
Time-domain decomposition for optimal control problems

governed by semilinear hyperbolic systems

with mixed two-point boundary conditions∗

by

Richard Krug1, Günter Leugering1, Alexander Martin1,

Martin Schmidt2 and Dieter Weninger1

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Data Science,
Cauerstr. 11, 91058 Erlangen, Germany,

2Trier University, Department of Mathematics,
Universitätsring 15, 54296 Trier, Germany

richard.krug@fau.de, alexander.martin@fau.de, dieter.weninger@fau.de
guenter.leugering@fau.de, martin.schmidt@uni-trier.de

Abstract: In this article, we study the time-domain decomposition of
optimal control problems for systems of semilinear hyperbolic equations
and provide an in-depth well-posedness analysis. This is a continuation
of our work, Krug et al. (2021) in that we now consider mixed two-point
boundary value problems. The more general boundary conditions signif-
icantly enlarge the scope of applications, e.g., to hyperbolic problems on
metric graphs with cycles. We design an iterative method based on the op-
timality systems that can be interpreted as a decomposition method for the
original optimal control problem into virtual control problems on smaller
time domains.

Keywords: time-domain decomposition, optimal control, semilinear
hyperbolic systems, convergence

1. Introduction

In this article, we are concerned with an iterative and completely parallel time-domain
decomposition technique for optimality systems associated to optimal control problems
for semilinear, one-dimensional, hyperbolic systems with general mixed two-point
boundary conditions. The main interest is to design an iterative method such that the
time-wise decomposed optimality system at each iteration is by itself an iteration of
parallel optimality systems on the smaller time-domains. In the following, we explain
the context more specifically and provide (non-exhaustive) references to the literature.
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Time-domain decomposition for partial differential equations (PDEs) has been a
subject of intense research in the past. Let a partial differential equation with respect to
space and time be given with time domain [0,) ]. It often occurs in the applications that
the time horizon is very large and, hence, the computation of the entire time evolution
of the system is very costly. The desire is to apply a time-domain decomposition that
allows to reduce the original problem on the long time horizon to similar problems
on a short time interval such that the sub-problems can be treated in parallel. To
be more precise, one introduces a coarse time discretization of [0,) ] into a disjoint
union of subintervals �: := [): ,):+1] with [0,) ] = cl(∪ 

:=1
(): ,):+1)) such that on each

subinterval �: , the same PDE is solved together with time-like transmission conditions
at the breakpoints ): that couple the states at the current iteration = + 1 with those at
iteration =.

This approach is not new, in principle, and can be traced back to the contributions
to the seminal paper by Lions, Maday and Turinici (2001), in which the so-called
“parareal”-scheme has been introduced, which, in turn, has later been identified as a
variant of the common multiple-shooting method; see, e.g., Gander and Vandewalle
(2007). These methods, see also Maday, Salomon and Turinici (2006), Maday and
Turinici (2002), which consist of a coupling of coarse grain discrete-in-time solutions at
the break points with a parallel computation of full (respectively, small grain) solutions
on the subintervals, were first developed for the mere simulation of nonlinear PDEs.
In Lagnese and Leugering (2002), the authors, for the first time, considered the time-
domain decomposition of optimal control problems for the time-dependent Maxwell
system. Later, in Lagnese and Leugering (2004), a broad number of such problems–even
combined with a spatial domain decomposition for PDEs on networked domains–have
been investigated. We also refer to Barker and Stoll (2015), Gander and Kwok (2016),
Gander, Kwok and Salomon (2020), Wu and Huang (2018), Wu and Liu (2020), as
well as Heinkenschloss (2005) and Ulbrich (2007), where methods related to multiple-
shooting have been provided along with applications for the heat equation also in the
context of optimal control problems. A distinguishing feature of the method in Lagnese
and Leugering (2002, 2003, 2004) is the fact mentioned above, namely, that the iterative
time-domain decomposition is applied to the optimality system of the original optimal
control problem on the time domain [0,) ] in such a way that the decomposed problems
are by themselves the optimality systems, corresponding to the so-called virtual control
problems on the subintervals �: . Thus, the fully parallel iteration can be seen as one of
optimal control problems on the subintervals.

The analysis here is provided on the continuous level and relies on the fact that
the state variables evolve forwardly in time, whereas the adjoint variable progresses
backwardly. A time-domain decomposition for semilinear optimal control problems
that enjoys this distinguishing feature has been considered in Krug et al. (2021) for
separated two-point boundary conditions. It turns out that in a number of important ap-
plications, including problems on metric graphs with cycles, such separated two-point
initial boundary value problems are not applicable. The goal of this article is to extend
the time-domain decomposition method of Lagnese and Leugering (2003, 2004), that
has been the conceptual basis for Krug et al. (2021), to optimal control problems involv-
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ing semilinear hyperbolic systems of conservation laws with more general boundary
conditions. Moreover, in this article, we restrict ourselves to coefficients constant with
respect to time. This allows us to add a complete well-posedness analysis based on
semilinear perturbations of linear semi-groups.

We emphasize that the resulting algorithm is derived in analogy to the classic
spatial domain decomposition for elliptic problems by P. L. Lions (1990) which was,
in turn, interpreted by Glowinski and LeTallec (1989) as a variant of a Uzawa-type
saddle-point iteration. The relaxation that we introduce in Section 5, represented by
the parameter Y ∈ [0, 1), is related to a damped Richardson ansatz. This indicates
that, in general, very rapid convergence may not take place. However, in very special
cases, in particular for separated boundary conditions, distributed controls and simple
homogeneous state equations, we observe almost “two-step-convergence”, as in the
optimized non-overlapping Schwarz iterations. See Krug et al. (2021) for details and
numerical experiments and Lagnese and Leugering (2004) for a general discussion.

We are particularly interested in applications that focus on processes on metric
graphs or networks containing cycles. As an example, we will focus on networks of
semilinear strings or rods. Systems that are related to gas flow in pipe networks are
easily seen to fit into the framework of this article—for the model, see, e.g., Hante et
al. (2017) or Leugering et al. (2017). Such problems on metric graphs with cycles,
where the edges, which are representative of the spatial domains of the corresponding
PDEs, are coupled at the vertices of the graph, can be transformed into mixed two-point
initial boundary value problems with a possibly large number of state variables; see
Example 1 for further explanation.

