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Abstract: In this paper we introduce a generalized second-order 
Riemann-type derivative for C'1 •1 w~ctor functions and use it to es­
tablish necessary and sufficient optimality conditions for vector op­
timization problems. Vle show that. these conditions arc stronger 
than those obtained bv means of the second-order subdiffercntial in 
Clarke sense considere.d in Gucrraggio, Luc (2001) and also to some 
extent than those obtained in Guerraggio , Luc, Minh (2001). 
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1. Introduction 

The class of C'1•1 functions, that is differentiable scalar functions whose deri­
vatives are locally Lipschitz was first brought into attention by Hiriart-Urruty, 
Strodiot and Hien Nguyen (1984). The need for investigating such functions, 
as pointed out in Hiriart-Urrury, Strocliot and Hien Nguyen (1984) and 1\lattc, 
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Tammer (1988) , comes from the fact that several problems of applied math­
ematics including variational inequali t ies, semi-infini te programming, iterated 
local minimization by decomposition etc., involve differentiable functions with 
no hope of being twice differentiable. By introducing generalized Hessian matri­
ces wi th the help of Clarke's generalized Jacobians, Hiriart-Urruty, Strodiot and 
Hien Nguyen (1984) succeeded in extending Taylor's expansion and exploited it 
to derive the second-order optimality condi tions for scalar problems with data 
from this class of functions. Further applicat ions were developed in Klatte, 
Tammer (1988) , Luc (1995) , Luc, Schaible (1996), Yang, Jeyakumar (1 992), 
Yang (1993, 1994). 

The analysis has been generalized to vector fun ctions by Guerraggio and 
Luc (2001) , where by means of Clarke's second-order subdiffercnt ial second or­
der necessary and sufficient opt imality condi tions for unconstrained vector opti­
mization problems arc established. In Guerraggio, Luc (2003) the same authors 
also give second-order optimality conditions for constrained vector problems. 

In this paper a generalized Riemann derivative for C1 •1 vector functions is 
introduced. By means of this derivative we give necessary and suffic ient second­
order optimality condit ions for unconstrained vector optimization problems. \'A/e 
prove that these conditions are stronger than those given in Guerraggio, Luc 
(2001 ) and give some comparison with the results from Guerraggio, Luc, Minh 
(2001 ). When f is a scalar C 1 •1 function the obtained optimality conditions 
reduce to t hose proved in Ginchev , Guerraggio (1998) . 

2. Preliminary concepts 

A fun ction j from Rm to R'' is said to be of class C0 ,1 at :c0 E Rm when it is 
locally Lipschi tz at x 0 . \Ve say that f is of class C0 •

1 when f is locally Lipschi tz 
at any point of R 111

. If f is locally Lipschi tz at x0 , t hen, according to the 
Rademacher Theorem, it is almost everywhere differentiable in a neighborhood 
of .0 :

0 . Hence the Clarke's generalized Jacobian of f at x0 E R'" , denoted by 
8 f (:~:0 ) can be defined as the se t : 

8 j(x0
) = cl conv {lim j'(:ci): :ci -+ x0

, j' (xi) exi st s }, 

w~ere f' denotes the J acobian of f and cl conv { . . . } stands for the closed convex 
hull of the set under the parentheses.N ow assume that f is a differentiable vector 
functions from R "' to R " whose derivative is of class C 0 ,1 at x0 . In this case 
we also say that J is of class C1,1 at :c0

. We say that j is of class C 1
'
1 when it 

is of class C 1,1 at any point of R"'. Denote by f" the Jacobian of the fuu ct ion 
f': R 111 -+ R m x n . The Clarke's generalized Jacobian of J' at :r:0 is then denoted 
by 82 f ( x0 ) and called the second-order su bdiffcrential off at :r0 , more precisely: 

8 2 f (x0
) = cl conv{lim J" (xi) : :ri -+ :c0

, J" (xi) exist s }. 

