
Learning causal theories with non-reversible MCMC

methods∗

by

Antonina Krajewska

NASK National Research Institute
Kolska 12, 01045 Warszawa, Poland

antonina.krajewska@nask.pl

Abstract: Causal laws are defined in terms of concepts and
the causal relations between them. Following Kemp et al. (2010),
we investigate the performance of the hierarchical Bayesian model,
in which causal systems are represented by directed acyclic graphs
(DAGs) with nodes divided into distinct categories. This paper
presents two non-reversible search and score algorithms (Q1 and
Q2) and their application to the causal learning system. The algo-
rithms run through the pairs of class-assignment vectors and graph
structures and choose the one which maximizes the probability of
given observations. The model discovers latent classes in relational
data and the number of these classes and predicts relations between
objects belonging to them. We evaluate its performance on pre-
diction tasks from the behavioural experiment about human cogni-
tion. Within the discussed approach, we solve a simplified prediction
problem when object classification is known in advance. Finally, we
describe the experimental procedure allowing in-depth analysis of
the efficiency and scalability of both search and score algorithms.

Keywords: Bayesian inference, causal systems, directed acyclic
graph, MCMC, non-reversible Markov processes, search and score
methods

1. Introduction

Causal reasoning is one of the most profound capabilities of the human mind.
Knowledge about causal structure helps us in predicting future events and plan
relevant interventions. Often causal relations form simple theories. In such sys-
tems, causal laws are defined in terms of concepts and causal relations between
them. For example, learning the theory of magnetic interactions requires learn-
ing three concepts: magnets, magnetic objects, non-magnetic objects, and the
laws describing their causal relations (see Kemp et al., 2010)
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Following Kemp et al. (2010), we revisit an experiment about causal rea-
soning inspired by learning the theory of magnetism. The experiment uses a
custom-built graphical interface. Participants move square objects around and
observe the interactions between them. Items are divided into two categories,
A and R. When objects of different categories touch each other, the R objects
light up and play sounds. Objects are labelled either by letters from the al-
phabet or else they are undifferentiated. Participants are not told which class
the items belong to, and they are not told the various laws governing each
class. Their task is to learn this from the experiment. The experiment aims to
determine whether people can acquire the causal theory and make predictions
about unobserved relations between objects. We compare the performance of
humans learning these rules in an experimental situation with the performance
of a machine learning algorithm.

Kemp, Griffiths and Tenenbaum (2004) introduced an infinite ordered block
model, a Bayesian framework for learning abstract relational knowledge. The
model assumes that objects are divided into distinct categories and that there
is a natural ordering of those categories. A particular relation holds for any pair
of items with a probability that depends only on their classes. The algorithm
discovers latent classes in the data and predicts relations between objects. The
model was evaluated both on learning the structure of kinship systems and
learning causal theories. In this paper, we focus on the latter one. The natural
representation of the causal system from the experiment scenario is a directed
acyclic graph (DAG). The nodes of the graph represent objects and belong to
distinct categories. If an item was activated when touched against, we draw an
arrow from the latter. The probability of an edge between two nodes depends
on their classes. The acquisition of the described causal theory is equivalent to
the learning of structure of a graphical model, defined as inferring the set of
edges of the graph.

Koller et al. (2007) distinguish two approaches to the structure learning
task, sampling-based and optimization-based (also referred to as search and
score methods). Markov processes and the Metropolis-Hastings (M-H) algo-
rithm play the essential yet different roles in both of them. Sampling-based
methods approximate posterior distribution and rely on the fact that the un-
derlying Markov process is ergodic. Most commonly used algorithms are based
on Gibbs and M-H sampling (see Goudie and Mukherjee, 2016; Koller, et al.
2007). On the other hand, optimization-based solvers run through the space of
all possible graph structures and examine their scores, expressing their posterior
probability given the set of observations. M-H algorithm is widely used to run
through the search space (see Madigan and York, 1993; Friedman and Koller,
2001). Since the goal of the underlying Markov chain is to visit pairs with rel-
atively high scores, it is not required that the chain satisfy conditions of the
ergodic theorem, such as reversibility (Koski and Noble, 2012). Corander, Gyl-
lenberg and Koski (2006), and Corander, Ekdahl and Koski (2008) introduced
the Metropolis-Hastings method with simplified, non-reversible kernels. Empir-



Learning causal theories with non-reversible MCMC methods 325

ical results demonstrated the advantages of their approach, including flexibility
in choosing intelligent proposal mechanisms, efficient computation, and parallel
implementations, in which Markov chains exchange information about posterior
distribution.

Several extensions of the infinite ordered block model might be found in the
literature. Mansinghka et al. (2006) restricted it to directed acyclic graphs
(DAG) and applied it to Bayesian networks. Their model is also suitable for
the experimental scenario. Kemp, Griffiths and Tennenbaum (2004), Kemp et
al. (2010) and Mansinghka et al. (2006) based structure learning on Gibbs
sampling. However, Mansinghka et al. (2006) noted that developing search and
score methods would be unquestionably helpful. Basing on their work, Rios,
Noble and Koski (2015) introduced prior probability distribution, which uses
the ordering of the node classes. The advantage of this model is that it offers
a closed, computable form of the prior probability over the hypothesis spaces,
which might be used to calculate score values by search and score methods.
They have shown that the Gibbs sampler converged slowly to the posterior
distribution and overcame this problem with the search and score method using
the non-reversible Metropolis-Hastings processes.

This paper presents two non-reversible search and score algorithms, referred
to as Q1 and Q2, and their application to the causal system learning, described
above. Both algorithms used prior probability distribution from the work of
Rios, Noble and Koski (2015) and were evaluated on the prediction tasks from
the cognitive experiment. Moreover, we carried in-depth convergence analysis
in the experimental scenario with a limited computational budget. We used em-
pirical cumulative distribution (ECDF) to display the proportion of trials that
achieved given accuracy. We found that although Q1 reached better scores than
Q2, its predictions were more dependent on the initial points of the Markov
chain and favoured sparser graphs. Q2 was designed to avoid this phenomenon
and performed better in prediction tasks. Finally, we applied Q1 to solve the
simplified problem, when object categorization is known in advance. The pre-
dictions made in that case were accurate.

