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Abstract: The relation between extremal values of the error and
the coefficients of its differential equations is one of the central prob-
lems of control systems in chemical industry, because extremal values
of the error sometimes cause serions damages to the environment or
to the system itself. Analytical formulae for the determination of
these values are known only for the second-order systems. In this
paper a method which permits to determine extremal values of the
error in higher-order systems is proposed.
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1. Introduction

In the process of design of the dynamic control systems we encounter the prob-
lem of determining the maximal transient error x, and the moment of time t,
when it appears. The maximal error x, characteries the attainable accuracy,
and time ¢, - the velocity of the rise of the transients. Let us consider the dif-
ferential equation determining the transient error in a linear control system of
the n-th order with lumped and constant, parameters:
'y n—1,.. .

(g dd‘;(lt) + a ddt,:?) +...+ fl:l—1d—i';.:_) +a,z(t) =0 . (1)
The initial conditions are determined by the force function and the system
parameteres ag,a, a9, ..., 0y,

Let us assume, in general that

2=y =0 £ 0 for =19 n
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The solution of equation (1) takes the form
z(t) =) Are™t (2)
k=1

where s are the real, different roots of the characteristic equation
aps"+ ;5" 1 +...+an15+a, =0 . (3)

The necessary condition for the transient error z(¢) to attain an extremal value
at t = t. is given by the relation

dz(t) . i
a D sdge™ . (4)
k=1
We will also need higher derivatives and use the relations
dPz(t) L 5 it ~
dt ‘;5;&1&6 ) p=L12,....n—-1. (5)

The equations (2) and (5) represent a system of n linear equations with re-
spect to unknown terms Ae®*!. Its matrix of coefficients is the Vandermonde’s
matrix:

1 1 1
S 2 Sn
(6)
et Gt L g

Without loss of generality we assume for the sake of simplicity that equation
(3) has only single roots: s; # s; for i # j. With this assumption the matrix
(6) has an inverse and the system (2) and (5) can be solved.

For this purpose we denote by V the Vandermonde’s determinant of the
matrix (6) and by V; the Vandermonde’s determinant of order (n — 1) of the
variables 81,...,8j-1,9741;++9n:

We denote also by @) the fundamental symmetric function of the r-th order
of (n — 1) variables 81,...,85—1,8j41s0018n; 7 =0,1,...,—L:

li)([)j)z 1
. L .
o) = D (~1aryi 8h, i=1,2,...,n-1
i=0

It is possible to show that the elements of the inverse matrix to the matrix (6)
have the form:

(=1 L o
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The solution of the system (2) and (5) is as follows

-+‘
Apettt me.r l)_ZL ™ Yzl (¢)

‘l,r n—j
j=1

or

¢ X . .

i=1

.‘1,;;(’.3"!I =

It is evident that for ¢ = 0 we know zU~1)(0), and the substitution of ¢ = 0 into
the equations (8) gives:

A= L‘Jﬁ i(—l)iqvif_’,-x““”(O) ; 9)
i=1

or in the explicit form

AL_Z( 178 20-00) [[(se - s)7", k=1,2,...,n .
v=]

vEk

After the substitution of (9) into (8) we obtain

~1)*V & Y i ~1)*V e (K) (-
gl T 3, kS (—1yial® 20 (0) = ED Ve 3, =Y (-1yeg 290
j=1 j=1

and finally for k =1,2,...,n we have:

et 3 (-1 8" 201 (0) = S (~1y ) 20N () . (10)

i=1 J=1

Multiplying both sides of all the equations (10) and using Viéte's relation be-
tween the roots s, and the coefficient a; of the characteristic equation,

ZS‘“ = —ay (11)

we obtain the main result:

_ﬂlsz):( IJ‘I,(H (i— 1)(0 HZ( I)Jq,( U 11[) . (12)

k=1 j=1 k=1 j=1

Both sides of equation (12) are composed of the symmetric polynomials of vari-
ables s;,...,s,. Due to this it is possible to present these terms as the polynomi-
als of the coefficients ay,...,a,. Using Viéte's relations it is possible to replace