Thus, 82 f (x0 ) is a subset of the fin ite dimensional space L (R"\ L (R 111
, Rn)) 

"' ' • - ' - .• ~ , - ~ , , " ~ . ,. ,.....,.. 1 n 
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to R n. The elements of 8 2 J ( x0 ) can therefore be viewed as bilinear functions on 
R 111 x R"' with values in Rn . For the case n = 1, t he term "generalized Hessian 
matrix" was used in Hiriart-Urrury, Storiot, Hien Nguyen (1984) to denote 
the set 82 f (:r0 ). By the previous construction the second-order subdifferent ia.l 
enjoys the proper ties of the generalized Jacobian. For iust.ance 82 f(:~; 0 ) is a 
nonempty convex compact. set of the space L(Rm , L(R"' , Rn)) and the set­
valued map :c -:r 82 f (:c) is upper semicontiuuous (u .s .c.) . Let v. E Rm; in the 
following we will denote by Lu the value of a linear operator L : R"' -:r R" at the 
p~1int u E Rm and by H (u , v) the value of a bilinear operator H : Rm x R"'· -:r 
R" at the point ( u, v) E Rm x R"'. So we will set: 

8f(:r)(u) = {Lv. : L E 8f(.T)} 

and: 

o2 j(x)(11.,u) = {H(u ,u): HE 82 f(x)}. 

We recall some important properties from Guerra.ggio, Luc (2001, 2003): 

(i) MEAN-VALUE TH EOREl'vl: Let f be of class C0•1 and a, b E R"' . Then: 
f(b) - f(a) E cl conv {8f(x)(b - a): :r; E [a, b]} , 

wher-e [a, b] = conv {a ,b} ; 

(ii) TAYLOR' S EXPANSI ON: Let f be of class C 1•1 and a, bE R 111
. Then: 

f(b) - f(a) E J'(a)(b- a)+ 

1 ? 

2c1 conv{a~j(x)(b- a, b - a.): x E [a, b]}. 

Guerra.ggio and Luc (2001, 2003) have given necessary and sufficient op­
timality conditions for vector optimization problems, expressed by means of 
82 J(x). 

In the following f will always denote a fun ction of class C1 •
1 at the considered 

point x0 . 

Now we set: 

" 2 f( .o , ) _ f( x0 + 2t'U)- 2f(x0 + t11.) + f( :r0
) 

w.n x, t ,u- t2 . 

The following theorem can be easily deduced from Theorem 2.1 in La Torre, 
Rocca (2001/02) and characterizes functions of class Cl,l in terms of 
.6.'JJ(:r0

, t , u). 

THEOREM 2.1 Assv:me that the fun ction f: Rm -:r Rn is bounded on a ne?:gh­
bor·hood of the point x0 E R"'. Then f is of class C 1 

•1 at :r0 if and only if 
there exist neighbor-hoods U of :r;0 and V of 0 E R and a constant M 2: 0 

such that II.6.7J(:r, t , u)ll ~ M for- ever·y x E U, t E V\ {0} and 11 E 5 1 = 
{u ER"' : IIull=11 . 
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DEP!N!TJON 2.1 The second upper- Riemann der··ivntive of the fun ction f at the 
point x0 E Rm in the rlh ·eci,ion ·u. E Rm ·is defined u.s: 

fR( :c0 ,u) = Lims·ttPHo+D. Jd(;,: 0 , t ,u) , 

wher·e Lirnsup denotes the v.pper· limit of sets in the sense of Kumtowsk-i, that 
is, the set of a.ll cluster points of sequences .6. ]d (:lY' tk ' 'l.t)' taken ILS tA: -t o+ . 

REMA RK 2.1 Riemann introduced (fm· sr.a.lm· f nnctions) the homonymous no­
tion of second-onler· derivative while he was sl:arlying the convergence of b·igono­
metr·ic series, Riem.rmn (1892). If g is a functirm fmm R toR, the seconrl-onler· 
Riemann rler·ivat·ive of g at the point :1: E R is given !Jy: 

l
. g(.7: + 2t) - 2g(.1: + t) + g(:c) 
liD '> , 

L->O+ t-

if this limit e.1:ists. Taking Jim sup or lim inf instead of lim one obtains upper- mul 
lower Riemann rler"ivat·ives. For· pmper·ties and r1pplications of Riemann deriva­
tives one can sec Ash (1907, 1985 ), M ar·cinkiewicz, Zygrn:nnrl (1930) , Zygmv:nrl 
(1959). Hence the pr·evious definition genemlizes the notion of Riem.rmn dcTiva­
tive to fun ctions from R"'· to R 11

. 

The fo llowing theorem states basic properties of .r;;(x0 , v.) for a C l.l fuuc­
t.ion f. 