The remainder of the article is organized as follows. We begin with the problem
statement in Section 2, where we include a detailed discussion of an example of a
network of controlled strings or rods, possibly including cycles. In this example, a
local nonlinear damping term is present along some or all strings involved, together
with nonlinear boundary conditions. In Section 3, we introduce the time-domain
decomposition method for the overall optimality system into systems on the subintervals,
and show in which way these decomposed systems are themselves optimality systems
for “virtual” optimal control problems on the subintervals. In Section 4, we discuss the
well-posedness of the underlying systems. In Section 5, we discuss the convergence
of the iteration for unconstrained controls, while the constrained case is considered in
Section 6, however, for the linear case only. As the nonlinearities are not assumed to be
explicitly given by specific functions and the corresponding Nemytskij operators, we
will rely on bounds, regularity, and smallness assumptions and use the control structure
to compensate for nonlinear effects. Finally, the paper closes with some concluding
remarks in Section 7.

2. Problem statement

Let ~ (C, G) ∈ R3 , C ∈ [0,) ], G ∈ [0, !], denote the state and let

Λ(G) = diag (_1(G), . . . , _< (G), _<+1 (G), . . . , _3 (G)) ∈ R3×3
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with

_1 (G) ≥ _2(G) ≥ · · · ≥ _< (G) > 0 > _<+1 (G) ≥ · · · ≥ _3 (G)

for all (G) ∈ [0, !] represent the physics of the system, taken in characteristic coordinates
to make the mathematical description simpler. We use the block-matrix abbreviation

_(G) = diag
(
Λ
+ (G),Λ− (G)

)
,

with

Λ
+ (G) := diag(_1(G), . . . , _< (G)) and Λ

−(G) := diag(_<+1 (G), . . . , _3 (G)) .

Accordingly, we denote the first < components of the state by ~+ and the remaining
3 −< components by ~−, so that ~ = (~+, ~−). In order to describe our boundary
conditions, we introduce a block matrix  as follows

 :=

[
 00  01

 10  11

]
,  00 ∈ R<×<,  01 ∈ R<×3−<,  10 ∈ R3−<×<,  11 ∈ R3−<×3−< .

(1)

Referring to this block structure and for the sake of simplicity, we introduce boundary
controls D for negative components only. The corresponding input operator is given by

� :=

(
0

�1

)
,

while �3 signifies the input operator for distributed controls E . We consider mixed
two-point boundary value problems for systems of hyperbolic semilinear equations of
the form

mC~ + Λ(G)mG~ +"~ = 5 (~) + �3D, (C, G) ∈ (0,) ) × (0, !), (2a)(
~+(C, 0)
~−(C, !)

)
=  

(
~+(C, !)
~−(C, 0)

)
+ �E, C ∈ (0,) ), (2b)

~ (0, G) = ~0(G), G ∈ (0, !), (2c)

D (C) ∈ * d
ad, a.e. in (0,) ), (2d)

E (C) ∈ * b
ad, a.e. in (0,) ) . (2e)

We have introduced a matrix " ∈ R3×3 to allow for a linear coupling on the
distributed PDE-level, which is useful if one resorts to linear systems of equations or
to those with small nonlinearities. The functions 59 , 9 = 1, . . . , 3 , are differentiable
and satisfy Lipschitz conditions, to be specified below. Moreover, D and E are taken
to represent the boundary and distributed controls, respectively, where D (C, G) ∈ R3 ,
E (C) ∈ R< , are constrained a. e. by closed and convex sets * d

ad and * b
ad. If * d

ad = R
3 ,

* b
ad = R

< , then controls are unrestricted. Finally, ~0(G) ∈ R3 for G ∈ [0, !] denotes
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the initial data. We should note that the boundary conditions in (2) are in accordance
with the standard formulation as in Chapter 6 of Bastin and Coron (2016). Under these
conventions, System (2) is a controlled hyperbolic and semilinear system. In addition
to (2), we consider the natural tracking-type cost function

� (F,~) :=
^

2

∫ !

0

‖~ () ) − ~3C ‖ dG + `

2

∫ )

0

∫ !

0

‖~ − ~3 ‖2 dG dC

+ a
2

∫ )

0

∫ !

0

‖D‖2 dG dC + d
2

∫ )

0

‖E (C)‖2 dC

(3)

withF = (D, E) . The considered control problem is thus given by

min
F,~

� (F,~) s.t. (F,~) satisfies (2). (4)

It is a matter of standard variations to derive the adjoint system from the Lagrangian
function

L(F,~, ?) = � (F,~) +
3∑
8=1

∫ )

0

∫ !

0

(mC~ + Λ(G)mG~ +"~ − 5 (~) − �3D)8 ?8 dG dC .

The details are left to the reader. We obtain the following optimality conditions,
governing the adjoint variable ?:

mC? + Λ(G)mG? (mGΛ(G) −"⊤? + 5 ′(~)⊤)? = ` (~ − ~3 ), (C, G) ∈ (0,) ) × (0, !),(
?+(C, !)
?− (C, 0)

)
=  ̃

(
?+(C, 0)
?−(C, !)

)
, C ∈ (0,) ),

? (), G) = − ^ (~ () ) − ~3C ), G ∈ (0, !) .
(5)

Here, the boundary matrix  ̃ is given by

 ̃ := diag(Λ+ (!)−1, |Λ− (0)−1 |) ⊤ diag(Λ+ (0), |Λ− (!) |), (6)

where we used the absolute value signs to indicate the absolute values of the diagonal
entries. By taking the directional derivative of L(F,~, ?) w.r.t. D in the direction D̂ we
obtain

∫ )

0

∫ !

0

(
aE − �⊤3 ?

