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Abstract: The relation between extremal values of the error and 
the coefficients of its rlifferential equations is one of the central prob
lems of control systems in chemical industry, because extremal values 
of the error sometimes cause serious damages to th e environment or 
to the system itself. Analytical formulae for the determination of 
these values are known only for the second-order systems. In this 
paper a method which permits to determine extremal values of the 
error in higher-order systems is proposed. 
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1. Introduction 

In the process of design of the dynamic control systems we eucounter the prob
lem of determining the maximal transient error Xe and the moment of time t e 

when it appears. The maximal error Xe characteries the attainable accuracy, 
and time te - the velocity of the rise of the transients . Let us consider the dif
ferential equation determining the transient error in a linear control system of 
the n-th order with lumped and constant parameters: 

d" :t(t) dn- 1x(t) dx(t) 
ao-d-. - + a1 l 1 + ... + an - 1-- + an:r(t) = 0 t" ( tn- dt 

(1) 

The initial conditions are determined by the force function and the system 
parameteres ao, a1, a2, ... , an. 

Let us assume, in general that 

fnr i = 1 ? 71 
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The solution of equation (1) takes the form 

n 

x(t) = L Akeskt ' (2) 
k= l 

where 8k are the real, different roots of the characteristic equation 

(3) 

The necessary condition for the transient error x(t) to attain an extremal value 
at t = te is given by the relation 

dx(t) - ~ A sk t -;It- 6 8k k e . 

k= l 

(4) 

We will also need higher derivatives and use the relations 

dPx(t) = ~ 8P A .esk t 
dt 6 k k ' 

p = 1, 2, ... , n- 1 . (5) 
k=1 

The equations (2) and (5) represent a system of n linear equations with re
spect to unknown terms Akeskt. Its matrix of coefficients is the Vandermonde's 
matrix: 

1 

(6) 

Wi~hout loss of generality we assume for the sake of simplicity that equation 
(::1) has only single roots: 8i i- 8j for i i- j. With t his assumption the matrix 
(6) has an inverse and the system (2) and (5) can be solved. 

For this purpose we denote by V the Vandermonde's determinant of the 
matrix (6) and by Vi the Vandermonde 's determinant of order (n - 1) of the 
variables 81, . . . , 8j - 1 , 8j+1, . . . , 8n. 

We denote also by <l>~j) the fundamental symmetric function of the r-th order 
of (n- 1) variables 81, ... , 8j-1, Sj+1, ... , s11 ; r = 0, 1, ... , n - 1: 

<l>~j) = 1 

<I>~i) = 2:::(-lrar+i s~, 
i= O 

j ~1 ,2 , . . . ,n -1} · 

It is possible to show that the elements of the inverse matrix to the matrix (6) 
have the form : 

(- l)i+j ;,di) 
TT (71 
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The solution of the system (2) and (5) is as follows 

n . n (- 1)k+j 
A eskt _ '\" ,.,., ·X(J- 1) _ '\" , ,._(k). TT.X(j-1) (t) 

k - ~u.kj - ~ 
11 

'¥ 11 _ ) Vk, 

j=l j=l 

or 

A .es~.t = ( -1)k11k ~(-1)j <I>( k) .xU-ll(t) k 1 2 
k 11 ~ n-J ' , = ' ' ... 'n . (8) 

j=l 

It is evident that fort= 0 we know xU- 1) (0), and the substitution oft= 0 into 
the equations (8) gives: 

or in the explicit form 

n n 

Ak = L( -1)i<I> ~"~jx(j-l)(O) II (sv- sk)-1, k = 1, 2, ... , n . 
j=1 v=l 

v;t k 

After the substitution of (9) into (8) we obtain 

and finally for k = 1, 2, . .. , n we have: 

n n 

e•kt 2:) -1)i<I>;
1
":2ix(j-1) (0) = 2:) -1) i<f>;

1
":2ix(j - 1) (t) 

j= l j=l 

(9) 

(10) 

Multiplying both sides of all the equations (10) and using Viete's relation be
tween the roots sn and the coeffi cient ai of the characteristic equation, 

n 

L:sk = -a1 
k=1 

we obtain the main result: 
n n n n 

(11) 

e-ad II L(-1)i<I>~k~jx(j- 1 )(0) =II L(-1)i<I>~k~jx(j- 1 l(t) (12) 
k=1j= 1 k=1j=1 