THEOREM 2.2 J;f( x0 , n) is n nonempty o.nd compact subset of R". 

Pmof. The thesis is an obvious cousequence of Theorem 2.1. 

The next result links the second upper Riemann derivative to EP f (x). 

Proof. Applying Taylor 's expansion we can write for t > 0 "small enough" : 

and: 

f( :c0 + 2tn)- f(:c 0 + tu) E t/'(x0 + ltt)u+ 
t 2 
~cl conv{ D2 f (:c) (u , ·u ) : x E [;,:0 + tu , :c0 + 2tv] } 

.{(.1:0) - f( :c0 + tu) E -t/'(.1:0 + tu.)u.+ 

t; r:l conv{ 82 f (.1:) ( 11., u) : :1: E [:c 0 + h1, .Tu]} . 

Hence, by addition: 

.6. Jd (x0
, t, u) E ~cl conv{EP f (x )( n, 'It) : x E [:.r0 + tv., :r0 + 2tu]} + 

1 , , ,~ ..... r n2 n ... \ r .,. , , \ . r ,,.o ...1.. +" ,,.on 

• 
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Since the map :z; --t (]2 j(:z;) is u.s.c. , then for any E > 0, there exists a neighbor­
hood U of :.c0 such that whenever :r E U there holds: 

w~ere B is the closed unit ball in R". So, for t "small enough" we have: 

(i) cl conv{ 82 j(:c)(u , v.) : :r E [x0 + tu , x0 + 2tu]} ~ cl conv [82 f( x0 )(v., u)+ 
sB] = 82 f( x0 )(u, u) + sB; 

(ii) cl conv{ 8 2 f( x )(u, u) : :r E [x0 + tu, x0
]} ~ cl conv [82 f(x 0 )(u , u) + sB] = 

82 f( x0 )(u, u) + cB. 

Hence we have, for t "small enough" : 

If tk --t o+ is a sequence such that t:.}d( x0 ,tk,u) --t L E R'\ then Lis an 
element of fR( :t0 ,u) and L E 82 f(x 0 )(u ,u) + 2sB , since this set is compact. 
Since E is arbitrary and 82 f(:z;0 ) is closed we obtain: 

and the theorem in proved. • 
R EMARK 2.2 The set f~(x0 , u) is not necessarily conve.-r;, but since 8 2 f( x0 )(u , u) 
is convex, it follows also thatconvf]{(x0 ,u) ~ 82 f( .-r0 )(u,u) . 

R EMARK 2.3 The forthcoming E.w:mple 3.1 shows that the inclusions in Theo­
r·em 2.3 and r·ernark 2.2 can be strict. 

The search for "second order subdifferentials" smaller than 82 f(.-r) has a 
recent development in Guerraggio, Luc, Minh (2001) , Jeyakumar, Luc (1998) . 
In these papers, the authors introduce the notion of approximate Hessian for C 1 

functions and by means of this concept give second order optimality conditions 
for a vector optimization problem. We recall below the notion of approximate 
Jacobian and the related notion of approximate Hessian . 

D EFINIT IO N 2.2 Let f be a continuous function from Rrn to Rn. An appmxi­
rnate Jacobian 8A f (x) off at x is defin ed as a closed set of M E L(R 111

, Rn) 
such that for every u E R 111 and v E R" it holds: 

(vj)+(x, u) ::; sup (v, Mu), 
ME8,tf(x) 

where v f( x ) = I:,~'= 1 Vj f j(x) and (vf)+(x , u) is the 11pper Dini directional 
der·ivativc of the function vj at x in the d·irection u, that is: 

(v j)+(.T ,u) =lim sup (vf)(x + tu) - (vf)(x). 
. ~ 



264 I. G l l\'C I IEV, A . GLH: H.11AC:G IO, M . flOCC:A 

Now let f : R"' -t R" be of class C 1
• T he .Jacobian m atrix map V' f 

. . f · f' Rm I L (R.,., Rn) A IS a contmuous vector unctwn rom t.o t 1e space ..~ , . .'"\.n a p-
proximate Hessian a;1.f(J.:) off at J.: is defined as a closed subset of the space 
L(R'", L(R"' , R")) being an approximate .Jacobian of \l.f at :r. 