)
(Ê − E) dG dC ≥ 0 for all Ê ∈ * d

ad, (7)

and, similarly, for E we get

∫ )

0

(
d (C)D − �⊤1 |Λ

− (!) |?−(C, !)
)
(D̂ (C) − D (C)) dC ≥ 0 for all D̂ ∈ * b

ad. (8)
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Obviously, in the case of no constraints on the control, the optimality conditions (7)
and (8) reduce to

E (C) = 1

d
�⊤1 |Λ

− (!) |? (C, !), C ∈ (0,) ), (9)

D (C) = 1

a
�⊤3 ?, (C, G) ∈ (0,) ) × (0, !) . (10)

Example 1 (A network of strings) We consider a star-graph consisting of< strings

or rods connected at a multiple node located at G = 0. The individual strings are

stretched along an interval [0, !]. Each string is represented by a displacementF8 (C, G)
for G ∈ [0, !] and C ∈ [0,∞). Indeed, we assume that there is a spatio-temporal

axial loading 28 (C, G). These strings or rods form a network located in the plane and

F8 (C, G) is either the out-of-the-place displacement of the 8Cℎ string or the longitudinal

displacement of the 8Cℎ rod. We assume that the strings (or rods) satisfy a semilinear

damped wave equation such that at G = 0, the displacements are equal for all times and

the sum of forces is 0. At the simple nodes, i.e., at G = !, the strings 8 = 2, . . . ,< are

subject to dissipative controlled boundary conditions, while string 8 = 1 is clamped.

The corresponding system can be written down as

mCCF8 − mG (28mGF8 ) + 18 (mCF8 )) = �3Din (0,) ) × (0, !), 8 = 1, . . . ,<, (11a)

F8 (C, 0) = F 9 (C, 0)in (0,) ), 8, 9 = 1, . . . ,<, (11b)
<∑
8=1

28 (C, 0)mGF8 (C, 0) = 0in (0,) ), (11c)

F< (C, !) = 0, in (0,) ), (11d)

mGF8 (C, !) = E8 (C)in (0,) ), 8 = 2, . . . ,<, (11e)

F8 (0, G) = F80(G)in (0, !), 8 = 1, . . . ,<, (11f)

mCF8 (0, G) = F81(G)in (0, !), 8 = 1, . . . ,<. (11g)

We now transform (11) into the format of (2). In a first step, we transform (11a) into a

2 × 2-system, assuming, for simplicity, 28 (G) = 28 . To this end, we set

I81 :=
1

2

(
mCF8 −

√
28mGF8

)
, I82 :=

1

2

(
mCF8 +

√
28mGF8

)
.

Hence

mCF8 = (I81 + I82), mGF8 =
1
√
28
(I82 − I81)

and, therefore,

mC

(
I81
I82

)
+

[√
28 0

0 −
√
28

]
mG

(
I81
I82

)
= −18

(
1

2
(I81 + I82)

) (
1

1

)
.

We define

~8 = I81 for 8 = 1, . . . ,<, ~8 = I (8−<)2 for 8 =< + 1, . . . , 3 .
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For the sake of simplicity, we assume that the tensions are equal at G = 0 for all times;

i.e., 28 (C, 0) = 2 9 (C, 0) holds for all C ∈ [0,) ]. Then, the transmission conditions (11b)
and (11c) can be equivalently formulated as

©­­«
~1
...

~<

ª®®¬
(C, 0) = − 1

<



< − 2 −2 · · · −2
−2 < − 2 · · · −2
...

...
. . .

...

−2 −2 · · · < − 2


©­­«
~<+1
...

~3

ª®®¬
(C, 0) . (12)

Notice that without the assumption on the axial loads at G = 0, the matrix on the right-

hand side becomes non-symmetric, which, in turn, is not a problem in principle. We

introduce the matrix ( such that

((i)8 :=

(
2

<

<∑
9=1

i 9 − i8

)
.

Thus, (12) reads as . +(0) = (.−(0). The matrix ( has nice properties. It can be

interpreted as a scattering matrix. In particular,

<∑
8=1

((i)8 =
<∑
8=1

i8 and ((i = i

holds. At G = !, we have, at least formally, for sufficiently regular states,

mCF< (C, !) = 0 =⇒ I11(C, !) + I12(C, !) = 0 =⇒ ~< (C, !) = −~3 (C, !)

for the clamped string and

mGF8 (C, !) = E8 (C) =⇒ I82(C, !) − I81(C, !) =
√
28E8 (C)

for the other strings. This provides the boundary conditions at the end G = !:

~< (C, !) = −~3 (C, !),
~8 (C, !) = ~<+8 (C, !) + ℎ8 (C, 2~<+8 (C, !) + E8 (C)), 8 = 1, . . . ,< − 1.

Thus, with  00 = 0,  11 = 0, as well as  01 = ( and  10 = diag(−1, . . . ,−1), we obtain

the boundary condition(
~+(C, 0)
~−(C, !)

)
=

[
0  01

 10 0

] (
~+(C, !)
~−(C, 0)

)
.

Thus, our example is of the format of (2), however, with separated boundary conditions.

Remark 1 We remark that there are many more examples—in particular for systems

of semilinear hyperbolic balance laws on metric graphs—that exactly fit into this

framework. These are, e.g., networks of open channels with the dynamics governed

by the shallow water equations with wall friction (see, e.g., Leugering and Schmidt,

2002), or networks of gas pipelines (see Leugering et al. 2017). Moreover, networks

of semilinear Timoshenko beams (se Leugering and Rodriguez, 2020) can be written in

the framework of (2) as well.
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Example 2 (A network of strings with a cycle) Here, we consider the simplest

network that contains a cycle, namely a triangle. We take the same model equations as

in the example above, now for three strings:

mCCF8 − mGGF8 + 18 (mCF8 ) = �3D in (0,) ) × (0, !), 8 = 1, 2, 3,
F1(C, 0) = F3(C, !) in (0,) ),
F1(C, !) = F2(C, 0) in (0,) ),
F2(C, !) = F3(C, 0) in (0,) ),
mGF1(C, 0) = mGF3(C, !) + D1(C) mGF1(C, !) = mGF2(C, 0) + D2(C),
mGF2(C, !) = mGF3(C, 0) in (0,) ),
F8 (0, G) = F80(G) in (0, !), 8 = 1, 2, 3,
mCF8 (0, G) = F81(G) in (0, !), 8 = 1, 2, 3.

