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Abstract: The paper presents selected elements of a modelling
methodology involving quantization, quantum calculations and de-
quantization on the example of the neural model of the Day-Ahead
Market of the Polish Electricity Exchange. Based on the fundamen-
tal assumptions of quantum computing, a new method has been pro-
posed here of converting the real numbers in decimal notation into
quantum mixed numbers using the probability modules of quantum
mixed number and the principle of superposition, along with a new
method of quantum calculations using linear algebra and vector-
matrix calculus, and the Artificial Neural Network was taught ac-
cordingly. Dequantization of quantum mixed numbers to real num-
bers in decimal notation using the new method of dequantization has
been proposed as well. The operation of the methods introduced was
shown on numerical examples.

Keywords: artificial neural networks, day-ahead market, de-
quantization with ANN, neural modeling, quantum-inspired method,
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1. Introduction

Neural modeling itself is not a new issue. There are already a significant number
of articles on the use of artificial neural networks for modeling systems in various
fields and disciplines, including, in particular, the field of testing the quality of
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electricity load prediction (see Ciechulski and Osowski, 2014), or for forecasting
of prices on electricity exchange (see Miller and Bućko, 2014).

On the other hand, quantum computing can be performed, in particular,
with the use of linear algebra and vector matrix calculus in terms of control
theory and systems (see: Kaczorek, 1998; Kaczorek, et al., 2020; Tchórzewski,
1992, 2013) in the MATLAB and Simulink environment with the use of Matlab
language, see the example based on the data quoted on the Day Ahead Mar-
ket (DAM) of the Polish Power Exchange (PPE) (Mielczarski, 2000; Ruciński,
2018). In this regard, experimental studies were first conducted by designing
and implementing an appropriate quantum-inspired Perceptron Artificial Neu-
ral Network in the MATLAB and Simulink environment, the parameters of
which (weights and biases) were improved using an evolutionary algorithm (see
Ruciński, 2018; Tchórzewski and Ruciński, 2020). On the basis of the obtained
practical results and conclusions drawn from this implementation, a new method
of quantum-inspired neural-evolutionary modeling of the PPE Day-Ahead Mar-
ket was proposed, as presented here, consisting of:

• method of quantizing the real numbers in decimal notation into quantum
mixed numbers,

• method of quantum calculations using linear algebra and vector-matrix
calculus,

• method of quantum mixed number dequantization into real numbers in
decimal notation,

which can be further used to build a new system modeling methodology using
quantum inspired methods of artificial intelligence.

Thus, in particular, after formulating the research problem, the systemic
basis for building quantum methodologies, associated with artificial intelligence
methods, such as Artificial Neural Networks (ANNs) and Evolutionary Algo-
rithms (AE) is shown here, with the main emphasis in this work being on
the quantum inspiration of the Artificial Neural Network. It should be noted,
however, that prior to applying quantum inspiration to ANN, weights and
biases were corrected using the Evolutionary Algorithm (see Arabas, 2016;
Michalewicz, 2003; Obuchowicz, 2013), obtaining an improvement from the
mean square error (MSE) level ranging from -0.11 % to 0.12% up to the range
of 0.04% ÷0.05%, i.e. by an order of magnitude (see Tchórzewski and Ruciński,
2018; Ruciński, 2018). Then, the basic aspects of the quantum inspired method-
ology are shown, such as quantization leading to obtaining quantum mixed
numbers, performing calculations on quantum numbers, as well as the need to
perform dequantization using the Artificial Neural Networks, learned for this
purpose. We also show new problems, identified in the course of research, which
may constitute new research directions, such as the development of a method
of dequantization of quantum mixed numbers into real numbers in decimal no-
tation (Tchórzewski and Ruciński, 2016; Ruciński, 2018).
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2. Quantum computing on classical computers

Quantum mathematics and mechanics, and, consequently quantum computing,
is based on linear algebra (see Feynman, Leughton and Sands, 2014; Bernhardt,
2020; Adamowski, 2019; Heller, 2016), so adding and subtracting numbers is
intuitively simple, with some exceptions, such as finding the square root or
calculating the trigonometric function. For data processing, real numbers are
used in a simpler form (it is easier to make measurements, then), and, in some
more complicated situations, the complex numbers are used (they facilitate the
connection of trigonometric and exponential functions). In the vector form of
data, the notation of Paul Dirac (one of the founders of quantum mechanics) is
used, denoting the column vector with ket |>and the row vector with bra |>(see
Le Belac, 2018; Chudy, 2011; Hirvensalo, 2004).