Second order optimality conditions in terms of approximate Hessians for vec­
tor optimization problems a re given by Guerraggio, Luc, Minh (2001). Their 
approach is not. full y comparable with the one based 011 Riemann derivatives. 
Nevertheless, Example 5.1 in the last section shows that the approach based on 
Riema nn derivatives cau give better results. Let us underline a lso that the ap­
plication of Riemann derivatives gives a computat ional adwmtagc in compari son 
to the conditions based on approximate Hessians. 

3. Necessary optimality conditions for weakly efficient and 
ideal solutions 

In t his section we prove second-order necessary optimality conditions for uncon­
strained vPctor optimization problems, which a re stronger tha n those provided 
by Guerraggio and Luc (2001). 

Assume tha t the space R.,. is par t ially orden~d by a closed, convex , pointed 
cone C, with a noncmpty interior and denote by A c the complement of the set 
A. 

Let Af be any of the cones cr, C\{0}, and ·in t C. The unconstra ined vector 
optimization problem corresponding to the pair (J, M) is written as : 

7ninM.f( :~:) , :r: E Rm, 

wh;ch amounts to finding a poin t :1Y E Rm (called ti ll' optimal solution) such 
t.l1 a t there is no :c E R"' with .f(:c) E .{ (:1:0 ) - M . I t this is true for a ll :r: iu 
some neighborhood of :1: 0 , then we call :r 0 a. local op ti ta l solution . The optimal 
solutions of the vector problem corresponding to (f , C · (respectively (.f , C\ { 0}) 
a.r,d (.f, int C) are ca lled ideal solu t ions (respec:tivcl .) . <'lficient solu t ions and 
weakly efficient solu tions) . It follows directly from the definition that :rY is a 
local ideal solution if and only if then~ is a neighborhood U C R'" of :r 0 such 
that: 

j(:t)- .f(.T0) E C, \h; E U. 

Gucrraggio and Luc (2001) have proved necessary and sufficicient optimality 
cCJlHiitions for vector problems, that Wl~ summarize in I he following theorems. 

TH [O itEM 3. 1 (i) Let :c0 E R"' be u. local wco.kly efficient solution. Then the 
followiny r-onrlitions hold: 
n) .f (:1.·0 )u E ( - ·int CY . V u. E R"'; 
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{ii) Let :r 0 E R"' be a local ideal solution. Then the following conditions 
hold: 
a) /'(:c0

) = 0; 
b) cP f( :r:'l)(u, v.) n C =f. 0, Vn E R"'. 

T'IEOREI'vl 3.2 (i) Assu:rne that one of the follouring conditions holds at a 
point :c0 E Rm.: 

a) f'(.r 0 )·u. E (-C) ", \fu. E R'" ; 
b) EJ2 j(1:0)(1t, u) ~ int C, for· v. E R"' such that f'(;r0 )u = 0. 
Then :r:0 is a local efficient sol-ution. 

{ii) Assume that thP. following conditions hold at a point; 1:0 E R'11
: 

a) f'(;r0
) = 0; 

b) ff2 j(;1Y)(H , u) ~ int C, \fu E R 111 \{0}. 
Then :1Y ·is o. local ideal solution. 

Now we prove second-order necessary optimality conditions for unco11strained 
vector optimization problems , expressed by mEans of Riemann derivatives. 

THEOREl\1 ;).3 Let :c0 E Rm be a local weakly efficient solution. Then the fol­
lowing conditions hold: 

(i) .f'(:r:0 )u E (-int Cy, for every u E R'" ; 
{ii) ffH:c 0

, u) n ( -int C)c =f. 0, fm · n E R"', with f' (;c 0 )v. E - ( C\ int C). 

Proof. Condition (i) has been given in Theorem 3.1 and so we prove only 
condition (ii). 

We begin observing that for any t > 0, 11. E R 111 and j = 1, 2, 3, .. . , the 
following identity holds (see also Ginchev , Guerraggio, 1998): 

. o . o - f(xo + :j;-u)- J(xo) t2 ~ 1 2 . , .o t . 
j(.c + tu)- f(x ) - t _i_ + 2 L. 

2
; b..u.f(.~ , 

2
;, n) . 