In this case it is easily deduced by the same analysis as in the first example that the

boundary conditions now are given by(
~+(C, 0)
~−(C, !)

)
=

[
 00 0

0  11

] (
~+(C, !)
~−(C, 0)

)
+ �1

(
D1
D2

)
,

where now

 00 :=


0 0 1

1 0 0

0 1 0


,  11 :=


0 1 0

0 0 1

1 0 0


,  := diag( 00,  11)

�1 :=
1

2

[
�+
1
�−
1

]
, �+1 :=


−1 0

0 1

0 0


, �−1 :=


0 1

0 0

−1 0


.

It is remarkable that  3 = id, which reflects the fact that the longest path has the length

of 3.

3. Time-domain decomposition

We now embark on time-domain decomposition of the optimal control problem by
decomposing the optimality system (2), (5)–(8). The procedure pursued in this article
is the same as in Krug et al. (2021) and is, in turn, very much inspired by Lagnese
and Leugering (2003), where the linear wave equation and the Maxwell equations are
considered. As discussed at the beginning, the novelty here is the more general boundary
condition and the well-posedness analysis. We introduce a coarse time discretization
so that we obtain [): ,):+1] × (0, !) with

0 = )0 < )1 < · · · < ): < ):+1 < · · · < ) < ) +1 = ) .

We now formulate the time-domain decomposition procedure for the general op-
timality system (2), (5)–(8) and then focus on the case of unconstrained controls D, E
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and quadratic costs as in (3) for a proof of convergence in the subsequent sections. We
denote the restrictions of ~: , ?: , D: , E: to &: := �: × (0, !) with �: := (): ,):+1) by

~: := ~ |&:
, ?: := ? |&:

, D: := D |&:
, E: := E |�: .

The idea is to satisfy the continuity conditions

~: ():+1) = ~:+1():+1), : = 0, . . . ,  − 1,
?: ():+1) = ?:+1 ():+1), : = 0, . . . ,  − 1,

(13)

in the limit of an iterative procedure. We therefore use the decoupling

~=+1: ():+1) + V?=+1: ():+1) = q=:,:+1, : = 0, . . . ,  − 1,
~=+1: (): ) − V?=+1: (): ) = q=:,:−1, : = 1, . . . ,  ,

(14)

together with the update rule

q=:,:+1 = (1 − Y)
(
~=:+1():+1) + V?

=
:+1 ():+1)

)
+ Y

(
~=: ():+1) + V?

=
: ():+1)

)
, : = 0, ...,  − 1,

q=:,:−1 = (1 − Y)
(
~=:−1(): ) − V?

=
:−1 (): )

)
+ Y

(
~=: (): ) − V?

=
: (): )

)
, : = 1, . . . ,  , (15)

and V > 0, 0 ≤ Y < 1, = = 0, 1, 2, . . .

Remark 2 Suppose that the iteration (14), (15) converges for = → ∞, where ~: , ?: ,

D: , E: solve (2), (5)–(8) on &: . Then, (14) holds without iteration indices = and = + 1.
As a result, the iteration updates (15) and the decoupling (14) reduce to

(1 − Y) (~: ():+1) + V?: ():+1)) = (1 − Y) (~:+1():+1) + V?:+1():+1)) ,
(1 − Y) (~: (): ) − V?: (): )) = (1 − Y) (~:−1(): ) − V?:−1(): )) ,

where we may divide by (1 − Y) and shift the second equation by : → : + 1 to obtain

~: ():+1) + V?: ():+1) = ~:+1():+1) + V?:+1 ():+1),
~:+1():+1) − V?:+1():+1) = ~: ():+1) − V?: ():+1) .

Addition of the last two equations leads to

~: ():+1) = ~:+1():+1), ?: ():+1) = ?:+1 ():+1) .

Thus, (13) is satisfied and in the limit and the continuity conditions hold. Therefore,

the non-overlapping domain decomposition (14), (15) appears reasonable.

In view of this remark, we propose the time-domain decomposition

mC~
=
: + Λ(G)mG~=: +"~

=
: = 5: (~=: ) + �3D

=
: , (C, G) ∈ &: ,

mC?
=
: + Λ(G)mG?=: + (mGΛ(G) −") )?=: = (~=: − ~: ), (C, G) ∈ &: ,(

~+,=
:

(C, 0)
~−,= (C, !)

)
=  

(
~+,= (C, !)
~−,= (C, 0)

)
+ �1E=: (C), C ∈ �: ,(

?+,= (C, !)
?−,= (C, 0)

)
=  ̃

(
?+,= (C, 0)
?−,= (C, !)

)
, C ∈ �: ,

(16)
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of system (5)–(8) together with (7), (8) and (14), (15), which have to be extended by

~=0 (0, ·) = ~0 and ?= () +1, ·) = 0.

For : = 1, . . . ,  − 1, we now introduce the so-called virtual controls 6:,:−1 (G)
for G ∈ (0, !) in the sense of Lagnese and Leugering (2003, 2004) and consider the
following virtual control problem on &: :

min
6:,:−1,F: ,~:

�: (F: , ~: ) +
1

2V

(
‖~: ():+1) − q:,:+1‖2 + ‖6:,:−1‖2

)
s.t. mC~: + Λ(G)mG~: +"~: = 5: (~: ) + �3D, (C, G) ∈ &: ,(

~+
:
(C, 0)

~−(C, !)

)
=  

(
~+(C, !)
~−(C, 0)

)
+ �1E: (C), C ∈ �: ,

~ (): , G) = q:,:−1 + 6:,:−1, G ∈ (0, !),
D (C) ∈ * d

ad a. e. in �: ,

E (C) ∈ * b
ad a. e. in �: ,

(17)

where �: (F: , ~: ) is given by (3), restricted to &: . Suppose that the controls 6:,:−1, D: ,
E: , and the state ~: are optimal for the virtual control problem (17). Then, formally, the
corresponding optimality system for ~: , ?: is such that ~: , ?: satisfy (7), (8) and (14),
(15), (16). In particular, the optimal virtual control 6:,:−1 is given by

6:,:−1 = V?: (): ) .