Both sides of equation (12) are composed of the symmetric polynomials of vari
ables s1 , ... , sn. Due to this it is possible to present these terms as the polynomi
als of the coefficients a1 , .•. , an . Using Viete's relations it is possible to replace 
J.. l _- --- - '- - 1 • 
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the solution of a.lgebraic equat ions (3). It is now possible to find the relation 
between the extremal error .7;, and the time t ,. using the necessary condition 
:c(ll(tc) = 0, in the relat ion (12). We have the basic result 

n n n n 

II 2)-l)j<J.> ~,'~.(t:ii - l ) (t e ) = e-'111 ' II 2)- 1 )J<I>~,'~/r(j - I )(O) (13) 
k=l j =l 

j::fo2 
k= l j = l 

From t he relation (13) it is evident that the values of the sequence of extremums 
Xe;, diminish with the rate of c-'qt,; , i = 1, 2, .... 

From Viete 's rela t ion we have: 

<I>~= 1 

iJ>~' = 81 + 82 + ... + 8k-1 + ... + Sn = -a .I - S k 

iJ>~ = 8182 + 8183 + ... + SJS k -1 + 8 J 8 k + 1 + ... + 8]8n+ 

+82 S:J + ... + 82 8k-l + 828k+l + ... + 82Sn + Sn-J Sn+ 

+ .. ...... .... + .. .... ...... = 

. (14) 

Taking into accoun t the relations (14) in the equation (13) we obta.iu the final re

la tion between Xe, x~2 ), .. . , :c ~n- l ); x(O), :z: (l l (0), .. . , x(n- l ) (0); t e, a 1 , a2 , . .. , a'(!. 

The explicit relations for n = 2 and 3 are as follows: 

n=2 

The value of the time te cau be calculated from the equation (4). 
If the characteristic equation (3) has real single roots then we have 

1 2a2x(O) + (a1 + Jai- 4az).:r(ll (O) 
te = In , af ~ 4a2 Jai - 4a2 2az:r:(O) + (a1 - Jai - 4a2 ) :~:(1 l (O) 

In the case when equation (3) has complex conjugate roots we have for 
k = 0, 1, 2, ... and ai < 4a2 
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For n = 3 

[a.5x~ + O.J O.JxFlx~ + a.2 ( :c~21 ) 2 :r e + (x~2 l ) 3 ) ea , t , = 

= a.~ x3 (0) + 2a.2a.3a:(ll (O)x(2J(O) + (a.1a.3 + a.~ ) 2 ( :r (l l(o)) 2 .r (O) + 

+ (a.1 a.2- a.3) (x( 1l(o))
3 

+ (a. 1az + 3a:~ ) x( 2 l(O)x (l l (o)x (O) + (1 5) 

+ a1 a 3:c(Z) (O) x2 (O) + a 2 ( x(2l (0)) 2 x(O) + 

+(af + az).7Yl(o){:c (1J(o)) 2 + 2al(.r(2 l(o))2 x(l l(o) + (x( 2l (0)) 3 

The determination of the t imes te, from the equation ( 4) is difficult and will be 
done later. 

Before doing this we make the following remark. The plot of a solution of 
equation of the 3 r d order is shown in Fig. 1. 

It is evident that the times tc, are invariant with respect to the perpendicular 
displacement of the curve (see Figs. 1, 2). 

X 

0 

-1,. , 

x ... 

Figure 1. Plot of the third order func- Figure 2. Plot of third order functions 
tion after prependicular displacement 

The perpendicular displacement leads to changes of values of extrernums 
and the initial value :c(O), but the values of moments of t ime te, , and the form 
of the curve remain the same. We make use of this remark by performing 
such perpendicular displacement of the whole curve that one of the extremums 
assumes the value x (t ,, ) = 0, and of course the initial value x(O) changes its 
value to .1;*(0) . 

It is evident that these values may be zero , one, or two, when we have three 
real different roots s1, 8 z , 83, and infinite when we have a case with one real root 
8; , and one pair of the complex, conjugate roots 8 2 ,3 = a ± j w. 