2J i= l 

(1) 

Let t > 0 and u E Rm be fixed . Observe that as .i ---+ +oo, we have: 

and therefore L.t;: :}. 6. hf(:r:0 , -i<, 7t) co11verges. Furthermore, fort" small enough", 
from Theorem 2.1, we get that the set {.6.'J?f(:c 0 ,t,u): t E (O,t)} is bounded . 
Hence, it readily follows that 't/"f > 0, 36 = b(!') > 0, such that: 
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Now, for (3 E (0, 8(1)), consider the sequence: 

- ~ 1 2 0 t ( ~ 1 ) 2 .o ak - {;;; 
2

i ~Rf(x , 
2
i, u) + 1 - {;;; 

2
i ~Rf(x , (3, u). 

Clearly, fortE (0, 1(8)), ak belongs to the convex compact set conv {f~(:r0 , u) + 
1B}. By letting k go to + oo, we get the inclusion: 

+= 1 t L 2;~~f(x0 , 
2
i, ·u) E conv {f~(x0 ,u) + 1B}. 

t=l 

Now, assume that u E Rm is such that f'(x 0 )u E -(C\int C), and ab 
absurdo suppose that: 

f~(x0 ,u) n (-int C) c = 0, 

that is f~(x0 , u) ~ -int C. Since f~(x0 , u) is compact and 'int C is open and 
convex, we obtain the existence of a number 1 > 0 such that: 

conv[f~(x0 , u) + 1B] ~ -int C. 

Hence, for t "small enough", we obtain: 

t2 += 1 t 
f(xo + tu) - .f(:ro) = tf' (xo)u + 2 L 2i ~Jd(xo, 2i, u) 

i=l 

E -(C\int C)- int C ~ -int C, 

which is absurd. So the proof is complete. • 
REMARK 3.1 Since n(x0 ,u) ~ 82 f(x 0 )(u,u), the nccessary conditions of the 
pr·evious theor·em are stronger than those pmved by C:u.erTaggio and Luc (2001} 
in terms of82 f(x 0 )(u,u). The same remark holds }'n· Theorem 3.4. E1:ample 
3.1 shows that the conditions e1:pressed by means oj R·iemann derivatives can 
work when the conditions of TheoTem 3.1 do not. 

EXAMPLE 3.1 Consider the function f : R" -t R" defined for :r: = (:r:1, ... , J:n) 

E R" as f(x) = (f~" 1 izl dz , ... , J~"'n izl dz) and let C = R~. It is easy 
to see that the point x0 = 0 E R" is not a local weakly effic·ient solution. 
We have f'( x)u = (ixiiul, ... , lxnlun) for u = (·u1, ... ,un) E R" and in 
pl'rticular f' (x0 ) = 0 E Rn xn. For· the second-ordeT subdi[feTential we have 
82 f(x 0 )(u,u) = I u f x ... x Iu7,, where I = [-1, 1] CR. The second-order· 
necessaTy condition fmm Theor·em 3. 1, (i) , is satisfied, therefore we cannot con­
cbde on this basis that x0 is not a local weakly effic·ient point. For the second­
order Riemann derivative we have n(1:0 ,u) = (sign(u!)nf, ... ,sign (u,) ·n~J. 
In par'ticulaT, if all the coordinates of u ar-e negative we have f~( :1Y,u) = 
( -uf , . .. , -u;,) E -int C. Therefor·e for· s·uch. u the second-or·der necessar·y 
condition from Theorem 3. 3 is not sat·isfied and on this basis we can conclv.dc 
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The following theorem states necessary conditions for local ideal solu tions. 

THEOIIEM 3.4 Let x0 E Rm be a local ideal solution. Then the following con­
ditions hold: 

(i) f'( x0 ) = 0; 
(ii) for ever·y u E Rm we have convf~(x0 , u) n C =f. 0. 

Proof. Condition i) is stated in Theorem 3.1 and so we prove only condition ii). 
Ab absurdo, assume that x0 is a local ideal solution, but ii) does not hold, 

so that there exists a vector u E Rm such that: 

convf~(x0 , u) n C = 0, 

that is convJ;Hx0 ,u) <:;; cc. Since convf~(:c0 ,u) is compact and cc is open, 
there exists a number 'Y > 0 such that: 

From the proof of the previous theorem, we know that for every 'Y > 0, there 
exists o > 0 such that for all t E (0, 6) there is: 

Using identity ( 1), we find that for t "small enough", f ( x0 + tu) - f (.r0 ) E c c, 
which is a contradiction . • 

It is easy to see t hat when a function f : Rm --+ R is considered , then from 
the previous theorems we recover the necessary conditions for a local extremum, 
proved by Ginchev and Guerraggio (1998), as stated in the following result . 