2. Related work

Modern statistics and machine learning allow cognitive scientists to construct
new representations of the human mind. Hierarchical Bayesian models have
been criticized for focusing on the computational character of learning processes
and simplifying other mechanisms (see Jones and Love, 2011; McClelland et
al., 2010). However, they provide us with a theoretical tool for investigating
the effectiveness of human inductive reasoning (Griffiths et al., 2010). Since
they provide a formal representation of the abstract knowledge, they serve as
a point of reference for operations performed by the human mind (Tenenbaum
et al., 2011). They help us answer how much data do we need? and: which
representations are helpful for inductive reasoning?
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Bayesian networks are a natural language to describe a wide class of causal
systems (see Koski and Noble, 2009). Many structure learning algorithms focus
on discovering them in data (see Scanagatta, Salmeron and Stella, 2019; Madsen
et al., 2017; Gao and Huang, 2020; Silander et al., 2018; Dai, Ren and Wu,
2020; Contaldi, Vafaee and Nelson, 2019). Mansinghka et al. (2006) notice
that many models assume generic prior constraints on the graph structure.
However, this may not be adequate for many real-world learning problems,
in which variables can be categorized and play different roles in the causal
system. This knowledge imposes constraints on prior probability distributions
over search space and facilitates learning from small data sets. In this paper, we
use prior in which the probability of an edge between two nodes is a function of
their classes. Constraining the space to DAGs (directed acyclic graphs) may be
used in search and score algorithms for learning structure of Bayesian networks,
see Mansinghka et al. (2006). The prior distribution over graph space has been
also considered in the work of Flores and al. (2011).

Koski and Noble (2012) outline three main approaches for learning graph
structure from data (structure learning): search and score, constraint based
and hybrid. Gibbs sampling (see Peters, 2008), used by Kemp, Griffiths and
Tennenbaum (2004), incorporates the Metropolis-Hastings (M-H) algorithm and
is classified as a hybrid method. In this paper, we introduce two search and score
algorithms for the same task.

Search and score methods are commonly used in structure learning, as they
find a graph that optimizes some scoring criterion (see Friedman, Nachman
and Pe’er, 1999; Moore and Wong, 2004; Chickering, 2002; Lee and van Beek,
2017). Various scoring functions have been examined, including Cooper Her-
skovitz likelihood (Cooper and Herskovitz, 1992), Bayesian Information Cri-
terion (BIC) (Schwarz, 1978), minimum description length (MDL = −BIC)
(Rissanen, 1978) or Akaike Information Criterion (AIC) (Akaike, 1974).

Markov chain Monte Carlo (MCMC) algorithms have gained considerable
popularity for obtaining posterior distribution in Bayesian inference (Raven-
zwaaij, Cassey and Brown, 2018). A review of scalable MCMC techniques
applied in Bayesian inference may be found in the survey written by Angelino,
Johnson and Adams (2016). On the other hand, Markov processes may also
be used to run through model space in search and score methods (Madigan et
al., 2000; Corander, Ekdahl and Koski, 2008). Robinson (1973) proved that a
recursive function gives the number of DAG structures with d nodes

N(d) =

d
∑

i=1

(−1)i+1

(

d

i

)

2i(d−i)N(d− i), (1)

which means that it grows super-exponentially. Therefore, it is not possible to
ensure that the chain visits each site even once. The Metropolis-Hastings (M-
H) algorithm can be adopted to construct an efficient Markov chain. Within
the M-H framework, the transition between steps is split into two steps: pro-
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posal and acceptance-rejection. The candidate generating density is defined by
matrix Q and is crucial for the successful performance of the algorithm. We
are not interested in empirical distribution approximating the Markov chain’s
stationary distribution in search and score algorithms. The convergence of the
Markov process to a stationary distribution is irrelevant and gives us flexibil-
ity in constructing Markov processes, which may not satisfy conditions such
as reversibility or Markov property. Recently, the M-H algorithm’s extensions,
based on non-reversible processes gain an increasing popularity (see Bierkens,
2016; Corander, Gyllenberg and Koski, 2006). This paper introduces the non-
reversible search and score algorithms and investigates their performances in
the hierarchical Bayesian model, described by Kemp et al. (2010).

3. Problem formulation

The experiment consists of eight phases, see Kemp et al. (2010). In each stage,
three new objects are introduced. The items are divided into two classes: A
(activators) and R (reactors). When objects from different categories touch each
other, the R-objects get activated. Participants do not know about the division
and the causal law describing the interaction; their task is to discover this.

Phase 0 Three objects - two from category A, one from category R - are in the
staging area. Participants are asked to play around with them to see what
lights up. Before proceeding, participants describe how, in their opinion,
objects work.

Phase 1-7 Each phase has four parts.

Pre-test. Three new objects are added to the staging area. One of them
serves as the probe object x. On odd and even-numbered phases,
the categories of the three new items are R, R, A and A, A, R, re-
spectively. The probe object belongs to the category to which two of
the new objects belong. Participants answer the questions about the
interaction of x with the familiar items from A and R classes (which
appeared one phase before):

Consider, what will happen when objects x and a touch
Will x activate?
Will a activate?

Consider, what will happen when objects x and r touch
Will x activate?
Will r activate?

At this moment, participants are not able to predict how the x will
interact with these objects.
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Single interaction Participants are asked to touch the x object against
the y object - the last one from the three items which appeared one
phase before. The target y is always of the opposite category to the
x. If participants have discovered the rule determining the interac-
tions and classified objects which appeared a phase before correctly,
they can classify x after observing this single interaction. Items from
different categories touched, therefore one of them activated. Know-
ing the class of y and the rule determining the interactions allows the
participants to classify x in the correct category.

Post-test Participants answer the same questions as in the pre-test.

Play Participants are asked to play around with all the objects currently
on the screen and test all possible interactions. By moving items
around, participants can organise them spatially. Participants pro-
ceed to the next phase at their own pace.

Figure 1 presents a screenshot of the single interaction in phase 1. Objects
are labelled by random alphabet letters to allow referring to them in pre-test
and post-test questions. After the first and last phase, participants were asked
to describe the rule, explaining the interactions between objects. Half of the
participants distinguished the two categories of objects and identified the re-
lation between them correctly. This result shows the relative difficulty of the
discussed theory and brings out the efficiency of the presented algorithms.

Table 1 presents the average values of answers given by the experiment
participants after a single interaction phase. The response scale spans from 0
(definitely not) to 10 (definitely yes). At this moment, theory learners should
correctly predict interactions between x and both types of target objects: ac-
tivators and reactors. In odd-numbered phases, x is an activator. It does not
activate when touched against both the reactor object r and the activator object
a. Furthermore, object r will activate, but a will not. In even-numbered phases,
x is a reactor. None of the objects a and r will activate when touched against
x. Probe object x will activate when touched against the activator object a.