It is assumed that computing the value of the function y = f(u), which for
the elements u of the set of integers u ∈ {0, 1,. . . , 2m - 1}matches the y

elements of another set of integers y ∈ {0, 1,. . . , 2n - 1}, where m and n

are positive integers (see Adamowski, 2019; Susskind and Frideman, 2016) will
be performed with a classical computer and with a quantum computer. With
the help of a classical computer, the calculation of the function y = f(u) is
performed in such a way that each index u ∈ {0, 1, . . . , 2m−1} on the input
is assigned to the correspondingly indexed value of the function on the output,
that is, y ∈ {f(0), f(1),. . . , f(2m - 1)}. In quantum computer calculations,
the unitary operation U is used to calculate the value of the function y = f(u),
where each input value u is represented by a quantum state vector |ui>of input
register and each possible output value y = f(u) is represented by the quantum
state vector |yi>of output register. Quantum state vectors corresponding to
different input values and different output values are orthonormal, that is:

< u|u′ >= δuu′ , < y|y′ >= δ′yy. (1)

where δyy is the Kronecker delta.

The operation of calculating the value of the function y = f(u) in a quantum
manner is defined by the unitary operator U , which acts on two registers:

U |u > |0 >= |u > |f(u) >, (2)

where the first register (|u>) stores the input values, and the state of the second
register is transformed into the output state (|0>→ |y = f(u)>). It is believed
that the state of the input register can be prepared in such a way that it is a
superposition of all single-qubit states occurring with the same amplitudes, i.e.
(see Adamowski, 2019):

|Ψinput〉 =
1

2
m
2

2m−1
∑

u=0

|u〉 (3)

By means of the unitary operator U , the calculation of the function y = f

(u) is performed only once, obtaining all 2m values of the functions f(0), f(1),.
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. . , f(2m− 1), that is:

∣

∣

∣

∣

∣

Ψoutput〉 = U

(

1

2
m
2

2m−1
∑

u=0

|u〉
)

|0〉 =
1

2
m
2

2m−1
∑

u=0

|u〉|f(u)〉 . (4)

The quantum state, described by the relation (3), contains the superposition of
all 2m states |f(0)>, |f(1)>,. . . |f(2m− 1)>, however, none of the measure-
ments provides information about all these quantum states. A single measure-
ment in the quantum state (3) allows to obtain the following information (see
Adamowski, 2019):

1. Each of the output states |x>|f(x) > can be obtained with an equal prob-
ability of 1/2m, and therefore each of the values of the functions f(0),
f(1),. . . , f(2m - 1) can occur with the same probability 1/2m.

2. If the result of the measurement, for example, is obtained:

|Ψoutput〉 = |ũ〉|f(ũ)〉, (5)

then the result of the next measurement, performed immediately after the first
measurement, will be the same state, obtained with the probability equal to 1,
which means that the value of the function f(u) will be obtained again, i.e. no
additional information about the new value of the function y = f(u) is acquired.

3. Basics of quantum computing

In the quantum calculations conducted in this study, the basic concepts of linear
algebra and vector-matrix calculus were used (see Kaczorek, 1998; Sawerwain
and Wísniewska, 2015). This applies, in particular, to such concepts of linear
algebra as: vector diagrams, vector lengths, vector multiplication by a scalar,
vector addition, bra-ket multiplication (bra-ket product, internal product or an
inner product), the concept of vector orthogonality (bra-ket product equal to
zero), the notions of an orthonormal basis (a set of n orthonormal unit kets,
any two of which are orthogonal to each other), a weighted sum of basis vectors
(linear combination), a fixed order (sequence of occurrence) of vectors, the con-
cept of a matrix and the occurrence of matrix rows as bra vectors and of matrix
columns as ket vectors, as well as such concepts of vector-matrix calculus as,
among others: various matrix forms (including a square matrix), multiplication
of two matrices A and B as a multiplication of matrix A consisting of bras and
matrix B composed of kets (in the order that bra occurs first, then ket, and the
dimensions of ket are the same as of bra), etc., see Tchórzewski and Ruciński
(2018), Ruciński (2018), Bernhardt (2020).