After the displacement of the whole curve we have such a situation that at 
the extremal point the following relations are true: 

:i: [:c(O) , te,J = 
:i:[:~;* (0) , te;] = (16) 
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These three homogeneous equations determine two independent values of time 
te,, te2· 

The main determinant of these three equations is equal to zero, and from 
this it is possible to find the unlmown value :r:* (0). As the illustration of this 
method we take the third order equation. 

2. Solution of the third order equation 

L:;t us consider the equat ion 

with the following initial conditions 

:c(O) 

±(0) 

:i:(O) 

where a.1, a.2, a.3 are constant parameters. 
The solution of the equation (17) is as follows: 

3 

x(t) = L Akc""1 

k=J 

(17) 

(18) 

(Hl) 

where 8k are the nonzero difh ~rent roots of the characteristic equation 83 + a.J 82 + 
a.z8 + a3 = 0 and A.k, k = 1, 2, 3 are determined by the relations 

C3 - (s2 + 8 3 ) C2 + 8:,>.S;lCJ 

(81 - 82)(81 - 83) 

C;~ - (iii + 8:J) C'2 + S183C:J 

(s2- 8I)(s'2- s3) 

c3- (81 + 82) c2 + s1s2cJ 

(s3 - s1)(s3- s2) 

(20) 

For determination of the extremal values of the solution (Hl) we use the neces
sary condition 

d.T(t) I = 0 
dt t,, 

The differentiation of the relation ( 19) gives 

(21) 
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We apply now the method proposed in Section 1, and usc the set of cqnations 
(16) with the notation (18). 

SJAJC811
'' ' + s2A2e'~ 1·• ; + 83.·be'3 t., 

SJAies,l e; + SzA~cs2 t , , + 83A3es"t , , 

Aje"'t.,, + A2e"~t ,, + A3esot , , 

(22) 

where i lr , A~ , A; denote the coefficients (20) but with the initial condit ioll c~ 
and c2 , c:l unchanged. 

T he ma.in determinant of equations (22) with respect to cs,l , ,, e""l,,, e531•• 
is equal to zero: 

S !A! s2Az s3A3 

~= s1Ar s2A2 S;lA.3 = 0 (23) 
A* l A2 Aj 

After the substitution of A 1, A:!, A3 from (20) to the determinant (23) we obtain 

~ = 81s2s:l [ -c3(ci)~ + (d + c1 c:l) ci - c, d] = 
0 

(sJ - sz)(82- s3)(s3 - 81) 

or in au equiva lent form (sec Gorecki , 1966c) 

(24) 

(25) 

From this relation it results that for the existence of a real c; t here has to be 

(26) 

or equivalently (d- c 1c3 )
2 ~ 0, but this is a lways true. 

This means that if there exists c 1 for which an extremum :r;r exists , then 
there exists also ci for which the condit ion (ll) is fulfilled. Ta.king into account 
(24) or (25) we obtain tlw relation between giveu initial condit ions c1 , c2 , C:J and 
aJ: unknown initia l conditiou cj: 

(27) 

From equation (27) we obtain the main result that either c7 
clisplacement of the function :~: (t) is not needed , or 

c1 and t he 

(28) 

Depending on whether it is a minimum (c:l > 0) or maximum (c~l < 0) of the 
fll l'l r> f-l f"'\ l l ~,., ( f\ tl, n. ' ' '"' ] , , ,...,, f ro •. .,.,, , ,· ,+- 1,,, ....... , .. , ........ ,~-..~. : .. 4. ,.. 1 . ......... ...... ...J:L.: ... -1 T L' L L - -·- - ~--
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8 3 arc real we obtain the following solutions for te,, i = 1, 2, 3 from relations 
(22): 

1 1 I c3 - (82 + 83)c2 + 8283cj' I 
82 - s1 n c3- (81 + 83)c2 + 8JSJCi: 

1 1 lc3 -(8I + 83)cz + 8J83ci' l 
83 - Sz n C3- (s l + Sz)C2 + 81 8zC~ (29) 

1 1 lc3-(82+si)c2+8z81cil --- n 
81 - 83 c3 - (8z + s3)c2 + 8z83ci 

Two of equations (29) are independent. 
In the case of one real root s1 and two complex conjugate roots 82 ,3 = a ±.iw 

we obtain an infinite number of solutions for tek, k = 0, 1, 2, ... 