4. Bayesian model of causal theory formation

In this section, we present the model, which may describe the causal system
learning, outlined before. We consider this system as an example of a simple
theory. Following Kemp et al. (2010), Carey (1985) and Wellman and Gelman
(1992), we characterize theories as sets of concepts and relationships between
those concepts. This definition includes scientific theories and intuitive ones,
organizing our everyday knowledge (see Carey, 1985; Murphy and Medin, 1985;
Wellman and Gelman, 1992). Often, concepts and relationships in such systems
define each other. This raises the question: how a learner can break into a
closed system and acquire its components? The discussed algorithm gives us a
computational answer.
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Figure 1: Screenshot of the single interaction phase. Objects are labelled by
random alphabet letters to distinguish them. Object B (activator) serves as
probe object x and object Z (reactor) serves as target object y

Question Ideal
Phase number

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
x ∈ A

Will x activate? 0 4.17 2.39 2.11
Will a activate? 0 4.94 2.89 3.39
Will x activate? 0 3.78 3.33 2.94
Will r activate? 10 5.89 7.44 7.28

x ∈ R
Will x activate? 10 7.28 7.28 6.28 7.94
Will a activate? 0 3.00 3.00 2.78 2.59
Will x activate? 0 7.11 7.11 3.73 4.17
Will r activate? 0 6.22 6.22 2.33 0.67

Table 1: Average values of answers given by participants of the experiment (37
students of Warsaw University) to the post-test questions) in phases l = 1, . . . , 7.
Response scale spans from 0 (definitely not) to 10 (definitely yes).

The theory we speak about may be represented by a graph G with nodes
assigned to the two classes: activators (A) and reactors (R) and edges directed
according to the causal relation. At each stage, some of the edges are known
from the previous observations. We define the prior probability distribution
over space of pairs - graphs and classifications of their nodes - given the set of
known edges. The pair with the highest probability is then chosen. A Markov
chain Monte Carlo algorithm with the Metropolis-Hastings style transitions is
used.
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Figure 2: DAG representation of the causal system, presented in the phase 1,
shown in Fig. 1. Edges (P, T ), (B, T ) are known before the single interaction.
Edge (B,Z) is established after the single interaction. Violet objects belong to
the class A, red to the class R

The here presented algorithm discovers the classification of objects based
on observed interactions and can predict future interactions between them. Al-
though interactions between objects from different categories occur with prob-
ability equal 1 in the experimental scenario, the model assumes uncertainty
about this probability. Moreover, in Section 5.5, we present a modification of
this model that solves prediction tasks concerning known categorization.

The designed algorithm does not detect certain features of the experiment
described, where objects appear in a certain order. Two reactors and one acti-
vator follow two activators and one reactor in odd and even-numbered phases
in the experiment. For every interaction, objects touched against each other
belong to different classes, although the participant does not know this. When
there are exactly two categories of objects, introduced as AAR and RRA in odd
and even phases, respectively, it is straightforward for a human to detect that
this is the pattern after a few phases.

A machine learning algorithm that accommodates the possibility of intro-
ducing different classes in successive batches of three is harder to construct.
It could be done by considering each group of three as an observation of a
time-homogeneous Markov chain, with a prior distribution over the transition
probabilities, which is then updated to a posterior given the observed groups
of three. As n → +∞, the posterior will converge to a Dirac mass over:
Pn(AARnext|RRAnow) = 1 and Pn(RRAnext|AARnow) = 1. This would
result in a hierarchical model, which is only useful if the groups of three were
being introduced by the experimenter according to a Markov model rather than
simply at random. For any approach with a level of flexibility, the machine
learning algorithm would take longer than a human to detect the pattern.
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The algorithm used should learn that there are only two categories: the
probability of introducing a third class in future phases tends to zero as more
phases are observed. It will not learn the AAR / RRA pattern in any case.

In the situation, where the activator activated the reactor with probability
1, the humans outperformed the machine learning algorithm; in the experiment,
where the probability of activation was 0.5, the results by humans were poor;
the algorithm has better chances of achieving correct classification.

4.1. Directed Acyclic Graph representation

Directed acyclic graph (DAG) with nodes referring to objects may represent the
causal system under consideration. If an object y activates an object x when
they touch each other, there is a directed arrow from y to x. Only objects
from category A activate objects from category R, and there are no interactions
between objects of the same category. Therefore, the graph has no cycles. After
phase l, l = {0, ..., 6}, there are 3(l+1) objects on the screen. Given all possible
observations, edges between all 3(l + 1) nodes are known. At the beginning of
phase l + 1, three new objects are introduced. One of them serves as a probe
object. After a single interaction, an edge between nodes representing the probe
object and one of the familiar objects is established. Fig. 2 shows the edges
that are known in phase l = 1.

The algorithm gives, as output, the DAG structure with nodes representing
all of the objects on the screen. It predicts the interactions between the probe
object and objects which appeared a phase before.

4.2. Prior probability distribution over the search space

This section provides the definition of the prior probability distribution over the
search space of pairs of graph structures and node classifications. The closed
and relatively simple formula allows the application of the search and score ap-
proach, particularly the non-reversible M-H algorithms, presented in this paper.
The here described prior captures higher-level knowledge that relation between
objects depends on the category they belong to. Encoded information facilitates
learning from small data sets. Moreover, the number of classes is not known
in advance. Thus, the model predicts unknown relations and discovers correct
categorization of the data set.

The causal system in the described experiment is fairly simple. There are
only two types of objects, and the probability of the relationship between objects
of different types is equal to 1. However, the considered prior is suitable for more
complex systems, with different types of relations (including symmetric ones,
represented by undirected graph edge) or systems where the probability of a
relation is smaller than 1. Evaluation of the discussed distribution on medical
data might be found in the paper of Rios, Noble and Koski (2015).
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The construction of the prior distribution PG,Z consists of three steps. Let
G be a space of all possible DAG structures with d nodes and let Z denote a
d-dimensional random vector, assigning class labels to each element of {1, ..., d}.
We begin with defining the prior probability distribution for a random vector
Z. Having assigned graph nodes to categories, we consider PG|Z . Finally, we
derive explicit formula for PG,Z .