Computing with matrices is preceded by checking whether the ket vectors
form an orthonormal basis, i.e. first of all checking whether they are unit vectors
and whether they are vectors orthogonal to each other, i.e. whether the elements
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on the main diagonal are 1 and 0 outside of it. In the case of an orthogonal
matrix that is a square matrix, the product of this matrix transposed by the
same matrix (MtM) yields an identity matrix. Moreover, if the matrix M has
complex elements, then the result is a unitary matrix (see: Bernhard, 2020;
Feynman et al., 2014; Sawerwain and Wísniewska, 2015). As can be easily seen
from the above, the linear algebra tools were used for checking.

Next, it is worth paying special attention to the possibility of using the prob-
ability theory in determining quantum mixed numbers, i.e. quantum numbers
residing in many different states at the same time (in particular, in two quan-
tum states, i.e. in the pure quantum ket 0 and in the pure quantum ket 1 with
the probability amplitudes appropriate for both quantum states). In this situa-
tion, the concept of qubit and pure quantum states and the associated quantum
measurement operation are important. The measurement, on the other hand,
is related to the choice of the direction, which, in turn, is the same as choosing
the base corresponding to the selected direction. The basis in R2 can be the
basis of two vectors, that is (|0> and |1>). If this base is rotated by the angle
α, then a new base is obtained:

([

cos(α)
− sin(α)

]

,

[

sin(β)
cos(β)

])

, (6)

so that through a 90o rotation, the quantum state returns to the original basis,
but the elements change places. In quantum computing, another concept of
linear algebra plays a very important role, that is, the tensor product, which is
used to describe the entangled states. It is said that if a quantum complex state
is an entangled state, if it is not in a decomposable state, and then it cannot be
represented as (see Hirvensalo, 2004; Giaro and Kamiński, 2003):

n
∑

i=1

m
∑

j=1

αij |ui〉|yj =

n
∑

i=1

m
∑

j=1

αiβj |ui〉|yj =

(

n
∑

i=1

αi|ui〉
)





m
∑

j=1

βi|yj〉



 . (7)

The concept of the decomposable state is independent of the choice of bases
of the vector spaces under consideration. Quantum states in mechanics and in
quantum computing are mathematically described as elements of a vector space,
and physical observables, i.e. quantities obtained as a result of measurements,
are described as linear operators that are linear and Hermitian (see Susskind,
2016; Hirvensalo, 2004). Observables in classical mechanics are presented as lin-
ear operators equal to their Hermitian couplings, where the Hermitian operators
satisfy the condition:

M = M†, (8)

which, in terms of vector-matrix calculus, corresponds to the equality of matrix
elements:

mji = m∗
ji, (9)
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where the Hermitian operators (and matrices) have the property that all their
eigenvalues are real. The possible measurement results are the eigenvalues of the
operator, representing a specific observable λi, where the measurement results
in the corresponding eigenvector |λi>, and more specifically, if the system is in
the eigen state |λi>, the measurement results in λi, where distinguishable states
are perpendicular to each other. If |A> is a vector of the state of the tested
system, then by measuring the observable L, one can calculate the probability
of observing the value of λi from the dependence:

P (λi) = 〈A | λi〉 〈λi | A〉 , (10)

where:

λi - the eigenvalues of the linear operator L,

|λi>- the eigenvectors corresponding to λi.

For the above-mentioned reasons, the linear operator L is used to measure
the values of the eigenvectors λi, which are related to quantum states. The
measurement result will always be one of the eigenvalues λi of the operator L,
and the measurement result will be the probability P(λi) of obtaining the result
λi.