_ 1 [ 2w(c2-81ci)[c3-(a+sJ)c2+aslcrJ k J 
tek - - - arctan . + 7r • 

· 2w [c3- (a+ 8I)cz + a81ciF- w2(cz- s1ci)2 
(30) 

The substitution of the relations (28), (29) or (30) into (19) gives t he extremum 
values of x( t). 

3. Limitations of the method and their overcoming 

In the case when the init ial value of the first derivative c2 = 0, we have an 
extremum fort= 0, but we cannot apply relation (28). In this case we calculate 
the value of the determinant (26), using approximate solutions of :r;(t) and x(t). 
Developing in the solution (2) and in the relation ( 4) the exponential functions 
in the Taylor series around t = 0 we obtain 

t s~,.D.t 2 e8
k = 1 + 1! + 0(8k.6.t) , k=1,2, ... ,n (31) 

Substituting the relation (31) into the relations (2) and ( 4) we get 

n 

x(t) ~ L(l + s~,:.6.t)Aj;* = 0 (32) 
k=l 

d:c(t) ~ ( A )A** 0 -;u- ~ ~ 81,: 1 + Skb.t 1.: = (33) 
1.:=1 

Elimination of the variable D.t from equations (32) and (33) gives the discrimi
nant .6. in the form 

D.* = (i=A j;* ) (t 8~Aj;* ) - (f=s~,.Ar:f = o 
k= l k = l k=1 
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'vVe take into account. that 

II 

Ls1.Ar* 
k= J 

/) 

L siA;.* 
k= l 

c~* 

283 

By eliminating on this basis we obtain after D.t the m~w va lues of ini tia l condi
(c** ):.! 

t ions and the relation c[* ::::: ' 2
•• , v.;hich is valid for an arbitrary degree 11 and 

(:3 

the increment of time .6.t , as well as c;•, c2*, c~· which arc diffcn:nt from zero. 
In this way the obstacle conm~cted with c2 ::::: 0 is removed. Up to these 

results it. was necessary to know the values of roots of the characteristic equation. 
Now we show that it is pos~ ible to overcome also t his difficu lty and to obtain 

fc·nnula.e which depeucl only on the coefficients a i of the cha.ra.ct.erist.ic: equa tion . 
We denote the right-hand side of the equation (15) by w(c 1 , c:2, c:l). If we 

put the value cr instead of Cj in equation (15) we must put .?;c ::::: 0. We obtain 
t hen from equat ion (15) t hat. 

( :t ~2 l ) ~c" 11 c ::::: w(c;,c2,C:l) . (34) 

Substracting both sides of equation (34) from equation (15) we obtain 

but 

aucl 

[a~x;~ + a1 a.3 :r ~2 ) :~: ; + a2 ( J: ~2 )):.! :rc) end , ::::: ·w( CJ, c2, C;3 ) - w( c~ , c2, C:! ) (35) 

w(c1 , c2,C:!)- w(c7,c2,C:Jl::::: 

::::: a~(d- c[ 3) + (2a.2a3c2 + a.la.:lc3 )(cT- c~ :!) + 

+[(a.J0,3 + a~) c~ + (a 1a.2 + 3a.3)c2c::l + a.2d)(c1 - c;)::::: 

::::: {a~ [d + c~c 1 +c:7 2) + [2o2n3c2 +aJO:Jc:J)(cJ +c7)+ 

+ [(a tO:! + a~)c~ + (a 1a2 + 3a3)c:2c:1 + a2d]}(c1- c~) 

(36) 

(37) 

Taking iuto account relations (36) and (37) in the dependence (35) we have 

(38) 

where 

' I ')' ·) 
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Dividing both sides of the equality (38) by the formula (34) yields 

2( X e )
2 

X e . _ R(ci,c;,cz , C3) .(2) 
a3 (Z) + a 1 a3 (Z) + az - ( • . ) xe 

Xe Xe wc1 ,cz,C3 

Finally, taking into account formula (34) we have 

e- ka 11 •wk (ci, Cz, c~) 
X el.2 = 2a3 . . 

· [ a1 ± ai- 4[az- R(cl,cr,cz ,c3 )w~(ci, cz , c3)e-ka 1 t . ]] (39) 

Relations (29), (30) and (39) can be used for parametric optimization, when the 
coefficients a i are functions of parameters of the controller. 