L . L 1 P
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the solution of algebraic equations (3). It is now possible to find the relation
between the extremal error . and the time t. using the necessary condition
M (t.) =0, in the relation (12). We have the basic result

TT S -108® a0 (r,) = emote [T S (-178R20-0(0) . (13
k=1 i=1 k=1 j=1
J#2

From the relation (13) it is evident, that the values of the sequence of extremums
., diminish with the rate of e % i =1,2,....
From Viéte’s relation we have:

o5 = 1 ]
= s1+s9+...+8k-1+...+8=—a) — 8
5 = sisat szt F S Sko1 + S8 F oo F S8+ L (1)
+5283 + ...+ 828k—1 +825k41 + oo+ 828y + Sp—180F
L R C R i s =
= Qy— 8|85 — 838 — ... — SpSyk )

Taking into account the relations (14) in the equation (13) we obtain the final re-

lation between ., 2 Vo £(0), z11(0), ..., 2=V (0); te, a1, a2,. . ., Q.

The explicit relations for n = 2 and 3 are as follows:
n=2  (5)?-e" = (2(0))” + —a(0)x"(0) + ( W (0)*

The value of the time ¢, can be calculated from the equation (4).
If the characteristic equation (3) has real single roots then we have

1 B 2(1=T(0 (ﬂ.] + \/ﬂ.' - zl(“ sy D)
Va3 —4day  2az(0) + (a) — /a2 — tmg):r;f”[ﬂ)

In the case when equation (3) has complex conjugate roots we have for
k=0,1,2,... and a} < 4a
1
2(2a22(0) + (a1 + /a2 — a3) 2M(0))

arctan - + kw
(2a22(0) + a; 2V (0))” — ((daz — a7) 2(1)(0))

tcz ?24”‘3 .

ta =
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Forn=3
[a T +a;a;1{ }.L +a;( (”) Ze + (‘L(’)] ] etite —

= a32°(0) + 2a2a32'Y (0)2? (0) + (a1a3 + 03)2(3:(”(0))29:(0) +
+(a1a2 - a3) (2(0))” + (@102 + 3a3)2? (0)2V (0)2(0) +  (15)
+arazz (0)z*(0) + az (z?(0)) *z(0) +

+(a? + a2)2®(0) (1) (0))* + 2a1 (= (0)) *2M (0) + (= (0))* .

The determination of the times ¢, from the equation (4) is difficult and will be
done later.

Before doing this we make the following remark. The plot of a solution of
equation of the 3" order is shown in Fig. 1.

It is evident that the times ¢,, are invariant with respect to the perpendicular
displacement of the curve (see Figs. 1, 2).

X

A
!
| H0)=c;

J‘(f‘) =0

x(0)=¢,

!,,‘ ! n‘L,“ {
Figure 1. Plot of the third order func- Figure 2. Plot of third order functions
tion after prependicular displacement

The perpendicular displacement leads to changes of values of extremums
and the initial value 2:(0), but the values of moments of time t,,, and the form
of the curve remain the same. We make use of this remark by performing
such perpendicular displacement of the whole curve that one of the extremums
assumes the value x(f.,) = 0, and of course the initial value x(0) changes its
value to a*(0).

It is evident that these values may be zero, one, or two, when we have three
real different roots s;, s9, 3, and infinite when we have a case with one real root
si, and one pair of the complex, conjugate roots s, 3 = a + juw.

After the displacement of the whole curve we have such a situation that at
the extremal point the following relations are true:

H2(0), ] = o}
z[z*(0), t, ] 0

T -wfAaN o r\

(16)
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These three homogeneous equations determine two independent values of time
bapsbens

The main determinant of these three equations is equal to zero, and from
this it is possible to find the unknown value 2*(0). As the illustration of this
method we take the third order equation.