Probability of a node classification

Firstly, we consider prior probability distribution for a random vector Z. To
represent accurately the intuitive theories, developed by humans, suitable prior
should favour vectors z with a small number of classes and allow this number
to grow as more objects are seen (Kemp et al., 2010). Let K be the number of
non-empty classes. SinceK is unknown, K ∈ {1, ..., d} and Z may take values in
{1, ..., d}d. We will assign each node to a given class in the order σ(1), ..., σ(d),
according to the Chinese Restaurant Process with hyper-parameter α (CRP(α)).
We place the uniform distribution over the permutation space of d nodes Σ(d)

P (σ) =
1

d!
for σ ∈ Σ(d) (2)

and set Zσ(1) = 1. According to the CRP(α), subsequent nodes will be assigned
to one of the existing classes with the probability proportional to the class size or
form a new class with the probability controlled by the parameter α. Formally,
let Zσ1

, . . . Zσj
have values z1, . . . , zj and mz,j

k be the count of the number of
nodes, which are labelled by first j values {z1, . . . , zj} and assigned to the class

k. We will denote mz,d
k as mk. Suppose that there are already kj classes. The

node labelled as j + 1 will belong

1. to the new class (kj + 1) with probability α
α+j

,

2. or to the one of the existing classes (k) with probability
m

z,j
k

α+j
.

The following lemma results from the definition of the CRP(α) and provides
a closed formula for the probability of the classification of nodes determined in
the order σ.

Lemma 4.1 Let Z denote a d-dimensional random vector assigning class labels
to each element of V = {1, . . . , d}. Let Σ(d) be a permutation space of V and
let σ ∈ Σ(d) be an ordering, in which we assign class labels to elements of V ,
according to CRP(α). Let Sd = {z|zσ(1) = 1, zσ(1) ≤ zσ(2) ≤ . . . ≤ zσ(d)}.
The distribution over Z for a given parameter α may be computed explicitly. If
z ∈ Sd

PZ|Σ(d)(z|σ) = αK Γ(α)

Γ(α+ d)

K
∏

k=1

mk! (3)
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for K = 1, . . . , d, where K denotes the number of non empty classes and mk

counts the number of the nodes labelled as k by z. Otherwise, PZ|Σ(d)(z|σ) = 0.

Proof See Appendix 1.

Conditional probability of a graph given node classification

Now, we construct the conditional probability of a graph given the classification
of its nodes: PG|Z . The probability of an edge between two nodes depends only
on their categories. Let M be a random matrix of size K ×K, representing the
probabilities of drawing an edge from a node of class a to a node of class b

Mab := P ((zi, zj) ∈ E|zi = a, zj = b), (4)

where E denotes the set of graph edges. For b > a we draw an entry Mab from
the Beta distribution with parameters βa,b,1, βa,b,2. Since we are interested only
in the acyclic graphs, we set Mab = 0 for a ≥ b. Based on the values of M , we
can store probabilities of drawing each of the graph edges in a (d×d)-dimensional
random matrix Ψ. Since M determines Ψ, PG|Z,M = PG|Z,Ψ, and

PG|Z,Ψ(G|z, ψ) =

d
∏

i=1

d
∏

j=1

ψ
Gij

ij (1− ψij)
1−Gij , (5)

where G is an adjacency matrix of a graph G. The following lemma provides
an explicit formula for PG|Z .

Lemma 4.2 Let G be a space of all possible DAG structures with d nodes and
let Z be a d-dimensional random vector, assigning K class labels to {1, . . . , d}.
Let probability PG|Z,M be given by (5) for matrix M , defined by eq.(4), then

PG|Z(G|z) =
∏

1≤a≤b≤K

B(βa,b,1 + qa,b, βa,b,2 + ra,b)

B(βa,b,1, βa,b,2)
, (6)

where qa,b is the number of present edges from nodes of class a to nodes of class
b, ra,b is the number of absent edges and B denotes the Beta function.

Proof See Appendix 2.

Joint probability for a graph and classification of its nodes

Finally, we apply Lemmae 4.1 and 4.2 to calculate joint probability distribu-
tion PG,Z . We begin with the following observation: after the nodes had been
classified, σ gives no further information about the graph structure. Hence,
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PG|Z = PG|Z,Σ(d) . This gives a joint probability distribution over classifications
and graph structures

PG,Z(G, z) =
∑

σ∈Σ(d)

1

d!
PG|Z(G|z)PZ|Σ(d)(z|σ). (7)

Lemma 4.3 Let G be a space of all possible DAG structures with d nodes and
let Z be a d-dimensional random vector assigning K class labels to {1, . . . , d}.
Let PG|Z be given by (6) and qa,b, ra,b be the number of present and absent edges
from nodes of class a to nodes of class b, respectively. Let PZ|Σ(d) be given by
Lemma 4.1 and let PG,Z satisfy (7). Then, PG,Z(G, z) is given by

1

d!

Γ(α)αK

Γ(α+d)
(

K
∏

k=1

(mk!))
2

∏

1≤a≤b≤K

B(βa,b,1+qa,b, βa,b,2+ra,b)

B(βa,b,1, βa,b,2)
. (8)

Proof See Appendix 3.

4.3. Model inference

Let G0 denote a subset of G, established on the basis of the observed interactions.
At each stage of the experiment we find the DAG structure / classification Gs, zs
which maximizes posterior probability PG,Z|G0

. This is done by the search and
score algorithms described below.

Non-reversible MCMC search and score algorithms

When finding a pair with high posterior probability, the Metropolis-Hastings
(M-H) algorithm is used as a method of finding a process that moves through
the configurations (G, z), in such a way that it favors configurations with high
posterior probability. For each pair visited, we compute a score function

score(G, z) = PG,Z(G, z), (9)

where G is consistent with the observations. The random walk is restricted to
such graphs. The pair with the highest score is then chosen.

Following Corander, Gyllenberg and Koski (2006), we simplify the M-H al-

gorithm by using acceptance probability min
{

1, π
′

π

}

of transition from state

(G, z) to state (G′, z′), where π′ := PG,Z(G
′, z′) and π := PG,Z(G, z). This is

computationally efficient and allows for using a transition mechanism, for which
proposal probabilities do not have to be computed explicitly. The pseudo-code
for the search and score algorithm with non-reversible M-H scheme is shown in
the Algorithm 4.
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Since we do not try to build up an empirical distribution, instead of this we
score each configuration visited and choose the configuration of the maximal
score, here it is unnecessary for the chain to have reversibility property, nor
that the stationary distribution be equal to the target distribution. With this
in mind, we present two M-H fashioned algorithms optimizing the score func-
tion. We construct two transition matrices, Q1 and Q2, which are relatively
straightforward to compute and give the chain’s reasonable mobility through
the search space. To allow the Markov process to visit various classifications of
the objects, in both algorithms, we pick a node from the graph and re-assign it
according to the CRP (α). Then, we construct a temporary graph, consistent
with the obtained classification.