4. Example 

Let us consider the problem of synthesis of the proportional controller for the 
third order object. The transfer function of the object is 

G(s) = b1s
2 + bzs + b3 

aos3 + a1s2 + azs + a3 

1 
The input transform is U(s) = - and the transfer function of the ideal controller 

s 
has the form GR(s) = K. 

The transform function of the whole closed-loop system is given by 

KG(s) 
= 

1 + KG(s) 
2 

!{ b1 s + bz s + b3 
aos3 + (a1 + Kbi)s 2 + (a2 + Kb2)s + a3 + Kb3 

( 40) 

The transient error is equal to 

c(t) = x(oo)- x(t) . ( 41) 

The output signal in the steady state is 

• • I ](~ 
x(oo) = hm sX(s) = hm Gc(s) = .r 

s -4 0 s -4 0 a3 + l\ b3 
( 42) 

The transform of the transient error can be calculated from ( 41) and ( 42): 

1 [ Kb3 ] E(s) = - . Kb - Gc(s) . 
s a3 + 3 

The initial values of the transient error and its derivatives are 
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From relation (41) we deduce that t:lll(t) = -x(Jl(t) and the initial value of the 
derivative of error 

c2 = t:( 1l(O) = -x(ll(O) = lim s[-sX(s) +.r-(0)] 
s-;oo 

( 43) 

x(O) = lim sX(s) = lim [-Gc(s)] = 0 
s-; oo s-; oo 

( 44) 

From (43) , (44) and (40) we have 

c2 = E(ll(o) = lim s[-sX(s)] = lim s [-Gc(s)] = - J(b1 

s-; oo s-;oo ao 

and similarly 

lim s[-s2X(s) - s.r-(0)- x(ll(o)] = 
~·-HXI 

Kb2 Kb1 a1 + Kb1 ---+------
ao ao ao 

and in general for the transfer function 

b n-1 + b n - ? + + b G(s) = 1s zS . - . . . n 

a,sn + a2sn-l + ... +an 

for i = 1, 2, ... , n 

_ bo + [ a1 E(i-l) (O) + a2 E(i-2) (O) + ... + ai-l E( ll (o)] , 
ao ao ao ao 

E(O) (0) = bn 
an 

The initial value after displacement is 

The extremum value of the transient error is 

Using the necessary condition for the calculation of the extremal value of Ee 
with respect to gain J( we obtain 

dEe b3 b2 
1 + 

dK a3 + J(b3 b1 (a1 + Kb,)- aob2 
( 45) 

+Id 
b2 b4 

3 
·~ + .. 1 .. 1 = 0 . 
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From ( 45) we find finally that the optimal gain for the minimum Ec is equal to 

} "* 1 \1., = '/)-
·- lit 

'1) = ±1 , (4G) 

The minimal value of the extremal transicmt error after using (46) is given by 

5. Solution of the n-th order equation 

Let us consider the relation (2) , which represents the solution of equation (1), 
i.e. :1:(t) = I:~~= J Akcs;J. 

For the elimination of n-exponential dements c8
''

1 it is necessary to fine! (n-
3) additional equations in comparison to the solution of the 3'rt order equation. 
To do this, let us observe that after the perpendicular displacement the curve 
repn-~scnting :1:(t) relation (1), all the derivatives of :r:(t) are not changed. In 
comparison to the equation of the 3rrt order there is an essential difference, 
because the values of the higber derivatives of the extremal points, beginning 
from the second order, arc not known. To overcome this difficulty we take into 
account the fact that the values of higher derivatives remain invariant during 
the perpendicular displacement. Let us find the differences between apropriate 
derivatives at the extn~mal points before and after the clisplacernent 

These differences are equal to zero , and in this way we obtain the additional 
(n - 3) homogeneous equations. The set of the n linear independeut equations 
takes the form 

StA7 c81
1. c + 8:JA~c'" 1 ' + ... + 8 11 A7,c8

"
1
' 

srAl esd , + s2A2e'" 1
" + ... + snA.nC

8
"

1
' 

sy(Ar - Ar)cslt c + s~(A.2- A:2)c'2t, + ... 
... + 8;1,(An - A7Jc'" 1' 

s~'- 2 (A 1 - AncsJi , + s~' - 2 (A2- A2) e' "~, " + ... 