4. The method of system quantization

A systemic method of converting the real numbers in decimal notation to quan-
tum numbers using the probability modules of a quantum mixed number and
the superposition principle was developed, which consists in converting the real
numbers in decimal notation to binary numbers, and these to quantum mixed
numbers (see Ruciński, 2018, Tchórzewski and Ruciński, 2016, 2018; Wright
and Jordanov, 2017). In the case of a single qubit, i.e. a quantum system com-
posed of two pure states ket 0 and ket 1, in order to determine the dominant
and recessive ranges, a greater probability of obtaining the pure state |0> takes
place when it is the dominant state and the pure |1> state is a recessive state,
and, similarly, the pure |1> state is obtained when it is the dominant state and
the |0> state is a recessive state. In such a situation, it is convenient to use
the principle of superposition. Thus, the probability moduli are assumed to be
equal, that is, α = β, and therefore:

2 · α2 = 1, (11)

wherefrom we can further determine the positive value of the solution, which is:

α =

√
2

2
, (12)

this resulting from the interpretation of the physical values of both the proba-
bility modulus α and the probability modulus β concerning the pure state ket
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0 and the pure state ket 1, which are always positive. Due to the equality of
both probability moduli, this value is approximately:

α = β ≈ 0.71, (13)

which is the border value between the dominant and the recessive intervals,
i.e. between the interval, from which the values of the dominant states can be
drawn, and the interval, from which the values of the recessive states can be
drawn. Thus, in the case when the dominant state is the pure state |0>or |1>,
then the values of the probability modulus α or β are drawn from the range of
the dominant states:

0.71 ≤ α ≤ 1, (14)

and the values of the probability modulus β or α are derived from the principle
of superposition. The same applies when the recessive state is pure |1> or |0>,
then the values of the probability modulus β or α are randomized from the
interval of the recessive states:

0 ≤ β ≤ 0.71, (15)

and the values of the probability modulus β or α are derived from the principle
of superposition. Thus, two pairs of probability moduli, α or β, are obtained,
which can be used to more accurately define the ranges of the dominant and
recessive states, from where the appropriate probability modules of the mixed
states will be finally drawn.

The essence of converting the decimals into binary numbers is ultimately
about obtaining the pure states |0> and |1> of the quantum mixed state. Thus,
for example, the values of the weights of the Artificial Neural Network and the
values of input signals to the ANN are converted, first, to binary numbers, and
then it is assumed that binary 0 is pure |0>, and binary 1 is pure |1>. Then,
quantum mixed states are determined by selecting the appropriate probability
modules from the determined dominant and recessive intervals using the condi-
tions (14) and (15). Obtaining a quantum mixed state, therefore, comes down
to determining the average values of the probability modules on the basis of
many randomizations (theoretically infinitely many) of one probability module
value and determining the superposition of the value of the second probability
module. Thus, a random selection of the instantaneous value of one quantum
probability module of the mixed state results from this pure state, which is
the dominant state, and the second probability module is determined from the
superposition principle (see Ruciński, 2018; Tchórzewski and Ruciński, 2016,
2018).

Hence, if the dominant state is the pure state |0>, then the value of α

probability modulus is drawn infinitely many times (the study, reported in this
paper assumes the number of draws to be equal 1,000) from the interval (14),
on the basis of which the mean value is determined, and the value of the β
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probability modulus is determined on the basis of the superposition rule applied
to both states. Then, the recessive state is determined in an analogous way,
using (15), this being then the pure state 1, and so infinitely many times (it was
again assumed in study here reported that the number corresponds to 1,000)
the recessive state probability module value is drawn from the range described
by the equation (15) and the mean value of the determined 1,000 values is
taken as the measured value, and the second probability modulus (in this case
the dominant state) is determined from the principle of superposition of both
states.

In the above-mentioned manner, the values of both ranges are narrowed
down, i.e. the ranges, in which the dominant states and, respectively, the re-
cessive states of quantum mixed numbers can occur. This procedure applies to
all bits of a binary number obtained from each real number. It should also be
added that when determining the real value, represented by a binary number,
the individual bit positions of the quantum number must be taken into account,
similarly to binary numbers.

5. Dequantization with ANN

To describe the quantum-inspired Perceptron Artificial Neural Network, the
foundations of control and systems theory were used (see Kaczorek, 2020, Tchó-
rzewski, 1992, 2013), and, in particular, the definition of the system state was
taken as the basis for determining the mixed states of a quantum number.
As a result of the performed calculations, a model of the Quantum Artificial
Neural Network (QANN) is obtained, i.e. a neural model, inspired by solutions
of quantum computing. It is convenient to interpret quantum calculations in
the form of a model of a single QANN neuron, described, for example, by the
activation function of the sigmoid tangent of the i-th neuron in the k-th weight
layer of the Perceptron Artificial Neural Network:

y(net
k

i (t)) = [1q − e
−netkqi
q ][1q + e

−netkqi
q ]