2. Solution of the third order equation

L:t us consider the equation

d*z d’x dr
*;HT+(11F+(L;;E+G3.L—O (17)

with the following initial conditions

z(0) = ¢
#0) = e ), (18)
J(O) = 3

where aj,as,az are constant parameters.
The solution of the equation (17) is as follows:

3

()= Z Age! (19)

k=1

where s are the nonzero different roots of the characteristic equation s +a 8P+
ass +az =0 and Ay, k=1,2,3 are determuined by the relations

A c3 — (82 + 83) €3 + 828304
A
(81 = s2)(s1 — 83)
c3 — (51 + 83) 2 + 8153¢
s 3 — (51 4+ 83) @ 18301 4 (20)
(52 = s1)(s2 — 83)
C3 — (.‘s‘l + S;;) Ca + 81520
Ay
(53 — 51)(s3 — 82) J

For determination of the extremal values of the solution (19) we use the neces-
sary condition

da(t)
], =0 (21)
The differentiation of the relation (19) gives Z = $°% 5 4 e%,

—L S
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We apply now the method proposed in Section 1, and use the set of equations
(16) with the notation (18).

Sy ,'-11(’,Sll"f =+ Sg:‘lg(ﬁsn{'ei + .8‘3‘43('353{"'
spAjet e 4 sy Ases2te 4 53 Aele = 0 (22)
‘41:0.5'11,,‘ A* sale § o 4* s3le;

I
o

*

where A}, A3, A3 denote the coefficients (20) but with the initial condition ¢j
and ¢y, 3 unchanged.

The main determinant of equations (22) with respect to ef1tei, eS2bei | esste
is equal to zero:

SlAl 8-3.42 .8‘3‘43
A=| 5147 $245 s345 [=0 . (23)
Ay A3 A3

After the substitution of 4,, A», A3 from (20) to the determinant (23) we obtain

$18983 [—(;3(01‘)"’ + (3 + c1e3)e — (;1('::;]

(81— 52)(82 — s3)(s3 — 1) 24
or in an equivalent form (see Gérecki, 1966¢)
ag[(c})?es — ¢;(c3 + cres) + e1c3) - . (25)

\/Qm + (4a} — 18ajas)a? + (4a3 — a?a3)az
From this relation it results that for the existence of a real ¢f there has to be
((:3 -4 (71(:3)2 - 4(}1(13(;3 >0 (26)

or cquivalently (¢3 — ¢1c3)? > 0, but this is always true.

This means that if there exists ¢; for which an extremum 1z, exists, then
there exists also ¢} for which the condition (11) is fulfilled. Taking into account
(24) or (25) we obtain the relation between given initial conditions ¢;, ¢z, ¢ and
ar: unknown initial condition ¢j:

ea(c})? = (& + cres)e] + 1 =0 2]

From equation (27) we obtain the main result that either ¢f = ¢; and the
displacement of the function z(t) is not needed, or

o
&I

K
€1 =

3 |,

(28)

~
w

Depending on whether it is a minimum (¢ > 0) or maximum (¢3 < 0) of the
Firnmetian (1Y tha waliva of » Febaler wnadiBad T B~ wwm i
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s3 are real we obtain the following solutions for t.,, 1 = 1,2,3 from relations
(22):

g = 1 In c3 — (82 + s3)ca + sas3¢7 | )
S — 81 c3 — (81 + s3)e2 + s183¢]

g = 1 In Cc3 — (S; + .‘:‘3)02 + S|83(_:E - (29)
s3— 82 |c3— (51 + s2)ea + 81826]

T 1 = (52 4+ s1)ea + sas1c]
§1 — S3 c3 — (82 + s3)ca + 828307 | )

Two of equations (29) are independent.
In the case of one real root s; and two complex conjugate roots ss 3 = a+ jw
we obtain an infinite number of solutions for ¢, , k =0,1,2,...