COROLLARY 3.1 Let f : R"' --+ R be a function of class C 1 •1 at a point x0 E 
R"'. If 1:0 is a local minimizer of the function f , then the following conditions 
hold: 

(i) f' (x0 ) = 0; 
(ii) lim sup1_.0+ !l~(x0 ,t,u) 2: 0, VuE R"'. 

4. Sufficient optimality conditions for efficient and ideal 
solutions 

Before giving sufficient optimality conditions, we prove the following lemma. 

LEMMA 4. 1 J;f(x0 ,u) = f~'(x0 ,u), 
where f;'( x0 ,u.) = Limsup1.-. o+ , u.'-+ u!l~.f(x0 , t ,u' ), that is the set of all cluster 
"''"'; ,.,..., ...... .... .C ---R·-----· A') r t () , ' . ' ~ ~ . 
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Proof. The inclusion 1;1(:c0 ,u) ~ 1:'(.1:0 ,n) is obvious, so that we have only 
to prove the reverse inclusion. Let L E .r;.' (:c0 , ·u); hence there Pxist sequel!C:f!l:i 
f1,: -t Q+ and U!,: -t '/L (l.S /;; -t +oo, SUCh that: 

\Vc have: 

1 [ '( 0 . ( 0 ) ( ()) = tf, .f :1: + 2t,,u.k) - 2f x + t,u,, + f :r 

-.f(:r0 + 2t~,:u) + .f(x0 + 2t~,:u)- 21(x0 + t~,:u) + 21(x0 + tku)]. 

Without loss of generality we can assume that: 

1 
.. ~ (.f(:r0 + 2tJ..:u)- 2f(:r0 + tk ·u) + f(x 0

)) -t L'. 
''/,: 

Ld. f = (h, . .. , fn), with J; : R"' -t R. For every 'i = 1, .. . , n, applying the 
rneau value theorem we have: 

[!;(:1:0 + 2tknk)- fi(x 0 + 2t,u)- 2(f;(x0 + t~;:uk)- f;(:r0 + t,,u))] 

= 2t~,: [f.[(:r0 + 2t,u + 2Bi ,kt,(u~,:- u))(uk - 'lt) 

- JI(:c0 + t,,n + e;, ,kt,.(uJ..:- 7t)) (uk- u)]' 

where H;,~,:, e;,,~., E (0 , 1). Since 1 E C 1
•
1 we obtain: 

\2tJ..: [ff(:lY + 2t,.v. + 2B;,d~,:(uk- u))(u.,, - 1t) 

- JI(:r0 + t"'u + e;,.ktk(tt/,:- u))(u,,- n) J 1 

::; 2IUJ..:IIt~,:u + 2BiJJdn~.:- u)- e;,,~.:t,(uk- u)llll ·u~.: - ull 

::; 2!\;tfllullllu~.:- ull + 2K;tf, I2H;,~.,- e;, , ~.:lllu~,:- ull2
, 

\vhere K; is a Lipschitz constant for f[. Hence it is easily seen that.: 

1 
t2 [fi(:1:0 + 2t~.:nJ..:)- fi(x0 + 2t~,:u)- 2(f;(:r0 + t,-uk)- fi(:tY + t~.:n))) -t 0. 

/,: 

It follows that L = L' and the lemma is proved. • 

THEOHE!vl 4.1 Let 1 be a function of class C1•
1 and assume that at the point 

x 0 E R"' for eve·ry 11. E S1 one of the following conditions holds: 

(i) f'(x~)u E ( -CY; 
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Then :r 0 is a local efficient solution. 

Pmof. Assume, all absurdo, that for every 'II E 5 1 condition i) or ii) holds , but 
:rll is not a local efficient solution . Then there exists a sequence :~::! --t :r 0 such 
that: 

(2) 

YVe can put :1:i = :~Y + tJnJ, where tJ --t o+, vJ E 5 1
, and without loss of 

generality we Call accept that llj --t '/1 E 5 1 . For this II. one of the following two 
possibilities holds: 

(i) .f'(:r0 )u E (-C)"; 
(ii) .f'(;J:0 )n E -(C\int. C) and J;;(.T0,v.) <:;;; ·int C. 