Algorithms differ in the last step, which allows the Markov process to visit
more graph structures. In the Q1 transition kernel, we pick randomly two
classes and then uniformly choose a node from each of the classes. The new
graph contains an edge between the selected nodes with the probability of 0.5.
At each iteration, all of the edges in one category are removed and only one edge
might be added. As a result, for long-running simulations, the generated DAG
structures become sparse. To avoid the above-described behaviour, in the Q2

algorithm, we select randomly only one node and re-insert all incidence edges
according to the Beta distribution.

Q1 transition kernel

The first three steps are common to both of the algorithms.

1. First, we choose node i at random according to uniform distribution and
remove it. If the i-th node was in the class of its own - class ki - we re-label
classes {k + 1, ...,K}, k + 1→ k for k ≥ ki.

2. We re-assign the i-th node according to the CRP(α). If there are currently
K classes, we put it in the K + 1st class with probability α

α+(d−1) and in class

kj for 1 ≤ kj ≤ K
st class with probability

mkj

α+(d−1) . If i is now in the class of its

own, (K +1), we choose uniformly distributed kl in {1, ...,K +1} and label the
class containing i by kl. We re-label classes k ≥ kl k → k+1 (see Algorithm 1).
This step allows the algorithm to evaluate different node classifications. The
probability of introducing a new class in each iteration is controlled by the pa-
rameter α. The number of discovered classes determines the distance between
nodes in the output graph. The more classes are discovered, the greater the
distance between the nodes that can be achieved.

3. We construct a temporary graph G̃ to be consistent with the current classi-
fication of the nodes: we remove all edges between the i-th node and the nodes
that are now in the same class. Then we redirect edges which now contradict
the new class structure.
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4. We create a new graph G′ in the following way: We choose a pair of classes
(a, b), a < b at random, then we choose a node j ∈ a and l ∈ b. For G′, we select
with, probability 0.5, a graph G̃ with or without an edge from j to l. This step
allows the Markov process to visit more DAG structures and is computationally
cheap. The corresponding pseudocode for the Q1 proposal step is presented in
Algorithm 2.

Q2 transition kernel

We modify the last step of the Q1 algorithm. Instead of choosing two classes and
modifying only one edge, we choose one class and select only one of its nodes: i,
according to the uniform distribution. We draw an edge from the i-th node to
any other node according to the Beta distribution used in the prior probability
definition. This step increases computational complexity. However, the pro-
posed transition kernel is is derived from the prior probability distribution and
can lead to better results. The whole Q2 transition is shown in the Algorithm 3.

The non-reversible M-H methods offer freedom in the choice of transition
kernels. For other prior distributions, other proposal mechanisms may be de-
signed.

Algorithm 1 Transition between categorization of nodes in the graph. Used
in Q1 and Q2 proposal kernels.

function Reassign class labels(zt−1)
z′ ← zt−1

i ∼ U{1, . . . d} ⊲ Select one node i
ki ∼ CRP(α) ⊲ Reassign class of node i
z′[i]← ki
if z′[i] = K + 1 then ⊲ i is in the class of its own

kl ∼ U{1, . . . K + 1} ⊲ Shuffle class labels
z′[i]← kl
for k = 1, 2, . . . ,K + 1 do

if k ≥ kl then
k ← k + 1

end if

end for

end if

return z′

end function
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Algorithm 2 Q1 transition kernel

1: function Q1(Gt−1, zt−1)
2: z′ ← Reassign class labels(zt−1)
3: G′ ← Gt−1

4: Redirect contradicting edges and remove edges between nodes of the
same classes in G′

5: Sample without replacement two class labels a < b
6: Select uniformly node j from class a and node l from class b
7: Remove an edge (j, l) if exists
8: Draw an edge (j, l) with probability 0.5
9: return (G′, z′)

10: end function

Algorithm 3 Q2 transition kernel

1: function Q2(Gt−1, zt−1)
2: z′ ← Reassign class labels(zt−1)
3: G′ ← Gt−1

4: Redirect contradicting edges and remove edges between the nodes of the
same classes in G′

5: i ∼ U{1, . . . d} ⊲ Select one node i
6: Remove all edges incident to the node i
7: for j = 1, 2, . . . , d do

8: if z′[j] < z′[i] then
9: Draw (j, i) ∼ Beta(β1,z′[j],z′[i], β2,z′[j],z′[i])

10: end if

11: if z′[j] > z[i]′ then
12: Draw (j, i) ∼ Beta(β1,z′[i],z′[j], β2,z′[i],z′[j])
13: end if

14: end for

15: return (G′, z′)
16: end function
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Algorithm 4 Search and score with non-reversible M-H

1: Initialize G0, z0
2: Gs, zs ← G0, z0 ⊲ Initialize solution
3: for t = 1, 2, . . . ,MAX ITER do

4: (G′, z′)← Q(Gt−1, zt−1) ⊲ Propose (G′, z′)
5: u ∼ U(0, 1)

6: α← min
{

1,
PG,Z(G′,z′)

PG,Z(Gt−1,zt−1)

}

7: if α ≤ u then

8: (Gt, zt)← (G′, z′) ⊲ Accept (G′, z′)
9: else

10: (Gt, zt)← (Gt−1, zt−1) ⊲ Reject (G′, z′)
11: end if

12: if score(Gt, zt) ≥ score(Gs, zs) then
13: (Gs, zs)← (Gt, zt) ⊲ Update solution
14: end if

15: end for

16: return (Gs, zs) ⊲ Return the pair with the highest score

5. Numerical example

5.1. Introduction

In the present section of the paper, we provide an ample illustration for the
performance of the algorithms proposed in terms of prediction. For this purpose,
we use the experimental setup, which was described in Section 3 before. In the
respective experiments, we run the MCMC algorithm both before and after a
single interaction part of each phase of the procedure.

In order to capture the ability of the model to learn the causal theories, we
investigate the predicted relations between the probe object x and all the other
objects before and after the single interaction. This makes a slight difference
with respect to the previously described experimental procedure, in which the
participants were asked regarding only one reaction. In this manner, though,
we obtain a direct and reliable measure of success. We establish a binary vec-
tor, representing the answers to the yes/no questions, concerning the predicted
interactions at each stage. For the evaluation of the performance of the model
we use F1 score, precision and recall metrics.