2w(es — s1ef)[es — (a+ s1)ea + asyci)
[es = (@ + s1)e2 + asic]]? = wi (e = s167)?

by = 3 [m arctan + kw] . (30)

2w

The substitution of the relations (28), (29) or (30) into (19) gives the extremum
values of z(t).

3. Limitations of the method and their overcoming

In the case when the initial value of the first derivative ¢; = 0, we have an
extremum for ¢t = 0, but we cannot apply relation (28). In this case we calculate
the value of the determinant (26), using approximate solutions of x(t) and (t).
Developing in the solution (2) and in the relation (4) the exponential functions
in the Taylor series around ¢ = 0 we obtain

sp At
1!

Substituting the relation (31) into the relations (2) and (4) we get

e =1 4 +0(skA)?,  k=1,2,...,n. (31)

n

z(t) ~ Y (1+seAt)Ay" =0 (32)
k=1

de(t) . o

— ~sz=‘:'sk(1+.9k.ﬁt).4ﬂ, =0. (33)

Elimination of the variable At from equations (32) and (33) gives the discrimi-
nant A in the form

a0 = (L 47) (L arr) - (Lmerr) =0
k=1 k=1 k=1

e T e e L 1
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We take into account that

n
e T
Z.i‘ -— (1
k=1
n
E spdrt = " )

k=]

n

E Do L
S .“1,“ = 3

k=1 J

R

By eliminating on this basis we obtain after At the new values of initial condi-
tions and the relation ¢}* = (r(‘+), which is valid for an arbitrary degree n and
the increment of time At, as w'rs_-.ll as ef*, 5%, 3" which are different, from zero.

In this way the obstacle connected with ¢; = 0 is removed. Up to these
results it was necessary to know the values of roots of the characteristic equation.

Now we show that it is possible to overcome also this difficulty and to obtain
fermulae which depend only on the coefficients a; of the characteristic equation.

We denote the right-hand side of the equation (15) by w(e;, e, e3). If we
put the value ¢] instead of ¢; in equation (15) we must put 2, = 0. We obtain
then from equation (13) that

(=8 )) 2M1be = (el ¢a,03) - (34)
Substracting both sides of equation (34) from equation (15) we obtain

[(r.%:.trf, +ajazzPa’ + ay (:r:f.'“)e:ul.]c"’ “ =w(ep, e, c3) —w(c],ea,c3) (35)

but,
w(ey, e, e3) —w(el, e, 03) =
=a3(c} — ¢} *) + (2a2a3¢2 + arases)(c} = ¢} *) +
+[(a|r13 + u.g)czﬁ + (ajas + 3ag)eacy + agcq]{(fl —¢) = (36)
= {a‘-'; [(ff +cier + ¢ "’] [20 230y + a.a;q] (e1 +¢))+
[(a.u; +a: }(' + (ayas + 3az)eacy +u:c;]} (1 —¢})
and
=] =m, . (37)
Taking into account relations (36) and (37) in the dependence (35) we have
[a‘i.{.," + arazzPa, + as (:irﬁ_r"))z] et = R(ey, ¢}, ca,63) (38)
where

R= aﬁ [cf +cre + ¢ 2] + [2”2(1‘-_’;{22 + ﬂ',]ﬂ.;\l’?g]((‘,‘[ + )+

— " b A ’ ~ . -
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Dividing both sides of the equality (38) by the formula (34) yields

R(Cl :CTa €2, 33) :L_(:z}

2 "
af Te T
‘13(—) +&1€£3'—"'“§ +a; = . e
) 2 w(cy, e2,¢3)

e
Finally, taking into account formula (34) we have

1 o
e ﬁﬂlf-gﬂ)?{ (C.I 095 (_'3) )
2{13

. [al + \/af ~4[az - R(cl,c’l‘,c-g,c;,)-u:%(ci‘,cz,c3)e‘§"l‘=] . (39)

IELZ T

Relations (29), (30) and (39) can be used for parametric optimization, when the
coefficients a; are functions of parameters of the controller.