The proof of this statement is straightforward and is, therefore, left to the reader.

Remark 3 The virtual control problems for : = 1, . . . ,  − 1 have to be complemented

by a corresponding problem for : = 0 and : =  , respectively. Clearly, for : = 0 no

additional virtual control is needed as

~0()0) = ~0(0) = ~ (0) = ~0
is given data, while at : =  ,

? () +1) = ? () ) = ? () )

is prescribed and, therefore, no penalty term for the upper transmission condition is

needed.

As for the existence of optimal controls for problem (4), we refer to the next section.

4. Well-posedness

4.1. Strong and mild solutions

The semilinear format of (2) provides the possibility of handling questions concerning
well-posedness of both the forward and the backward problem in a unifying manner.
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To this end, we define the first-order differential expression A0 by

A0~ := −Λ(G)3G~ −"~.

Let ` ≥ 0 be a weight and introduce the weight function

W` (G) =
{
4−`G , 8 = 1, . . . ,<,

4` (G−1) , 8 =< + 1, . . . , 3 .

We can then introduce a weighted Hilbert space

!2` ((0, !))3 =: !2(0, !;R3 ; `) =: H`,

such that with Φ = (q8 )38=1 and Ψ = (k8 )38=1 ,

(Φ,Ψ)` :=
<∑
8=1

!∫
0

q8k84
` (G−!) +

3∑
8=<+1

!∫
0

q8k84
−` (G) , ` > 0

is finite, which is isomorphic to the standard space !2((0, !))3 . Now, we can write

� (A) :=

{
~ ∈ H` : A0~ ∈ H`,

(
~+(0)
~−(!)

)
=  

(
~+(!)
~−(0)

) }

and integration by parts in the weighted space as in Bastin and Coron (2016). The
adjoint operator A∗ is given by

A∗i = Λ(G)3Gi + "̃i

with

"̃ := −� (G)−1")� (G) + ` diag(Λ+ (G), |Λ− (G) |),
� (G) := diag(�+ (G), �− (G)),
�+(G) := diag(exp (` (! − G)), 8 = 1, . . .<),
�−(G) := diag(exp (−`G), 8 =< + 1, . . . 3),

and

� (A∗) :=

{
i ∈ H` : A∗ ∈ H`,

(
i+ (!)
i− (0)

)
= exp (−`!) ̃

(
i+ (0)
i− (!)

) }
,

where  ̃ is given by (6). According to Appendix A in Bastin and Coron (2016), A and
A∗ are densely defined and quasi-dissipative inH` for some ` > 0. Hence, according to
the Lumer–Phillips Theorem, A (and, accordingly, A∗) generates a�0-semi-group) (C)
in H` and, thus, the homogeneous problem (2) with 5 ≡ 0, D ≡ 0, and E ≡ 0 admits a
unique solution also in the case of non-vanishing D.
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Remark 4 It is important to note that one can easily shift the generator of the semi-

group in order to also get a semi-group in the space without the weight function.

Consequently, we will omit the dependence on ` in the sequel.

In order to handle the boundary control, we may apply the standard shifting method
to move the non-homogeneous boundary condition involving the control to the state
equation at the cost, however, of extra regularity to be assumed for the control. To this
end, we introduce a steady-state solution

2 (G) :=

(
2+(G)
2−(G)

)

of

ΛmG2 +"2 = 0,
(
2+(0)
2−(!)

)
=  

(
2+(!)
2−(0)

)
+ �1, ~ = I + 2E,

where D satisfies

D ∈ �1(0,) ) and D (0) = D () ) = 0. (18)

Then, I has to solve

mCI + Λ(G)mGI +"I = 5 (I) + �3E2
d

dC
E, (C, G) ∈ (0,) ) × (0, !), (19a)(

I+(C, 0)
I−(C, !)

)
=  

(
I+(C, !)
I−(C, 0)

)
+ �E, C ∈ (0,) ), (19b)

I (0, G) = ~0(G), G ∈ (0, !) . (19c)

We are then left with a semilinear PDE in the context of �0 semi-groups—a case well
studied in the literature. We refer, in particular, to Vrabie (2003); see Theorem 1.11.1
and Corollary 11.3.1. Indeed, we assume that there is a neighborhood� ⊂ H such that

5 : � → H is continuous and locally Lipschitz.

Under this condition, there is an analogue to the concept of semi-global classical
solutions as introduced by Li Tatsien even for quasi-linear equations. The result says
that starting in � , there is a time ) > 0 such that (19) admits a unique solution, which,
in turn, is given by the generalized variation of constants formula for (19), i.e.,

~ (C, ·) = I (C, ·) +2E (C), I (C, ·) = ) (C)~0+
∫ C

0

) (C −B)
(
5 (I + 2E) + �3D − d

dC
E

)
dB .

(20)

In particular, in order to handle our applications, we assume that 5 is in fact a Nemytskij
operator in the sense of, e.g., Section 1.3 of Roubicek (2005):

(i) 5 = (58 )8 is a Caratheodory mapping, (21)

(ii) |58 (A1, . . . , A3 ) | ≤ W828
3∑
9=1

|A 9 |^ for all 8 = 1, . . . , 3 . (22)
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Then, according to Theorem 1.27 in Roubicek (2005), 5 is bounded and continuous
from the space (!2^ (0, !))3 into !2(0, !)3 . In addition, we will assume homogeneity of
degree ^ and strict dissipativity of 5 , i.e.,

(iii) 5 (_~) = _^ 5 (~), (23)

(iv) (5 (E), E)` ≤ −� ‖E ‖^+1 . (24)

Example 3 In our applications, we typically have the structure

58 (~) = −1 (~+8 + ~−8 ) |~+8 + ~−8 | for 8 = 1 . . . , 3 with V (B) := |B |dB .

In this case, ^ = 2 holds in (21) and, hence, the mapping 5 : !4(0, !)3 → H is bounded

and continuous. Therefore, with Assumption (18) and initial data in !4(0, !)3 , we

obtain a unique solution ~.