Assume that the first case holds. Then. since f is of class C1 •1 and, account­
ing for (2), we have: 

a contradiction . 
Therefore the case ii) should be true. The inclusion J;~ (:r0 , v.) <:;;; int C and 

n(:r:0 ,v) compact implies that there exists 1 > 0 such that .f;f(:r0 , 1i.) + rB <:;;; 

int C, whence 

Consequently, as in the proof of Theorem 3.3 and Lemma 4.1, there exists c5 > 0, 
such that for all t E (0, c5) and n' E 5 1

, llu' - ni l < (l , there holds : 

+co 

L ;i t:.]d(:IY' ;i 'u') E conv u;;(:r0
' u) + rB} <:;;; int C. 

i= l 

Applying the above reasonings , \VC see that for j "large enough" we have: 

2 +oo 
. . J) ( .0 - . '(,.0)· tj "' 1 2 .. o tj f(.J; - f :r ) - t:~f .c ui + 2 L 2; D.af(.t ' 2i' v.J) 

i = l 

and consequently 

which contradicts (2), since the set 011 the right-hand side does not intersect 
-(C\inl; C). Indeed, if the latter is not true, then we would have - c1 = 
- c 2 +co¢:? c2 =co+ c1 for some co E ·int C, c1 = C \ {0}, Cz E C \ ·int C. The 
last equality is contradictory, since the right-hand side belongs to 'int C, while 
..1.. 1 - 1 .• {" j 1 1 
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THEOREM 4.2 Let f be a function of class C 1 
•
1 and assume that the following 

conditions hold at a point x0 E R 111
: 

(i) f'(x 0 ) = 0; 
(ii) fR(x 0 ,u) ~ int C, for every u E 5 1

. 

Then x0 is a local ideal solution. 

Proof. Ab absurdo, assume that x0 is not a local ideal solution. Then there 
exists a sequence xi = x0 + tjnj, Uj E 5 1 , Uj ---+ ·u E 5 1 such that f(xJ)- f (x0 ) E 
cc. We have: 

By analogy to the previous theorem we can conclude that for j "large enough", 

+oo 
"""' 1 2 0 tj . ~ 

2
i6.nf(x, 

2
i,uj) E mt C, 

i=l 

and this is a contradiction. • 
REMARK 4.1 The sufficient optimality conditions proved in the previous the­
orems are stronger than those provided by Guerraggio and Luc (2001), since 
fR(x 0 ,u) ~ 82 f(x 0 )(u,u). 

EXAMPLE 4.1 Let C = R! and consider· the twice differentiable function f : 
R---+ R 2 defined as: 

( ) 
? 1x ·) 1 2 f x = (x~, z~ sin -dz +ex ), 

0 z 

where c E (0, 1/2). Then, at the local ideal point x0 = 0 we have f'(O) = 0 and: 

8 2 f(O)(u, u) = [(2u2
, ( -1 + 2c)u2

), (2u2
, (1 + 2c)u2

)], 

whenever u E R. Hence the sufficient condition on 82 f(O)(u, u) for 0 to be a 
local ideal solution is not satisfied. On the contrar·y, we have : 

fR(O,u) = (2u2 ,2cu2
), 't:/u E R 

and so the sufficient condition on fR(O, u) for f to be a local ideal solution is 
satisfied. 

When f is a function from R m to R, the previous theorems provide the 
following sufficient optimality conditions for f (see also Ginchev, Guerraggio, 
1998). 

COROLLARY 4.1 Let f: R 111 ---+ R be a function of class C1•1 at x0 E Rm and 
assume that at x0 the following conditions hold: 

(i) f'(x 0 ) = 0; 
(ii) liminft--+o+ 6.h(x0 ,t,u) > 0, for every u E 5 1

. 
n . ' ' 
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5. Final remarks 

In the case of twice continuously differentiable function f : Rm ---1 R" the 
Riernann derivative n; (:1: 0

, u) is a siugleton and coincides with the Hessian 
f"(:r 0 )(u, H.). In such a case the necessary conditions from Theorems 3.3 and 
3.4 and the sufficient conditions from Theorems 4.1 and 4.2 can be reformulated 
in terms of the Hessian . The optimality conditions obtaiued in such a way can 
be referred to as the classical ones. We use the following simple example of a 
fttnction f : R ---1 R to underline that the conditions in Riemann derivatives 
work also wheu the classical conditions do not. 