4. Example

Let us consider the problem of synthesis of the proportional controller for the
third order object. The transfer function of the object is

G(S) _ b182+b23+53
T ags® +ays? +axs+az

: : 1 ' ;
The input transform is U(s) = — and the transfer function of the ideal controller

has the form Gg(s) = K.
The transform function of the whole closed-loop system is given by

KG(s)
Geld) = T xGE = ”
- K bis® + bys + by
" aps® + (ay + Kby)s? + (ag + Kbo)s + az + Kbs
The transient error is equal to
e(t) = z(o0) — z(t) . (41)
The output signal in the steady state is
i e iy
alfo) = i aX () = I G = T (42)

The transform of the transient error can be calculated from (41) and (42):

_1[ Kb
Bl =2 |, = Gald)

The initial values of the transient error and its derivatives are

Kb,y

o= M — i o B e —
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From relation (41) we deduce that e(!)(¢) = —z(1)(¢) and the initial value of the
derivative of error

e =eM(0) = -2V (0) = lim s[-sX(s) + z(0)] (43)
#(0) = slglolo sX(s) = sli}lgc[——Gc(s)] = . (44)

From (43), (44) and (40) we have

Kb
9 = (l> — 1 =X = 1 " 3 = ——-—i
¢z = e'V(0) Jim s[-sX(s)] Slggos[ Ge(s)] —~
and similarly
cs=e®0) = lim s[-s2X(s) - sz(0) —21(0)] =
§—=00
_ Kb & Kby a1 + Kb,
N agp ag Qg
and in general for the transfer function
G(S) _ blsn—l + bzsi_z + ...+ by
a18™ +as" 1+ ... +a,
fori=12,...,n
: b . 5 .
e®(0)= -2 4 | Zeli=N(g) + 2eli-D(g) 4 ... + BLeMi(gy|,
Qo ap Qo Qo
b
OO = -2
€ ;
(0) >

The initial value after displacement is

o
(M%)

*

G Kb?
17 63 7 —agby + bi(ay + Kby)

The extremum value of the transient error is

by bi
as + Kb by ((L1 + ](bl) — agba

ce=c—¢ =K

Using the necessary condition for the calculation of the extremal value of &,
with respect to gain ' we obtain

dee | _ b _ ot
dK a3+ Kby bi(ar + Kbi) — aghs (45)
2 4
+}'\’[—— br; 4 b -l =0
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From (45) we find finally that the optimal gain for the minimum ¢, is equal to

, 1 [a :
Kia =y / ‘;—j(f:..bl —agbs), =41, (46)

The minimal value of the extremal transient error after using (46) is given by

2;-;\/’—‘%51 ayhy — ﬂ,un")g) [{I; + (ﬂ]bl - ”Db’)]

Teya =
i az — ?‘,?‘(“1}’1 n.ub-_a)

5. Solution of the n-th order equation

Let us consider the relation (2), which represents the solution of equation (1).
e () =30 A,

For the elimination of n-exponential elements ¢! it is necessary to find (n -
3) additional equations in comparison to the solution of the 3¢ order equation.
To do this, let us observe that after the perpendicular displacement the curve
representing z(t) relation (1), all the derivatives of a(f) are not changed. In
comparison to the cquation of the 3™ order there is an essential difference,
because the values of the higher derivatives of the extremal points, beginning
from the second order, are not known. To overcome this difficulty we take into
account the fact that the values of higher derivatives remain invariant during
the perpendicular displacement. Let us find the differences between apropriate
derivatives at the extremal points before and after the displacement

These differences are equal to zero, and in this way we obtain the additional
(n — 3) homogeneous equations. The set of the n linear independent equations
takes the form

Ajestle + Asesele + . 4 Afetnte =0 )
m:‘i'ff-’.s“t +53,4§P."’—"f 4ot s,dne Snfe =)
s1drette 4+ sodogel + .+ s dpetnte =0
si(Ar — Af)e’tte + s3(As — ~")r="°" +.