In this section, we present the algorithms’ performance for prediction within
the experimental setup described in Section 3. We run the MCMC algorithm
before and after a single interaction part of each phase.

To capture the model’s ability to learn causal theory, we investigate predicted
relations between the probe object x and all other objects before and after
single interaction. This differs slightly from the experimental procedure, where
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participants were asked about only one reaction. However, it provides a direct
and reliable measure of success. We create a binary vector representing answers
to yes/no questions about predicted interactions at each stage. We use F1-score,
precision, and recall to evaluate the model.

We run the computations for both Q1 and Q2 transition kernels. We vary
input data: initial points (graphs and class assignment vectors), as well as model
parameters α, β1 and β2. Subsection 5.3 describes the generation of the initial
points. Subsections 5.4, 5.5 present the results for Q1 and Q2. Furthermore,
we examined the predictions of the model once categories of objects are known
and ran an MCMC algorithm which used the same score function, but moved
only through the graph structures (subsection 5.6).

5.2. The data set

Data set in each phase l = 1, . . . , 7 is formatted as an adjacency 3(l+1)×3(l+1)-
matrix of the graph of relations between objects. The subset of the entries of
size 3l × 3l is established from the previous observations.

5.3. Generation of initial points

To investigate the impact of initial points on algorithm performance, we devel-
oped three methods of initial graph (G0) generation. We will refer to nodes
introduced in each phase of the experiment as new nodes. In all simulations, we
assigned new nodes to one category.

(A) Firstly, we generate initial graphs with new nodes disconnected from other
nodes.

(B) Secondly, we draw initial edges from each of the new nodes with the prob-
ability of 0.5 to every other node.

(C) Lastly, we generate initial graphs with the edges directed from a new
node to any other node. The prior probability of G0 is equal to 0, thus
score(G0, z0) = 0.

The initial points (G0, z0) with their scores in phase 3 are shown in Fig. 3.

5.4. Results for algorithm Q1

In this section, we present the results for the first choice of the transition matrix
Q1. We set model parameters to α = 1, β1,a,b = β1,a,b = 1 for each pair (a, b) of
the discovered classes. Figure 7 presents output graphs obtained in phase l = 3.
Figure 4 shows the categorization of objects in each phase of the experiment
for different initial points generation. Commonly, the objects introduced are
assigned the same classification. This is to be expected; after the classification
of the ‘probe’ object has been determined, the probe object’s class now has
greater weight than the other classes and hence greater probability according
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(a) score(G0, z0) = 5.48e−16

(b) score(G0, z0) = 0

(c) score(G0, z0) = 0

Figure 3: Initial points (G0, zo) and their scores in phase l = 3. Violet objects
belong to class 1 and red ones to class 2.
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to the Chinese Restaurant Process. For initial points, generated by methods A
and B, objects were divided into two categories. For initial points, generated
by the method C, algorithm discovered three classes.

Figure 5 presents F1, recall and precision in all phases of the experiment.
F1 mean values were significantly greater after single interaction at each stage.
Having no information about relations between probe object x and other objects,
leads to algorithm predictions being random and standard deviation greater. In
phase 7 F1 mean and standard deviation values were µ = 0.52, σ = 0.42 before
interaction and µ = 0.68, σ = 0.32 afterwards. In phase 6 those values were
equal to, respectively, µ = 0.08, σ = 0.25 and µ = 0.72, σ = 0.33.

We investigated the impact of the initial points choice (Fig. 6). The al-
gorithm succeeded in predicting interactions with probe objects for the initial
points, generated by A and B methods. In the last phase of the experiment for
the method A, F1 mean and standard deviation values were µ = 0.92, σ = 0.02
and for the method B: µ = 0.83, σ = 0.12. However, for the method C the
algorithm performed poorly, with µ = 0.27, σ = 0.15.

The model answers to all the post-test questions were correct in case when
probe object was an activator in all phases (Table 2). Unlike the participants,
the model was able to give yes/no answers to post-test questions. If the model
learned the labelled DAG structure representing causal system it should give
correct answers depending on the edge between the node representing object x
and the nodes representing activator and reactor objects.

Question Ideal
Phase number

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7
x ∈ A

Will x activate? No No No No
Will a activate? No No No No
Will x activate? No No No No
Will r activate? Yes Yes Yes Yes

x ∈ R
Will x activate? Yes No No No No
Will a activate? No No No No No
Will x activate? No No No No No
Will r activate? No No No No No

Table 2: Predictions in each phase for α = 1, β1 = β2 = 1, number of iterations
N = 2000. In odd-numbered phases x is an activator, thus it does not activate
when touched against both reactor object r and activator object a. Furthermore,
object r will activate, but a will not. In even-numbered phases, x is a reactor.
None of the objects a and r will activate, when touched against x. Probe object
x will activate only when they touch against the activator object a



342 A.Krajewska

(a) Class assignments for initial points ge-
nerated by the method A

(b) Class assignments for initial points ge-
nerated by the method B

(c) Class assignments for initial points ge-
nerated by the method C

Figure 4: Class assignments of the nodes introduced in each phase (before and
after single interaction) obtained by Q1 algorithm, α = 1, β1 = β2 = 1 and
number of iterations N = 2000. Violet objects belong to class 1, red to class 2
and grey to class 3
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(a) F1

(b) Recall

(c) Precision

Figure 5: F1, recall and precision before and after single interaction for Q1

algorithm, α = 1, β1 = β2 = 1, N = 2000
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(a) F1

(b) Recall

(c) Precision

Figure 6: F1, recall and precision for different methods of generation of initial
points for Q1 algorithm, α = 1, β1 = β2 = 1, N = 2000
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(a) Output graph for the initial points gen-
erated by the method A

(b) Output graph for the initial points gen-
erated by the method B

(c) Output for the initial points generated
by the method C

Figure 7: Output graphs in phase l = 3 for Q1 algorithm, α = 1, β1 = β2 = 1,
N = 2000. Violet objects belong to class 1, red ones to class 2
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5.5. Results for algorithm Q2

In this section, we present the results the for the second choice of transition
matrix, Q2. Item classification during all phases is shown in Fig. 8. For all
three methods of generation of the initial points, the model distinguished three
types of objects.

