,2) € @, convex in z € R;
(ii) 0< Ff’(t,z,z) < Alz]? a.e. in @ with some A > 0;

92 w—1L" .
(iii) FA(,‘)(-, yz) " o o FO(., . z) for all z € R;
H(F®),

(i) F( 10 x RV*! 5 R is measurable in = € Q, convex in z € RN+,

(it) 0< Fk's)(ar, z) < Mz|? a.e. in Q with some A > 0;

(iii) Fy"(2)

PR()}’OSITION .2 For every fivzed k € N under reqularity assumptions (i), (ii)
of H(FW),, H(F®), and H(F®),,, respectively, we have

LW RO 2) for all z € RVFE

v oo s o oo " s B SAV N
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(17) .7:,&2)(-) is s-LY(Q) continuous,
(415) .'Féa)(-) is w-V continuous.

While, under convergence conditions (iii), we have

F(y) = Fl()

£ Cyeq(s—L" & :
FO () T BT pary,)

(w—Wh¥(Q)7)
R

3 Iye 3
FPgh) FB ().

So for functional Fi.(y,u,y") defined by (25) we obtain
(v)  Foolyyu,y®) =
=Lieq (w—WJi,s—L" (Q)",w—V") lim Fi(y,u,y°).
k=00

Proof. The proof goes along the same lines like that of Proposition 4.4 with
replaced by (Q in cases of }',tl), .7-"(_.')’, and with similar arguments for .7-',&3).

Now, the main result on the sensitivity of optimal control problems for
parabolic hemivariational inequalities follows from Propositions 3.1, 5.1 and
5.2, and from the direct method for the existence part:

THEOREM 5.1 Under the assumptions of Proposition 5.1 for (HV I,), withU =
LY0,T;L4() ~ LYQ), Cx = id:U - Z* ~ LY(Q) C V*, we admit the
hypotheses H(FW)),, j =1, 2, 3 for cost functional Fy.(y,u,y°) given by (25).
Then

(i)  For every k € N the problem (CP)uvi,), has at least one optimal
solution (yg,uj,yp*) € Sg, my == Fi(yg, up, y2*) being its minimal value.

(i)  If the limit (original) problem (CP)yvy,), has the "uniqueness of
solution property” i.e. for all w € U, Siyvi,).. () = {Yoo(u)}, then every
arcumulation point of the sequence (yj,up,y)) s an optimal solution to the
problem (CP)yv1,).,, i-e

Wi, s Uk, Yie) = (Yoo Ubes Yoo )y and (Y3, 2o, Y%) € Sho-

(iii) We also have

mE = My as k — co.
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