4.2. Weak solutions

With the assumptions on E , the strong formulation (19) can be handled with the classic
semi-group properties of) (C) and integration by parts w.r.t. time in the term involving
mCE8 to achieve well-posedness of (19) and, hence, of (2). The price to pay is that the
solutions have to leave the domain of the generator of the semi-group. This necessitates
a concept of weak solutions. Of course, one can work with the dual of the domain for
very weak solutions. The other natural way is to work with variational arguments and
a priori estimates.

To this end, we multiply the state equation (2) by q ∈ � (A)∗, such that A∗q =

−F ∈ !^+1(0, !)3 holds. Then

d

dC

∫ !

0

~ (C) · q dG +
∫ !

0

~ (C) ·F dG =

∫ !

0

5 (~ (C)) · q dG (25)

+
∫ !

0

D · �)3q dG − �)1 |Λ
− (!) |q−(C, !) · E (C), C (0,) ) .

We now integrate w.r.t. time and obtain the format of weak solutions:

∫ !

0

~ (C) · q dG +
∫ C

0

∫ !

0

~ (C) ·F dG dB =

∫ !

0

~0 · q dG

∫ C

0

∫ !

0

5 (~ (C)) · q dG dB

(26)

+
∫ C

0

∫ !

0

D · �)3q dG dB −
∫ C

0

�)1 |Λ
− (!) |q−(B, !) · E (B) dB, C ∈ (0,) ) .

The idea is to approximate the data needed in the weak formulation in (26) by those
corresponding to strong solutions discussed in the previous subsection and pass to the
limit in (26). To this end, we need some a priori estimate.
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Lemma 1 For solutions ~ of (2), we find a suitable constant � > 0 such that

1

2

d

dC
‖~ (C)‖2 + (5 (~ (C), ~ (C)) ≤ � (‖�3D (C)‖‖~ (C)‖ + ‖E (C)‖) .

Proof We use arguments similar to the case of homogeneous boundary conditions of
the previous subsection in the context of the generation result. To this end, we go back
to the weighted spaces. Indeed,

(−ΛmGq −"q,q)`

= −
∫ !

0

<∑
8=1

_8mGq8q84
` (!−G) −

3∑
8=<+1

_8mGq8q84
−`G dG − ("q,q)`

= − 1

2

<∑
8=1

(
_8 (!) |q8 (!) |2 − _8 (0) |q8 (0) |24−`!

)

+ 1
2

3∑
8=<+1

(
_8 (!) |q8 (!) |24−`! − _8 (0) |q8 (0) |2

)

+ 1
2

<∑
8=1

∫ !

0

|q8 |2 (|_8 |4` (!−G) )G dG

− 1

2

3∑
8=<+1

∫ !

0

|q8 |2 (|_8 |4−` (G) )G dG − ("q,q)`

=:
1

2
(� + � ) .

Due to the Lipschitz-property of the _8 and the fact that they are bounded away from
zero (say, by 4X > 0) we can bound � as

� ≤ −2X
(
<∑
8=1

|q8 (!) |2 +
3∑

8=<+1

)
<∑
8=1

_8 (0) |q8 (!) |24−`!+
3∑

8=<+1
|_8 (!) | |q8 (!) |24−`!, (27)

whereas � satisfies

� ≤
(

max
8∈{1,...,3 }

sup
G ∈(0,!)

|_8 |` +
3

max
8=1

‖_8 ‖
)
‖q ‖2` + ‖" ‖‖q ‖2` ≤ 2l ‖q ‖2` . (28)

We have

<∑
8=1

_8 (0) |q8 (0) |24−`!

≤ 24−`!
((

<∑
8=1

<∑
9=1

_8 (0) ( 008 9 )2
)
<∑
8=1

|q 9 (;) |2 +
(
<∑
8=1

3∑
9=<+1

_8 (0) ( 018 9 )2
)

3∑
8=<+1

|q 9 |2
)

(29)
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and

3∑
8=<+1

|_8 (!) | |q8 (!) |24−`!

≤ 24−`!
((

3∑
8=<+1

<∑
9=1

|_8 (!) |( 108 9 )2
)
<∑
9=1

|q 9 |2

+
(

3∑
8=<+1

3∑
9=<+1

|_8 (!) |( 118 9 )2
)

3∑
8=<+1

|q 9 (0) |2 +
3∑

8=<+1
|_8 (!) |128 E28

)
.

(30)

If we choose ` large enough, we can compensate the quadratic terms in q8 (!), 8 =

1, . . . ,<, and q8 (0), 8 =< + 1, . . . , 3 , in (29) and (30) for the estimation of (27) to obtain

� < −X
(∑
8=1

< |q8 (!) |2 +
3∑

8=<+1
|q (0) |2

)
+ 4−`!

3∑
8=<+1

|_8 (!) |128 E28 . (31)

Then, putting (31) and (28) together, we arrive at

(−ΛmGq −"q,q)` ≤ 4−`!
3∑

8=<+1
|_8 (!) |2128 E28

for q satisfying the boundary conditions in (2). If we define E := 4−lC~, we get

mCE + ΛmGE +"E = 4l (^−1)C 5 (E) + �3D,(
E+(C, 0)
E−(C, !)

)
=  

(
E+(C, !)
E−(C, 0)

)
+ �1 Ẽ,

E (0) = ~0

(32)

with Ẽ (C) := 4−lCE . If we now multiply (32) by E w.r.t. the weighted inner product, use
(31), and the Property (iv) in (24), we obtain

1

2

d

dC
‖E ‖2` + |(5 (E), E)` | ≤ (�3D, E)` + 4−`! |Λ− (!) | |1E |. (33)

Finally, we use the fact that the weighted norm and the standard norm are equivalent in
order to arrive at the assertion of the lemma. �

We can now integrate (33) w.r.t. time and use the Gronwall lemma to infer that if
we approximate the initial data and the controls by

~=0 → ~0 in � (A), (34)

D= → D in H , (35)

E= → E in !2(0,) )3−< (36)
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and if we associate to these data the strong solution ~=, we obtain

(~=)= is bounded in H ,

(~=)= is bounded in !^+1(&) )3 ,

and we can then extract subsequences, still denoted by (~=)= , such that

~= ⇀ ~ weakly in H ,

~= ⇀ ~ weakly in !^+1(&) )3 .