=0 
=0 

=0 

. . . + s:;- 2 (An- A;1 )C8
"

1' = 0 

( 4 7) 

where, similarly as in the CitSe of the 3ril order equation Ai, ... , A;1 <knot.(! 
the coefficients with the initial condition .7:(0) = ci, and the remaining iuitial 
conditions are unchanged. 
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has the form 

A~ 

S]AT 

A;, 
s,A~ 

SnAn 
.0.= 

Sj AI 

si(Al -AT) 

.42 
s2A2 
82.12 

s~(A2- A2) s;,(An- A;.) 

,n-2( .t _ t1*) 5 1 -'"11 • 1 n - 2( 4 A*) 82 • 2 - 2 .n- 2( i1 _A*) 8n .r. n n 

6. Main results 

Tllc determinant ( 48) is obtained in the form 

'11 

( -1) n-2 IT s;•- '2 

.0. = " i=l [(cl - c~)"-"(r:~ - c~c:J) J 
IT(s;- Sj) 

n > 2 

or i u the equivalent form 

.,.,_·) 
.0. = 

1)-i; [(ct- c;)n- 2 (d - cTc:l)J n>2 

where D is determined by the formula (50) 

rw.o ao 0 0 

(n- l)a1 UJ na0 au 

(n- 2)a2 (!2 (n - l )a.1 a I 
D = (n - 3)a3 O.:J (n - 2)a2 0.2 

0 0 0 0 all 2nx2n 

Proof of thi s rc~sul t is in Appendix to the paper. 

287 

= 0 ' (48) 

(49) 

(50) 

We assu i'le t hat the roots of equation (3) arc single and difi'erent from zero , 
for that reasvn t.he determinant 6. can be equal zero only with the adjusted 
initial conditions c1 = c;: or cf = c;: c3 . 

In this way we have obtained the following basic result: 

T 11 EO HEM G . l If ther·e e:~:ists an e.1:trem:u:rn of the sol11.tion of ecru.ation (1) with 
the in.itial condition c1 then the value of the e.1:tn~m.nm ·is erru.al to :cc = c1 - c[ , 

2 

ond the new initin.l conddion c7 is detenn·incd lru th1! rdrdion r::' = c2 . 
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The moments of time at the extremum points can be calculated from the set of 
( n - 1) independent equations ( 4 7). Then the number of extremums depends 
on the initial conditions, and on the roots of the characteristic equation (3). 
In particular, if equation (3) has complex conjugate roots, then the number of 
extremums can be infinite. 

If the characteristic equation has only real roots, then the number of ex
tremums is between 0 and (n- 1) (see Gorecki, 1993, pp. 121 and 135-136). 

The necessary and sufficient conditions for the existence of only single real, 
and negative roots of equation (3) are determined by the following theorem (see 
Merrow, 1956). 

THEOREM 6.2 The necessary and sufficcient cond-itions for existence of only 
single real and negative roots of equation (3) are as follows 

F. All the coefficients ao, a1, ... , an must be positive. 
2°. All the main even (or odd) ma·in determinants of matr·ix {51) must be 

positive 

nao ao 0 0 
(n- l)a1 a1 nao ao 
(n- 2)a2 a2 (n- l)a1 a1 
(n- 3)a3 a3 (n- 2)a2 a2 (51) 

0 0 0 0 an 2nx2n 
so 

nao ao 0 0 

"'·) --I nao ao I (n- l )a1 a1 nao ao 
l...l > 0, ~4 = > 0 

- (n- l )a1 a1 (n- 2)a2 a2 (n- l)a1 a1 ' 
(n- 3)a3 a3 (n- 2)a2 a2 

~2n > 0 (52) 

We can also establish conditions for non existence of the extremums of eq. (1). 

THEOREM 6.3 Let us consider the transfer function 

b n-1 + b n-2 + + b L( ·) G(s) = tS 2S . . . n = __ s_ . 
aoS11 + a1sn-l + .. . +an M(s ) 

(53) 

We assume that the coefficients b1 , ... , bn are Teal, and the coefficients ao, a1, 
... , an are real and positive, and fulfill the Hurw'itz stability conditions. 