−1
, (16)

where:

1q =

[

0.0860 0.9964 . .. 0.0848 ... 0.0862
0.9962 0.0845 . .. 0.9963 ... 0.9962

]

,

eq =

[

0.9963 0.0867 . ... 0.9963 ... 0.08569
0.0855 0.9962 ... 0, 0851 ... 0.9963

]

,

netkqi=−





netkqi,im netkqi,lm
netkqi,lm netkqi,lm





and where:
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q- index informing about the recording of numbers in the quantum number
system, as a consequence of the occurrence of probability modules, associated
with the pure state 0 (first rows) and the pure state 1 (second rows),

netki – quantum adder of the ith neuron in the kth layer of neuron weights, de-
termined as the sum of weighted quantum values of the input signals connected
to the kth neuron layer,

netki,im - adder element netki with the index lm, a weighted quantum input

signal to the kth neuron layer of an artificial neural network with the pure nature
state resulting from two mixed states (the quantum mixed number of the input
signal and the quantum mixed number of the weight),

wherein the output signal from a specific layer of neurons, depending on all
input signals, is determined from the relationship described by the activation
function (here tansig ()):

y(net
k

qi,(t)) = [1q − e
−netkqi
q ][1q + e

−netkqi
q ]

−1
, (17)

with, e.g.:

netk=1
qi = w1

q11 · u1 + w1
q12 · u2 + ... + w1

q1n · un.

It can be further noted that, as in the case of the Perceptron ANN, also in
the case of the Quantum ANN, the overall model will consist of interconnected
models of single neurons according to the connections resulting from the ANN
architecture, in this case the Perceptron ANN architecture (see Mulawka, 1996;
Osowski, 2020; Tadeusiewicz and Szaleniec, 2015). Dequantization is the con-
version of quantum mixed numbers into real numbers in decimal notation. And
since the nature of the ANN quantum model results from the matrix power
of the number e – dependencies (16) and (17), hence the dequantization of a
quantum mixed number into a real (or complex) number comes down to solving
the problem consisting in the ability to raise the matrix to the matrix power or
to the ability to bring the obtained result to a decomposable state, described
by equation (7).

According to the available literature on the subject of quantum mathematics,
quantum mechanics and quantum computing (see Le Belac, 2018; Chudy, 2011;
Heller, 2016, Wright and Jordanov, 2017; and others) the above problem has not
been fully resolved so far, due to the fact that there are entangled states of two
quantum numbers, in this case a quantum weight and a quantum input signal,
and in addition, the problems of this type, resulting from the entangled states,
not from the states of decomposable quantum problems, described by equation
(7), are now considered to be irreducible, and therefore unsolvable problems.
In order to solve this problem, this work proposes the use of the method of
quantum mixed numbers dequantization using ANN learned dequantization,
based on the input quantities that are the elements of the neti quantum matrix,
and the output quantities yi. The aforementioned ANN can be further used,
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e.g. in the simulation model, built in Simulink for the quantum quantization of
the neti matrix (see Ruciński, 2018).

6. Quantum computing

In quantum inspired calculations, the matrix form of operators and vectors is
being used, the so-called finite-dimensional Hilbert space, hence each state of
a quantum mixed number in a Hilbert space H2 corresponds unambiguously to
the matrix of the form:

lm =

[

α

β

]

, (18)

hence a quantum mixed number corresponding to a binary number will be ex-
pressed as:

lm =

[

α1 α2 ... αn

β1 β2 ... βn

]

. (19)

When calculating matrices, a vector-matrix calculus can be used, which is asso-
ciated with appropriate addition, multiplication, transposition of matrices, etc.
(see Kaczorek, 1998). At this point, it is also worth supplementing the Dirac no-
tation convention, which simplifies notations and facilitates calculations. Well,
in the case of a quantum register, the value of the expression |α>, where α is
a variable, whose values are natural numbers, should be read like a notation in
the binary system, supplemented with zeros on the left hand side to the length
of n characters, which leads to the notation (see Sussking and Friedeman, 2016;
Sawerwain and Wisniewska, 2015):

|Φ〉 =

2n−1
∑

k=0

αk |〉, (20)

where the αk coefficients meet the normalization conditions (the sum of squared
modules equals 1).