However, this alone does not imply 5 (~=) → 5 (~) in !
^+1
^ (&) ). Notice that with

@ = (^ + 1)/^, we have ? = ^ + 1. We now recall Lemma 1.3 from Lions (1971).

Lemma 2 Let O ⊂ R+ × R3 be an open and bounded set and let (6=)=, 6 ∈ !@ (O),
1 < @ < ∞, such that

‖6= ‖!@ ≤ �, 6= → 6 a. e. in O .

Then 6= ⇀ 6 weakly in !@ (O) as = → ∞.

In our situation, 6= := ‖~= ‖^ , @ =
^+1
^

, and

∫ !

0

|6= |@ dG =

∫ !

0

‖~= ‖^+1 dG ≤ �

holds. What is needed is that 6= → 6 a.e. in &) . We follow the same arguments
as in Prodi (2010) (see pages 209–211) to show that we can indeed extract a strongly
convergent subsequence, i.e.,

~= → ~ in H ,

which then implies that 5 (~=) ⇀ 5 (~) in !
^+1
^ (&) ). This, finally, allows us to pass to

the limit in (26). We can therefore conclude with the following theorem.

Theorem 1 Let the sequences (~=0 )= ⊂ � (A), (D=)= ∈ H , and (E=)= in !2(0,) ;R3−<)
be given such that (34) holds. Let (~=)= be the corresponding strong solution of (2).
Furthermore, let q ∈ � (A∗) be such that A∗q = −F ∈ !^+1 holds. Then, we can pass

to the limit in (26) and, hence, ~ is a weak solution of (2).

With this result, we can now state our existence theorem for the optimal control
problem.

Theorem 2 The optimal control problem (4) can be re-framed in a reduced form as

min
F

� (F,~ (F)) s.t. D ∈ *ad,

where ~ (F) is the mapping from the controls into ~ given by (26). This problem admits

a unique solution.
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Theorem 3 For unconstrained controls D ∈ !∞(0,) ;H) and E ∈ !∞(0,) )3−< there

exists a unique solution (D̄, Ē, ~̄) of problem (4). Moreover, there exists an adjoint state

?̄ such that (~̄, ?̄) satisfies the optimality system (2), (5), (8), (7) for unconstrained

controls and (9) in case of constrained controls.

Remark 5 1) An analogous result holds for the time-decomposed semilinear problem

(17). 2) Higher-order regularity of the boundary controls, as with (18), has to be

reflected in the cost function. For the pure final-value problem, the one where ` = 0

in (3), the control appears in the cost function only as a first-order derivative d
dC E; see

(20). Thus, we may then replace the original control E by its derivative Ẽ := d
dC E , which

is an !∞(0,) )3−<-control.

5. Convergence for the case of unconstrained controls

We now derive the proof of convergence for the described setting. We recall the
decomposed optimality system (16), (7), (8), (14), (15) and introduce the errors

~̃=: := ~=: − ~: , ?̃=: := ?=: − ?: , D̃=: := D=: − D: , Ẽ=: := E=: − E: .

Then, ~=+1
:

and ?=+1
:

solve the semilinear problem

mC~̃
=+1
: + ΛmG~̃

=+1
: +"~̃=+1: = 5: (~=: ) − 5: (~: ) + �3D̃

=
: , (C, G) ∈ &: , (37a)

mC ?̃
=
: + ΛmG ?̃

=
: + (ΛG −") + D~ 5 (~=+1: )) )?̃=+1: (37b)

−(D~ 5: (~=+1: )⊤ − D~ 5: (~: )⊤)?: = `~̃=+1: , (C, G) ∈ &: , (37c)(
~+,=
:

(C, 0)
~−,= (C, !)

)
=  

(
~+,= (C, !)
~−,= (C, 0)

)
+ �1E=: (C), C ∈ �: , (37d)(

?+,= (C, !)
?−,= (C, 0)

)
=  ̃

(
?+,= (C, 0)
?−,= (C, !)

)
, C ∈ �: (37e)

and

~̃=+1: ():+1) + V?̃=+1: ():+1) = q̃=:,:+1, : = 0, . . . ,  − 1,
~̃=+1: (): ) − V?̃=+1: (): ) = q̃=:,:−1, : = 1, . . . ,  ,

(38)

together with (15).

aD̃=: = ?̃=: , `Ẽ=:8 = |Λ8 (C, 1) |�)1 ?̃
=
:8 (C, 1) . (39)

In order to turn (37) into a semilinear problem just in ~̃=
:
, ?̃=
:
, we may rewrite

5: (C, ~=: ) = 5: (C, ~̃
=
: + ~: ), D~ 5: (~=: ) = D~ 5: (~̃=: + ~: ) .

Now, to compensate for the nonlinear terms, we make the following assumption.

Assumption 1 There exists a constant ! > 0 such that for each : = 0, . . . ,  the

following holds:



444 R. Krug, G. Leugering, A. Martin, M. Schmidt and D. Weninger

1. The functions 5: , D~ 5: are bounded by !.

2. The following pointwise estimates are valid:

‖(D~ 5: (C, ~=: (C)) − D~ 5: (C, ~: (C))~̃=: (C)‖!2 ≤ !‖~̃=: (C)‖!2 ,
‖ 5: (C, ~=: (C)) − 5: (C, ~: (C)) − D~ 5: (C, ~=: (C))~̃

=
: (C)‖!2 ≤ !‖~̃=: (C)‖!2 .

Remark 6 If we do not assume the boundedness of the derivatives of the nonlinear

terms, we may use the ”Stampacchia-trick” in the sense that we first extend the cor-

responding derivatives outside a given ball by constants and then show that for small

enough data the solutions stay small and, hence, the extensions are not active. This

procedure, however, would substantially extend the arguments and the length of this

article as error estimates for the state and its traces would be in order. For the general

concept however, see Casas and Fernández (1989). As this is very closely related

to the issue of existence of optimal controls, we defer the analysis to a forthcoming

publication. As of now, we therefore leave it to the reader to assess the validity of the

remark.