The necessary and sufficient condit·ions for non existence of extremums of 
equation {1) are that the zeros z; of the numerator L(s) and zeros Sj of the 
denominator M ( s) of the tmnsfeT function G ( s) (53) fulfill the inequalities s1 > 
z; > s2 > z2 ... Sn > Zn < 0, Re s; < 0, i = 1, 2, ... , n. All the zeros must be 
real and single . 
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o----
a 

Figure 3. Illustration of the Theorem 6.3 

7. Example 2: Equation of the n-th order 

Let us consider the chain system which consists of n equal elements of R, L, C, 
G types as in Fig. 4. 

llt-1 "' 
Ro II , 

G C "' G c 

Figure 4. The chain LRCG system 

Each element of the chain is closed by feedback with a gain J( (see Gorecki, 
2000). The impedance ofthe load is equal to the impendance of every clement of 

the chain. The transfer function of the whole system is equal to G(s) = ~( ) , 
NJ., s 

where 

Mn(s) = sin[(n + l)¢(s)] 
sin[¢(s)] 

and ¢(s) can be determined from the relation 

(G+sC)(R+sL) .L ') - ') " M"' 

(54) 

I r:: r:: \ 
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From the equation lvf.,(s) = 0 and the relation (54) we obtain 

br 
¢(8) = -, 

n+1 
k:=1,2, ... ,n. 

Using the relations (55) and (56) we have that 

II. GOilECKI 

(56) 

·> ·> br 
LCs-+(GL+ R C) s +GR+4(K+1)sin- ( ) =0, k=1, ... , 71.. 

2n+1 

The roots of this characteristic equation for k = 1, 2, ... , n are 

-(GL + RC) ± J(GL + RC)2 - 4LC[GR + 4(K + 1) sin~~] 
sl,2 k = 2LC 

Knowing the roots Si we can calculate from equat ions ( 4 7) the moments of time 
t e; of extremurns , and after that from the relation (2) the values of extremurns 
:r(te; ). 

8. Remark 

The presentation of the new method gives the analytical solution of the tran
scendental equations. The method will be illustrated by an example of the 3rd 

order transcendental equation. Let us c:ousider the following equation 

(57) 

where B 1 , B 2 , B:~ are constant parameters. \Ve interpret this equation as the 
drorivative equal to zero of the system 

(58) 

We look for such a solution :c(t) which besides the equation (58) fulfills the 
equations 

(59) 

and 

(60) 

The main determinant of the equations (58), (59) and (60) is equal to zero, if 
the initial condition satisfy the following relation 

·) 

c~ c7 = -=
c3 

(61) 

Comparing the coefficients of the exponential terms in equations (57) and (58) 
we obtain 

((~')\ 
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From the equation x(t) = 0 = A1e5 't + A2e52 t + AJe53 t we obtain, by putting 
t-= 0 and using (62), the relations 

and from equation (57) we have for t = 0 that 

(63) 

After differentiating equation (57) with respect to t and putting t = 0 we have 

(64) 

The unknown value of ci determined by (61) and using (63), (64) has the form 

The unknown values te of the equation (57) can now be found according to the 
described general method . 

Appendix: Calculation of the determinant ( 48 ) 

Tile determinant ( 48) was calculated for n = 2, 3, 4, 5. These results enable us 
to postulate the conjecture that for an arbitrary n the formula ( 49) is valid. 
The general proof of the relation ( 49) for arbitrary n was given by Professor 
S. Bialas. This proof is as follows: 

The elements of the inverse matrix to the matrix V of Vanclermonde have 
(-1) i+j . 

the form determined by the relation (7). aij = V ip .~,'~j 1'J. Using these 

relations it is possible to write the explicit forms (9) for coefficient Ak 

(65) 

( 1)k n 
4. * - ---v: ["'(-1)j (k) . - <"l ·· ] - k - il k L..t 1Pn - jcJ IPn- 1 C1 (66) 

j=2 

By substracting (66) from (65) we obtain 

l- - 1 ') (~7\ 



The substitutiou of t he relations (67) into the formula (49) gives 

where 

Aj 

~;tA~ 

SjBll 

sf Ell 

B _ ( 1)k+lt r . (k) 
i.k - .- VJ.: 'Pn - l' 

A2 
sz A~ 
s2B 12 

s~Btz 

/;: = 1,2, . .. ,n . 

A;,_ 
snA;, 

s.,.Btn 
sf,_Btn 

ll. C:ORECKI 

(68) 

(69) 

It is worth noting that in the forlllula (68) all the rows begiuning from the third 
U}J to the (n - 2)nd are indepC·!J H]ent Of the initial COnditions cr, C1 , C2, . .. 1 Cn. 