The quantum computation process, using the input data, subjected to the
quantization process and using the weights of the neural model, also subjected
to the quantization process and appropriately selected activation functions, such
as tansig() type functions, was carried out on the basis of an algorithm including
the following basic steps (Tchórzewski and Ruciński, 2016; Ruciński, 2018):

Step 1. Converting real numbers in decimal notation to quantum mixed
numbers using the system quantization method.

Step 2. Determining the weighted adders for individual outputs from the
first layer of neurons, e.g. multiplication of the first mixed quantum number
w11 and the mixed quantum number of the input quantities u1 for neuron 1 in
layer 1 for the first training pair, i.e. two quantum mixed numbers:

net11 = w1
11 · u1, (21)
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where:

w1
11 =

[

0.8256 0.8285 0.8294 0.8251 0.4162 0.8292 0.8305 0.8249
0.4175 0.4140 0.4141 0.4181 0.8267 0.4132 0.4116 0.4184

0.8294 0.4196 0.8294 0.8312 0.8311 0.8277 0.8295 0.8297 0.8333
0.4129 0.8265 0.4129 0.4108 0.4109 0.4149 0.4128 0.4125 0.4081

]

u1 =

[

0.8256 0.8285 0.8294 0.8251 0.4162 0.8292 0.8305 0.8249
0.4175 0.4140 0.4141 0.4181 0.8267 0.4132 0.4116 0.4184

0.8294 0.4196 0.8294 0.8312 0.8311 0.8277 0.8295 0.8297 0.8333
0.4129 0.8265 0.4129 0.4108 0.4109 0.4149 0.4128 0.4125 0.4081

]

As a result of the multiplication of the above two quantum mixed numbers in
a matrix form, a square matrix with the dimension of 2 x 2 for each neuron,
appearing in the first layer (and then in a similar way in the second layer), is
obtained:

netki (t) =
∑

i,lm,k

[

netki lim netki,lm
netki,lm netki,lm

]

. (22)

So, e.g., for the first neuron of the first layer the following is obtained:

net11(t) =

[

11.6712 5.9219
5.4275 3.2112

]

+ ... +

[

11.1596 5.3631
5.9722 2.2569

]

=

[

46.4663 21.7725
21.9636 12.5232

]

(23)

Step 3. In this step, the value of the activation function, called tansig (), is
determined for the first layer of ANN neurons, according to the relationship (17),
and the activation function, called purlin () – for the second layer of neurons.

For example, when determining the output value from the hidden layer of
the Artificial Neural Network, one can also use the expanding matrix exponents:

ex =

∞
∑

k=0

1

k!
xk, (24)

where:

x = -2net,

k = 4.

And then it is possible to obtain, for example, the following approximate
possibility of determining the value of net in quantum form for individual 24
hours:

pot e = 1 + mac tymczˆ1 + 1/2*mac tymczˆ2 + 1/6*mac tymczˆ3+

1/24 *mac tymczˆ4; (25)
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and thus, the values of outputs y in the form of quantum states for individual
24 hours of the day:

y = f(net) = (1- pot e)*(1 + pot e)ˆ-1. (26)

Step 4. Due to the existence of the matrix as an exponent of the number e

(written in the activation function (24) as a quantum mixed number), the ex-
ponent e was dequantized by means of the learned ANN dequantization. The
value of expression (24) becomes the input value for the layer 2 of the ANN neu-
rons, which can also be determined analogously to the first layer. The outputs
from the remaining neurons of the first layer (hidden layer) and the second layer
(output layer) are determined in a similar way. The vector of quantum outputs
from the output layer is also used in the clotting function of the evolutionary
algorithm for each individual from the parental population, e.g. in relation to
the average value of all individuals.