> 47
-t “’.u(-"in = A: )9-3" te =0 ( )
sTT2(A) — A)et e 4+ 502 ( Ay — A3)etrte ...
-+ "‘::._Z(An = -”;J(’b e = 0 J

where, similarly as in the case of the 3" order equation Af,..., A} denote
the coefficients with the initial condition #(0) = ¢}, and the remaining initial
conditions are unchanged.
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has the form

6.

A A
S AT 859 3
S .‘11 89 .‘1-3

B4 - A7)

s173(AL = AY)

3:';(“1;; — ."1-3 )

8573 (A — A3)

Main results

5

Tne determinant (48) is obtained in the form

i

(_]}n—z H S:f—:!

A=

[TGsi —s5)

i=1

i#j

or in the equivalent form

where D is determined by the formula (50)

Proof of this result is in Appendix to the paper.

-3
“H -

A: I
vD

Tty g 0
(n—Day a nag
(n—2)ax ax (n—1)ay

(n—3)ag -«

=

3 (n—=2)as

0 0 0

[{c] — ;)" e - c]‘c;g)]

0

(y
(451

[¢5]

0

[l - )G - )]

n>2

y,

=2
n

n>2

?

2nx2n

=} ;

(48)

(19)

(50)

We assure that the roots of equation (3) are single and different from zero,
fov that reason the determinant A can be equal zero only with the adjusted
initial conditions ¢; = ¢] or rf = cjcs.

In this way we have obtained the following basic result:

THeoreM 6.1 If there exists an extremum of the solution of equation (1) with
the initial condition ¢y then the value of the extremum is equal to x, = ¢, — ¢},

andd the new initial condition ¢ is determined bu the relation ¢f =
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The moments of time at the extremum points can be calculated from the set of
(n — 1) independent equations (47). Then the number of extremums depends
on the initial conditions, and on the roots of the characteristic equation (3).
In particular, if equation (3) has complex conjugate roots, then the number of
extremums can be infinite.

If the characteristic equation has only real roots, then the number of ex-
tremums is between 0 and (n — 1) (see Gorecki, 1993, pp. 121 and 135-136).

The necessary and sufficient conditions for the existence of only single real,
and negative roots of equation (3) are determined by the following theorem (see
Merrow, 1956).

THEOREM 6.2 The necessary and sufficcient conditions for existence of only
single real and negative roots of equation (3) are as follows

12. All the coefficients ag,ay,. .., a, must be positive.

29, All the main even (or odd) main determinants of matriz (51) must be

positive
nag ag 0 T
(n=1)a; a nag ag
(n—=2)az a2 (n—-1)a; a; ...
(n—3)az az (n—2)ay ay ... (51)
& 0 0 0 0 p 2nx2n
50
nag ag 0 0
_ nag ap _ (n == 1)(11 (e3] nag g
= (n—1)a; a1 =l Ba= (n—2)ay az (n—1)ay a4 !

(n —3)as az (n —2)az as
. ey Aﬁﬂ, > O . (52)
We can also establish conditions for non existence of the extremums of eq. (1).
THEOREM 6.3 Let us consider the transfer function

b 4 bys™ 24+ b, L(s)
T oapstFa sl 4. 4an M(s)

G(s) (53)
We assume that the coefficients by,..., b, are real, and the coefficients ag,a;,
..., an are real and positive, and fulfill the Hurwitz stability condilions.

The necessary and sufficient conditions for non existence of extremums of
equation (1) are that the zeros z; of the numerator L(s) and zeros s; of the
denominator M(s) of the transfer function G(s) (53) fulfill the inequalities s, >
2i> 8 > 29...8, > 2, <0, Res; <0,1=1,2,...,n. All the zeros must be
real and single.
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w

Figure 3. Illustration of the Theorem 6.3

7. Example 2: Equation of the n-th order

Let us consider the chain system which consists of n equal elements of R, L, C,
G types as in Fig. 4.

o

r.l Kfuug-u 1)