EXAMPLE 5.1 ConsideT the function f : R ---1 R, defined as 

f( ) { 
:r 3 sin ~ + r;,.r2 

, 
. :t = .r 0, 

;r; f. 0, 
:c = 0. 

O!Jvionsly f ·is of class C1 ' 1 b'll.t not of class C2 . The point :r:0 = 0 is a poin.t of 
a local minim:mn joT f in the case r;, > 0 and is not a point of a local minin1.im 
in the case 11. < 0. 

The conclusion in this example follows directly by Theorems 3.3 and 4.1. 
We have to observe that .f'(O) = 0 and .t;f(o, ±1) = 21i. This result cannot 
be obtained by the classical second order conditions, since f is not twice dif­
fe•·entiable at 0. Let us underline that also the classical first order conditions 
cannot be applied (we mean that f'( :r) ::; 0, :r:0 - E < :c ::; x0 and f'(.x) 2: 0, 
xo ::; :z: < :ro + E for some E > 0 implies that x0 is a point of a local minimum), 
since the derivative j'(.1:) is not monotonic near :r0 = 0. 

Now we apply this example to give some comparison with the results ob­
tained in Guerraggio, Luc, lVIinh (2001). The latter are supposed to improve the 
results from Guerraggio, Luc (2001, 2003). In the case of a functiou f : R ---1 R 
the results of Guerraggio, Luc, Minh, 2001 simplify as follows: 

Tl!EOIIEM 5.1 Let f : R ---1 R l! c a continv.ously differentiable function and 
denote by o;d(:1:0 ) the appmxirnate Hessian off at :r0 . 

a ) Necessary Conditions (compare with Guermggio, Lnc, Minh, 2001, The­
oTcm S.l) 
Let. :ro he a local tninirn:izet· of .f. Then f' (:c0 ) = 0 and for each 7t E R the·re e:r:­
ists AI E cl conv o;d (xo) m· AI E ( conv o;d (:ro)) 

00 
\ { 0} S7tch that M (n, u) 2: 0 

(here A00 stands fm· the nxession cone of a given set A) 

b) Sufficient Conditions (compaTe with Guermggio , Lv.c, Minh, 2001, The­
o'l·em 4.1) 
Suppose that f'(:c 0 ) = 0 and for each 'U f. 0 and each l\I E cl conv o;d(:c0 ) U 
((conv D7d(:ro))

00 
\ {0}) it holds M(v.,u) > 0. Then :c0 is a stmng local mini-
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The gradient \7 f(:r)u = J'(x)v. of tlw function from Example 5.1 is given by 

J'(x)={ 3x2 sin~-:rcos~+2K~: a: f 0, 
:z: = 0. 

Applying the definitions from Section 2, we get ( v \7 !)+ (0, u) = In vi+ 2K uv. 
Therefore, each approximate Hessian a~f(O) contains points lvL, M+, such that 
M_ ::; 2K, - 1 < 2K + 1::; i\,f+ and consequently [2A:- 1, 2K + 1] <:::: conv a;1J(O). 

Take now for K one of the following: 
1°. -1/2 < K. < 0. Then :~: 0 = 0 is not a local minimizer, which can 

be established on the basis that the necessary conditions of Theorem 3.3 are 
not satisfied. At the same time the inequalities 2K - 1 < 0 < 2K + 1 show 
that 0 E conv a~f(O). Therefore, the necessary conditions of Theorem 5.1 arc 
satisfied. Consequently, on the basis of the necessary conditions of Theorem 5.1 
one cannot reject the suspicion that 1:0 = 0 is a local minimizer. 

2°. 0 < K < 1/2. T hen :r0 = 0 is a local minimizer, which can be established 
on the basis that the sufficient conditions of Theorem 4.1 are satisfied. At the 
same time the inequalities 2K- 1 < 0 < 2K + 1 show that 0 E conv a;1J(O). 
Therefore, the sufficient conditions of Theorem 5.1 are not sat isfied. Conse­
quently, on the basis of the sufficient conditions of Theorem 5.1 one cannot 
establish that x 0 = 0 is a local minimizer. 
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