Figure 9 presents F1, recall and precision for different graph sizes. As for
the first Q1, after single interaction F1 mean values are greater, while standard
deviations are significantly lower. In the last phase of the experiment F1 mean
and standard deviation values were µ = 0.76, σ = 0.29 before interaction and
µ = 0.88, σ = 0.03 afterwards.

This time, the algorithm succeeded in discovering relations between objects
regardless of the initial point generation method. In the last phase the F1 scores
were equal: µ = 0.91, σ = 0.03; µ = 0.88, σ = 0.03, and µ = 0.87, σ = 0.03 for
the initil points, generated by the methods A, B and C, respectively.

5.6. Fixed class assignment vectors

In this section, we investigate the algorithms’ performance in the prediction
task exclusively. We construct MCMC which moves only over graph structures,
while the correct class assignment vector is fixed. Transition between the graphs
is defined just as in the Q1 algorithm. Given a graph G1, we create a graph G2

in the following way. We choose a pair of classes (a, b) a < b at random, and we
then choose node j ∈ a and l ∈ b. For G2 we select with the probability 0.5 a
graph G̃ with or without a node from j to l.

The algorithm was outstandingly successful in prediction tasks in all phases
of the experiment (Fig. 11).

6. Score function convergence

Finally, we evaluated the computational efficiency of both proposed algorithms.
We carried an in-depth analysis of score function behaviour. Figure 12 presents
the trace plots of 300 Markov Chains for 3000 iterations in the seventh phase.
The number of possible DAG structures is equal to 1.4×10103. ForQ1 algorithm,
score function converges to the value of the solution pair Gs, zs after less than
500 iterations (Fig. 12). The trace plot for Q2 shows a significantly wider range
of sampled values.

We benchmarked both proposed algorithms in scenarios with limited com-
putational budget in the following experimental setup. For phases: 5, 7, 10
and 12 we performed 500 runs of each algorithm with the computational budget
(maximal number of iterations) set to 5000. The main measure of efficiency
was the number of iterations until algorithm reaches the prescribed accuracy ǫ,
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(a) Class assignments for the initial points
generated by the method A

(b) Class assignments for the initial points
generated by the method B

(c) Class assignments for the initial points
generated by the method C

Figure 8: Class assignments of the nodes introduced in each phase (before and
after single interaction) obtained by Q2 algorithm, α = 1, β1 = β2 = 1 and
number of iterations N = 2000. Violet objects belong to class 1 and red ones
to class 2
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(a) F1

(b) Recall

(c) Precision

Figure 9: F1, recall and precision before and after single interaction for Q2

algorithm, α = 1, β1 = β2 = 1, N = 2000
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(a) F1

(b) Recall

(c) Precision

Figure 10: F1, recall and precision for different methods of generation of initial
points for Q2 algorithm, α = 1, β1 = β2 = 1, N = 2000
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(a) F1

(b) Recall

(c) Precision

Figure 11: F1, recall and precision for different methods of generation of initial
point for the algorithm moving only on graph structures (with fixed, correct z),
α = 1, β1 = β2 = 1, N = 2000
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(a) Q1 algorithm

(b) Q2 algorithm

Figure 12: Score function values in phase l = 7. Score of the correct pair is
equal to 5.16e−12. Traces are drawn for 300 Markov chains
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meaning it outputs with the pair (G, z) such that

score(G, z) ∈ |score(Gs, zs)− ǫ, score(Gs, zs) + ǫ|. (10)

Without loss of generality we set score(G, z) = log10 PG,Z(G, z). This is done in
order to simplify convergence analysis. However, with the exponential growth
of the search space, the probabilities of visited graphs become very low. For
larger problems, we suggest using the logarithmic score function to improve
numerics. Following Hansen et al. (2016); Szynkiewicz (2018); Dolan and More
(2001); More and Wild (2009) we use empirical cumulative distribution function
(ECDF) (see Vaart, 1998) to display the proportion of trials which achieved
accuracy ǫ ∈ {1, 2, 3, 5, 8, 10}. Figures, depicting ECDF curves prove that the
Q1 algorithm outperforms the Q2 algorithm in all the phases considered. Q1

achieves the accuracy of 1 within less than 10 000 iterations even when the search
space consists of 4× 10191 graphs. We find these results particularly promising,
and we are going to examine the application of Q1 in discovering relations in
larger data sets. Although the Q2 algorithm succeeded in the prediction task, it
struggled to achieve the prescribed accuracy of the score function. This raises
the question about the choice of the scoring criterion and will be tackled in
further research.

7. Conclusion

We described a hierarchical Bayesian model that discovers causal theory explain-
ing given observations and predicting future interactions. This article aims at
presenting two non-reversible Metropolis-Hastings algorithms, validating both
of them on learning causal system similar to inductive theories, learned by hu-
mans, and evaluating their efficiency in scenarios with a limited computational
budget. We believe that this research completes the state-of-art work. In fur-
ther research, we will focus on the evaluation of the presented algorithm on
other data sets and on comparison with other structure learning algorithms.

The discussed approach defines discovering theory as establishing the effect
of searching through large space of relational systems and choosing the one
with the highest score. Since such systems are often complex, it is crucial
to provide scalable and efficient searching methods. This paper introduced
non-reversible MCMC search and score algorithms, which visit causal systems
represented as pairs of DAG structures and classification vectors of their nodes.
We have also described an experiment about causal reasoning, where results
may be interpreted in terms of model prediction. As mentioned in Section 3, the
model is not specific for the causal system, which was the experiment’s subject;
therefore, it was not sensitive to some information accessible for participants.
Still, only half of the participants were classified as those who learned causal
theory. In further research, we will draw a more detailed comparison between
machine learning and human inductive reasoning.
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Figure 13: Empirical cumulative distribution function of runtimes of Q1 al-
gorithm in phases l = 5, . . . 10 until it reaches the prescribed accuracy ǫ for
ǫ ∈ {1, 2, 3, 5, 8} and score(G, z) = log10 PG,Z(G, z). Model parameters set to
α = 1, β1 = β2 = 1.
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Figure 14: Empirical cumulative distribution function of runtimes of Q2 al-
gorithm in phases l = 5, . . . 10 until it reaches the prescribed accuracy ǫ for
ǫ ∈ {1, 2, 3, 5, 8} and score(G, z) = log10 PG,Z(G, z). Model parameters set to
α = 1, β1 = β2 = 1
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To evaluate its ability to learn causal theory based on observations, we com-
pared model predictions before and after single interaction between objects. For
both algorithms proposed, F1 values for yes/no questions about causal relations
were significantly larger after single interaction. This demonstrates the capacity
of knowledge acquisition. We explored the impact of the choice of the initial
point for both algorithms. Q2 algorithm succeeded for all of the initial points,
while Q1 performed poorly for one method of the starting points generation.
In further research, we will address this problem and consider parallel compu-
tational strategies. We have also considered a problem of categorization of the
input data. Algorithms classified correctly all of the objects introduced before.
All of the nodes were grouped into two or three classes. Frequently, new objects
were put into one category. We find these results promising. In this paper,
we focused on a simple causal system. However, several applications of the
discussed model, including learning ontologies and learning the structure of kin-
ship systems, might be found in the literature (Kemp, Griffiths and Tenenbaum,
2004; Kemp et al., 2010). In further research, we will adopt this approach to
discover dependencies between computational tasks in energy-aware allocation
problems, described by Arabas (2019, 2021).