Figure 4. The chain LRCG system

Each element of the chain is closed by feedback with a gain K (see Gorecki,

2000). The impedance of the load is equal to the impendance of every clement of

: " : 1
the chain. The transfer function of the whole system is equal to G(s) =

T My(s)’
where
- sinf(n + 1)¢(s)] 5
My(s) = o)) (54)
and ¢(s) can be determined from the relation
(G+sC)R+sL) o o, ., reey
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From the equation M, (s) = 0 and the relation (54) we obtain

d)(‘s’) =

*’”1 E=1,2,....n . (56)

n+
Using the relations (55) and (56) we have that

kw
2(n+1)

The roots of this characteristic equation for k = 1,2,...,n are

LCs® + (GL + RC)s + GR + 4(K + 1) sin® =0,k Ly

—(GL + RC) + \/(GL +RC)? =~ ALC[GR + 4(K + 1) sin* 5rk25]
2LC

Knowing the roots s; we can calculate from equations (47) the moments of time
te; of extremums, and after that from the relation (2) the values of extremums
Tile, ).

512 k =

8. Remark

The presentation of the new method gives the analytical solution of the tran-
scendental equations. The method will be illustrated by an example of the 37
order transcendental equation. Let us consider the following equation

Bie®tt 4 Bye** + Bge®*t =0, 51 # 53 # 53 (57)

where By, By, By are constant parameters. We interpret this equation as the
derivative equal to zero of the system

.L(ie) =0= .-'1181(33”‘ + AQS-_:{’.SZL' + Ay 53(.‘5:‘t' i (68)

We look for such a solution x(t) which besides the equation (58) fulfills the
equations

z(te) =0 = Ajest'e 4 45e%2te + Aje"s' (59)
and
x(t,) =0= .4]‘516‘“‘ + A3sget?te 4 Ajsgele | (60)

The main determinant of the equations (58), (59) and (60) is equal to zero, if
the initial condition satisfy the following relation
&
== (61)
C3
Comparing the coefficients of the exponential terms in equations (57) and (58)
we obtain

Bl B, B:‘i

. — T, e !, [ =42
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From the equation z(t) = 0 = Aje*'! + Aye®?! + Aze*** we obtain, by putting
t = 0 and using (62), the relations

B B, B
A+ A+ Az = 1+—2+—3=C1
51 82 53

and from equation (57) we have for t = 0 that
By + By + By =c¢s . (63)
After differentiating equation (57) with respect to t and putting t = 0 we have
Bis) + Bssy + Bysy = ¢3 . (64)
The unknown value of ¢} determined by (61) and using (63), (64) has the form

b (B1+ By + 83)2
i B] S + BgS'_) + B;;S:z; '

The unknown values t. of the equation (57) can now be found according to the
described general method.

Appendix: Calculation of the determinant (48)

The determinant (48) was calculated for n = 2,3,4,5. These results enable us
to postulate the conjecture that for an arbitrary n the formula (49) is valid.
The general proof of the relation (49) for arbitrary n was given by Professor
S. Bialas. This proof is as follows:

The elements of the inverse matrix to the matrix V' of Vandeunonri(, have

1 L
the form determined by the relation (7). a;; = % (770 jV Using these

relations it is possible to write the explicit forms (9) for coefficient Ay

—l k n
A ( v) Vi (-1 g (65)
Jj=1
1 & n
= S Y1 ¥ - ] (66)
j=2

By substracting (66) from (65) we obtain

( 1)k+1

[ [ e M SR, { - m(k} (—— s =1 9) " fey
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The substitution of the relations (67) into the formula (49) gives

Al A A
s A} 77 S A i
-2 5B saBia ... s, B
o (e ,fi)> ; 11 i 12 s n (68)
! ’ S]Bn .93312 S”Bln
.R"ll_"}B” S.’JlugBlg 3::_231"
where
blrs (K
By =(-1"*""5 %, k=% (69)