Figure 1. Block diagram of the netki adder for the first layer of the PPE neural
model. Symbols: u1 ... u24 - ANN input signal (here the value of the volume of
electricity supplied and sold in each of the 24 hours of a day) in [MWh], y1 - ANN
output signal (here volume-weighted average unit price for electricity supplied
and sold in at a given hour of the day, in (PLN/MWh), w11, w12. . .w1,24 - ANN
weights
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y1
1

(

net11
)

=
1−e

−2∗




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
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


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Hence, the following specific values of the individual 24 outputs from the
ANN hidden layer are obtained:

val(:,:,1) =

Columns 1 through 5

0.773451649996588 0.761968556091428 0.807633442276137
0.819077107781521 0.758114626076228

0.633855302981331 0.647614020484381 0.589684850506775
0.573683441898281 0.652121318260107

Columns 6 through 10

0.810160735718816 0.820458711707111 0.799853290237652
0.807837618293933 0.839427001904776

0.586207797883606 0.571705783059702 0.600195563209195
0.589405108960879 0.543472454199069

Columns 11 through 15

0.817627582232084 0.815436489157857 0.791934624986455
0.841694276396647 0.800672417836415

0.575747459198316 0.578846553198607 0.610605887416395
0.539954391667597 0.599102394683905

Columns 16 through 20

0.808597147787839 0.822774070562434 0.814487063918959
0.812605562620117 0.831883090071349

0.588362687964976 0.568368567753463 0.580181715248484
0.582814035176610 0.554950920760875

Columns 21 through 24

0.791699485258787 0.824446541022465 0.841465998871876 0.814958854135236

0.610910734101940 0.565939838672003 0.540310070924609 0.579518822875136

Then, the runs of the Net Quantum-Inspired ANN and Perceptron ANN
adders were compared, obtaining absolute errors close to zero. An example of
the net value runs for 181 days for 0-1 is shown in Fig. 2.

In this way, the determined quantum states of 24 outputs from the ANN
hidden layer are simultaneously 24 inputs to the ANN output layer. And since
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Figure 2. Discrepancy between the NetReal1 adder (nei1) and the NetQuant1
adder (neti) for the hidden layer of both models. Marking: crosses (x) denote
the NetReal1 model (nei1), circles (o) – NetQuant1 (neti)

the linear function was assumed as the activation function in the output layer,
the determined weighted net adders are also outputs from the ANN.

7. Conclusions and directions for further research

This paper proposes some new elements of the Quantum-Inspired Perceptron
Artificial Neural Network method, which was verified on the example of the
Day-Ahead Market System. The quantum inspired neural model was designed
and implemented in the MATLAB and Simulink environment with the use of
numerical data, listed on the Day-Ahead Market for the set of Matlab language
(DAM).

The research performed required the use and implementation of appropriate
new methods: quantization of real numbers in decimal notation, quantum com-
putations using matrix-vector calculus, and building, implementing and teaching
ANN dequantization.

It turned out that it is possible to develop an artificial intelligence method,
such as an artificial neural network, inspired by quantum computing solutions to
improve the parameters of the neural model, which was verified on the example
of the Polish Electricity Exchange system.

The constructed models satisfactorily illustrate the behavior of the PPE sys-
tem for the DAM. The attempts to improve the classic ANN model have shown
that the improvement of the quality of the model with the methods appropri-
ate for the classical Evolutionary Algorithms gave positive results. In the case
of methods inspired by quantum computing, attempts were made to propose
respective own solutions, based on linear algebra and vector-matrix calculus in
Hilbert space.
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The designed and implemented hybrid model of the DAM system consists
of a neural model (Perceptron ANN), with weights modified by AE (neural-
evolutionary model), which improved the parameters of the DAM PPE sys-
tem model from the range between -0.17% and 0.18% to the range between -
0.11% and 0.12%, and the designed and implemented AE-assisted and quantum-
inspired neural model (neural-evolution-quantum model) improved the param-
eters of the model from the range of -0.11% to 0.12 % to the range of -0.04% to
0.05%, i.e. by an order of magnitude, notwithstanding the fact that the MSE
error for the Perceptron ANN was already relatively low, as this is shown in
Fig. 2.

The here reported research will be continued in the direction of testing the
applied quantum inspiration method on other examples of neural modeling in
order to check its effectiveness and efficiency, including such examples as, e.g.,
quantum-inspired neural modeling of the development of the National Power
System, carried out with the use of relatively large training and testing files.

References

Adamowski, J. (2019) Podstawy obliczeń kwantowych [Foundations of quan-
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Tchórzewski, J. and Ruciński, D. (2018) Quantum-inspired Artificial Neu-
ral Networks and Evolutionary Algorithms Methods Applied to Modeling
of the Polish Electric Power Exchange Using the Day-ahead Market Data.
Information Systems in Management, 7, 3, 201–212.
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