Furthermore, we focused on the predictive ability of the model in the simpli-
fied task. We assumed node classification to be known and constructed Markov
chain moving only through graph structures. The algorithm’s outstanding per-
formance encourages us to apply it to larger data sets with more detailed classifi-
cation. Finally, we carried out a numerical experiment illustrating the efficiency
and scalability of the tested algorithms Q1 and Q2. Aggregated results revealed
differences in the computational budget, required for score function to converge
with a given accuracy. We find Q1 performance promising enough to apply
it to larger and more complex data sets. Although the Q2 algorithm outper-
formed Q1 in prediction tests, it struggled to achieve the given accuracy of
score function within a limited computational budget. This observation brings
up the question about the choice of the scoring criterion, which will be tackled.
Regardless of that, further study will concern enhancing Q2 performance with
parallel strategies.

Appendix 1

Lemma 4.1 Let Z denote a d-dimensional random vector assigning class labels
to each element of V = {1, . . . , d}. Let Σ(d) be a permutation space of V and
let σ ∈ Σ(d) be an ordering, in which we assign class labels to elements of V ,
according to CRP(α). Let Sd = {z|zσ(1) = 1, zσ(1) ≤ zσ(2) ≤ . . . ≤ zσ(d)}.
The distribution over Z for a given parameter α may be computed explicitly. If
z ∈ Sd

PZ|Σ(d)(z|σ) = αK Γ(α)

Γ(α+ d)

K
∏

k=1

mk! (3)
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for K = 1, . . . , d, where K denotes the number of non empty classes and mk

counts the number of the nodes labelled as k by z. Otherwise, PZ|Σ(d)(z|σ) = 0.

Proof If z ∈ Sd, then PZ|Σ(d)(z|σ) is equal to

P (Zσ(j+1)=zσ(j+1)|Zσ(j)=zσ(j), . . . , Zσ(1)=zσ(1),Σ
(d)=σ)

=
αK

∏K
k=1(m

(d)
k )!

∏d−1
j=0(α+ j)

= αK Γ(α)

Γ(α+ d)

K
∏

k=1

mk!. (11)

Straightforwardly from the definition of CRP(α), if z /∈ Sd, then PZ|Σ(d)(z|σ) =
0. �

Appendix 2

Lemma 4.2 Let G be a space of all possible DAG structures with d nodes and
let Z be a d-dimensional random vector, assigning K class labels to {1, . . . , d}.
Let probability PG|Z,M be given by (5) for matrix M , defined by eq.(4), then

PG|Z(G|z) =
∏

1≤a≤b≤K

B(βa,b,1 + qa,b, βa,b,2 + ra,b)

B(βa,b,1, βa,b,2)
, (6)

where qa,b is the number of present edges from nodes of class a to nodes of class
b, ra,b is the number of absent edges and B denotes the Beta function.

Proof Let ψij :=Mab for zi = a, zj = b, and let

PG|Z,M (G|z,m) =

d
∏

i=1

d
∏

j=1

ψ
Gij

ij (1− ψij)
Gij (12)

for

Gij =

{

1 (zi, zj) ∈ E,

0 (zi, zj) /∈ E,
(13)

where E denotes set of edges of graph G.

The conditioning on the array M may by removed by integration

PG|Z =

∫

PG|Z,MπM |Z . (14)
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Therefore,

PG|Z(G|z) =

∫ d
∏

j=1

d
∏

i=1

ψij(M)Gij (1− ψij(M))1−Gij

·
∏

a,b

1

B(βa,b,1, βa,b,2)
M

βa,b,1−1
ab (1−Mab)

βa,b,1−1dψ

=
∏

1≤a≤b≤K

1

B(βa,b,1, βa,b,2)

·

∫ 1

0

M
qa,b+βa,b,1−1
ab (1−Mab)

ra,b+βa,b,2−1

=
∏

1≤a≤b≤K

B(βa,b,1 + qa,b, βa,b,2 + ra,b)

B(βa,b,1, βa,b,2)
. (15)

�

Appendix 3

Lemma 4.3 Let G be a space of all possible DAG structures with d nodes and
let Z be a d-dimensional random vector assigning K class labels to {1, . . . , d}.
Let PG|Z be given by (6) and qa,b, ra,b be the number of present and absent edges
from nodes of class a to nodes of class b, respectively. Let PZ|Σ(d) be given by
Lemma 4.1 and let PG,Z satisfy (7). Then, PG,Z(G, z) is given by

1

d!

Γ(α)αK

Γ(α+d)
(

K
∏

k=1

(mk!))
2

∏

1≤a≤b≤K

B(βa,b,1+qa,b, βa,b,2+ra,b)

B(βa,b,1, βa,b,2)
. (8)

Proof From (7)

PG,Z(G, z) =
∑

σ∈Σ(d)

1

d!
PG|Z(G|z)PZ|Σ(d)(z|σ)

=
1

d!

Γ(α)

Γ(α+ d)
#{σ|z}αK

K
∏

k=1

(mk!)

·
∏

1≤a≤b≤K

B(βa,b,1 + qa,b, βa,b,2 + ra,b)

B(βa,b,1, βa,b,2)
, (16)

where #{σ|z} is the number of the permutation, under which z can be obtained.
This is equal to the number of permutation of nodes within the same category,
which is

∏K
k=1(mk!). Therefore, PG,Z(G, z) is equal to

1

d!

Γ(α)αK

Γ(α+d)
(

K
∏

k=1

(mk!))
2

∏

1≤a≤b≤K

B(βa,b,1+qa,b, βa,b,2+ra,b)

B(βa,b,1, βa,b,2)
. (17)
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