Let us denote by B the matrix whose determinant appears in the formula (68) 

A* I A~ A;, 
SJAi s~ Az Sn.i-1;1. 

B= StEll s2B 12 Sn B l n 

n - 2E s2 12 

Consider the product of the matrices 

1 1 1 A* 1 s1Ar .s1Bu n-·) B s 1 - 1t 

SJ sz 8n .4.2 szA2 .szB12 n-·'B s2 - 12 
VET = 

n-1 n - 1 s ;~- 1 A* SnA;, SnBln s;:-z Etn. sl sz n 

Taking into account the fact that from the rclatious (2) and (4) fort = 0 we have 
xU- ll (O) = c;., ·i = 1, 2, .. . , n we obtain that 

Ai + A2 + ... + A;, = 

s1Ai + SzA:'; + ... + snA;, = 

n-1 4 * .n-lA* (n-l)A* 
S1 • n + Sz 2 + · · · + Sn n = 

c[ } Cz 

c" 

We can now express the product l ' BT in the following form 

c* 1 C:.! fl t 3 fJJ4 fJ1n 

Cz C3 fJz~J flz-t flzn 
VET= C3 C,t fJ:J3 fJ:J 4 fl:~ n (70) 
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where c - 'l··.,(O)- ~n ·1* + sn ·1 • + + sn .t • . ·, n + l -. . - vJ f iJ ·~ .'1 ~ ... ., .'1.,. 
The elements (J; j in the matrix VBT (70) can be written using (G9) in the 

following form for ·i = 1, 2, . . . , 'II ann j = 3, 4, .. . 'n 

/3ij = 

S
i+j-3 i+j-3 
1 s~ 

8] 
., 

S] 

i - 1 sn 

s~-Z B1, 

s~;t-J - 3 

<·n- 1 
oJ,n 

From the relatious (71) it is evident that 

{Jij = 0 for ·i + j - 3 ~ n - 1 

(71) 

(72) 

because in the matrix (71) some of the rows will repeat and the determinant of 
(71) will be equal to zero. The substitution of (72) into the matrix (70) yields 
the following determinant 

c* ' ] Cz 0 0 0 
Cz C3 () 0 0 

IV BTl = C3 c,, !333 f334 /hn 

Cn Cn+ l (J,,_:l /3.,1'1 . .. f3n n 

C:~ () 0 0 
0 0 0 

fJ33 (-334 ,83, 
Cz 

C4 
fJ33 f3:H f33n 

= c7 (3,,3 fj,,,.. f34n 
C:{ 

C,s - Cz 

f3u3 j3.1L 'IL f3nn 
Cn fJn3 f3n4 f3nn 

Cn+ l ... 

f3J :l ,B:H f33 n (333 !334 f33n 

= r· ~ ca 
,8 •13 ,844 fJ,l n •) !343 !344 fJ4n - c:; = 
(3., 3 !Jn4 ... fJun f3n3 fJn4 . . . /3.,.,,.n 

!333 f3:l4 f:J3n 
( * ., c1 c3 - c:;) 

,8.,3 (J,,,.. fJ,In 
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From the relations (72) we have 

f33,J=O for j=1,2, ... ,n-1 

f34,j=O for j=1,2, ... ,n-2 

f3s,J = 0 for j = 1, 2, ... , n- 3 (73) 

f3n-l ,j = 0 for j = 3 

and from (71) we obtain 

f33n = f34(n-l) = f3s(n - 2) = · · · = f3n3 = (-l)n-lS1S2 . . . snll = f3 (74) 

Taking into account (73) and (74) we can write 

0 

0 

ilfBTI= (-1)11
-

1(crc3-c§) 0 

0 

0 

0 

f3 f3n -4 f3n-5 

(-1) 11
-

2(cjc3 -c§)(sls2·· · sn)"-2 Fn-2 

From (75) we have that the determinant 

IBI = IBTI = (-1)n-2 (crc3 -c~ ) (stS2···sn)"- 2 vn-3 

Finally, using (68) and (76) we obtain the main result 

~= (c~-~nn-2 (-1)"- 2 (rrsi) n-2 (c~c3 -c~) 
J=l 

and the relation ( 4 7) is proved. 
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