It is worth noting that in the formula (68) all the rows beginning from the third
up to the (n — 2)nd are independent of the initial conditions ¢}, e1,c2,...,¢,.
Let us denote by B the matrix whose determinant appears in the formula (68)

I * - *
Aj A3 Ay
s1A4] 5243 e Sn Al
B=| sbBn saBia ... spDBig
n—'.’B ‘H_?'B _.H—'.’B
| 5 1 S 12 --- Sy In

Consider the product of the matrices

=] _2
1 1 i 1 .“1’1. Sl“{’f S].B“ . .‘s"li -Bll
_9
81 52 . Sn ‘ir_; 5:;4"15 saByy . 5; "By
VBT =
.n—1 n~1 n—1 A* ;A B n-2p
L 51 89 - 8 n Sndy Sabin - Sy, 1n

Taking into account the fact that from the relations (2) and (4) for t = 0 we have
=1(0) = ¢;, i = 1,2,...,n we obtain that
A+ A4t AS= @
S1A] + 5245+ ...+ 545 =

s’l“]A,"t + 3’2’_1.4.3 + ...+ 35:1—1)/1; = €n

We can now express the product VBT in the following form

¢t ¢ Bz Pu ... Pia
' 2 ¢z Paz Pa ... Pon
VBT =\ ¢ e Pz B ... Bin (70)

el - Fa)
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where ¢4 = 2(0) = s7AT + s5 A3 + o ShAx.
The elements f3;; in the matrix VBT (70) can be written using (69) in the

following form for i =1,2,...,nand j =3,4,....n

J—2
S B]]
j—2
Ty - 3 Bia
i = - = =
[ 51 S5 vas @0 | ) =

Hij

5{1 Blu

i+j—3 _it+j-3 T 71
g3 - i3 (71
S 59 Sn
- 2 .2 2
- 51 83 S
n—1 =1 n—1
87 Sy Sn

From the relations (71) it is evident that
By =10 for i+j-3<n-1 (72)

because in the matrix (71) some of the rows will repeat and the determinant of
(71) will be equal to zero. The substitution of (72) into the matrix (70) yields
the following determinant

¢t e 0 0 ... 0
Cy C3 0 0 .. 0

[VBT|=|cs 1 Bss Bsa ... Pan | =
Cn Cn41 [))113 .Bn‘l e ,Bmz
C3 0 0 s 0

ca P33z Paa ... Ban
=ci| ¢ P13 Baa ... Ban|—cC2

C 0 0 wes ©
c3 B33 Bsa ... Ban

e B B g
Cp+1 ﬁn:& /jrm /inn nons 514 [
B33 B34 ... Pan B33 B34 ... Ban
B3 Baa ... Bin 9| B3 Baa ... Ban

*

=003 —Cy =
,H.,,g b,-nA ﬁvm /3-:13 /3114 6/111

/333 534 sie e Biin

Bz Baa ... PBuan

(clez — c3)
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From the relations (72) we have

B;j=0 for j=12,...,n-1
Baj=0 for j=1,2,...,n-2
Bs; = for §=1,2;s00—3 (73)

ﬁn_[‘jz(} for j=3
and from (71) we obtain

Bon = Bagicty = Bty =ves= Ba=-1)"" 01908V =8 - (14

Taking into account (73) and (74) we can write

0 0 0 B
0 0 B Ban
VBT| = (=1)"(ctcs —c2)| 0O 0 i n
[VBT| = (-1)""(cies — ) Pou-1 Bon | ey
18 |8ﬂ—4 ﬁn—ﬁ ?Bﬂﬂ
= (—1)“_2(0;63 _ C%)(S]Sg . Sn}“_z ‘!n—'l .
From (75) we have that the determinant
|B| = |BT| = (=1)"*(cjes — c3) (5152 ... 80)" 2 VP73 (76)

Finally, using (68) and (76) we obtain the main result

n—2

(C —C‘} n—2 - - * 2
A= ‘“1_'*[:}1‘—— (=1)" jl;[lsj (cies —¢3)

and the relation (47) is proved.
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