The following arguments follow the spirit of Lagnese and Leugering (2003), where
the linear wave equation (second-order in space and time) is considered. We introduce

- :=

( (
q:,:+1

) −1
:=0 ,

(
q:,:−1

) 
:=1

)
∈ X = !2(0, 1)2 3 ,

‖- ‖2 =
 −1∑
:=0

‖q:,:+1‖2 +
 ∑
:=1

‖q:,:−1‖2 .
(40)

For given iteration histories q:,:+1 and q:,:−1, i.e., for given - , we consider the unique
solution ~=

:
, ?=
:

of (37), (38) and then define ) : X → X by

)- :=

(
(~:+1():+1) + V?:+1 ():+1)) −1:=0 , (~:−1(): ) − V?:−1 (): ))

 
:=1

)
. (41)

In order to consider the fixed-point iteration

-=+1 = (1 − Y))-= + Y-=, Y ∈ [0, 1), (42)

we will show that the operator) : X → X is non-expansive. Note that even though the
definition of) involves the time traces of the state and the adjoint linearly, the mapping
is, in fact, nonlinear, according to the nonlinear term in the problem formulation. As -
is a fixed point,

-= − - =

( (
~̃=: ():+1) + V?̃

=
: ():+1)

) −1
:=0

,
(
~̃=: (): ) − V?̃

=
: (): )

) 
:=1

)
,

)-= − - = )-= −)- =

( (
~̃=:+1():+1) + V?̃

=
:+1():+1)

) −1
:=0

,
(
~̃=:−1(): ) − V?̃

=
:−1 (): )

) 
:=1

)
(43)

holds at iteration =. Moreover, we define the energies

E=: (C) := ‖~̃=: (C)‖
2 + V2‖?̃=: ‖

2, E= :=

 −1∑
:=0

E=: ():+1) + E=:+1 ():+1) . (44)
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Now,

‖-̃= ‖2 =
 −1∑
:=0

‖~̃=: ():+1) + V?̃
=
: ():+1)‖

2 +
 ∑
:=1

‖~̃=: (): ) − V?̃
=
: (): )‖

2

=

 −1∑
:=0

(
‖~̃=: ():+1)‖

2 + 2V~̃=: ():+1)?̃
=
: ():+1) + V

2‖?̃=: ():+1)‖
2
)

+
 ∑
:=1

(
‖~̃=: (): )‖

2 − 2V~̃=: (): )?̃
=
: (): ) + V

2‖?̃=: (): )‖
2
)

= E= + 2V
(
 −1∑
:=0

~̃=: ():+1)?̃
=
: ():+1) −

 ∑
:=1

~̃=: (): )?̃
=
: (): )

)

=: E= + F =

(45)

holds. Similarly, we have

‖)-= −)- ‖2 = E= − F =

and, hence,

‖)-= −)- ‖2 = ‖-= − - ‖ − 2F = .

In fact, given any pair -1, -2 ∈ X, we have ‖)-1 −)-2‖ = ‖-1 −-2‖ − 2F by the
same arguments. Therefore, ) is non-expansive if F ≥ 0. For the sake of brevity, it
is enough to show this with the iteration errors. We proceed with relations concerning
the global errors E and the term F .

Proposition 1 (Lemma 2 in Lagnese and Leugering, 2003) For any Y ∈ [0, 1) and

= ∈ N, we have

1. E=+1 + F =+1 ≤ E= − (1 − 2Y)F = ,

2. E=+1 + ∑=+1
;=1 2; (Y)� ; ≤ E1 with 21(Y) = 1 − 2Y, 2=+1(Y) = 1, and 2; (Y) = 2(1 − Y)

for ; = 2, . . . , =.

Proof As the proof is on the level of relations between E=+1, F =+1, E=, F = only, we
refer to Lagnese and Leugering (2003). �

In order to utilize the crucial Property 2 of Proposition 1, we need to establish the
positiveness of F = , where F = is defined in (45). To this end, we now multiply (37a)
by ?̃=

:
and the integration by parts then leads to
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0 =

∫ ):+1

):

∫ !

0

(
mC~̃

=
: + ΛmG~̃

=
: +"~̃

=
: − (5: (~=: ) − 5: (~: )) − �3D̃

=
:

)
?̃=: dG dC

=

∫ !

0

(
~̃=: ():+1)?̃

=
: ():+1) − ~̃

=
: (): )?̃

=
: (): )

)
dG

−
∫ ):+1

):

�)1 |Λ
− (!) |?̃=: (C, !)Ẽ

=
: dC −

∫ ):+1

):

∫ !

0

D̃=:�
)
3 ?̃

=
: dG dC

−
∫ ):+1

):

∫ !

0

~̃=:

(
mC ?̃

=
: + ΛmG ?̃

=
: + (ΛG −") )?̃=:

)
dG dC

−
∫ ):+1

):

∫ !

0

(5: (C, ~=: ) − 5: (C, ~: ))?̃
=
: dG dC

=

∫ !

0

(
~̃=: ():+1)?̃

=
: ():+1) − ~̃

=
: (): )?̃

=
: (): )

)
dG

−
∫ ):+1

):

�)1 |Λ
− (!) |?̃=: (C, !)Ẽ

=
: dC −

∫ ):+1

):

∫ !

0

D̃=:�
)
3 ?̃

=
: dG dC

− `
∫ ):+1

):

∫ !

0

~̃=: ~̃
=
: dG dC

+
∫ ):+1

):

∫ !

0

~̃=:
( (
D~ 5: (C, ~=: )

⊤)
?̃=: +

(
D~ 5: (C, ~=: )

⊤ − D~ 5: (C, ~: )⊤
)
?:

)
− (5: (C, ~=: ) − 5: (C, ~: ))?̃

=
: dG dC .

(46)

We obtain∫ !

0

(
~̃=: ():+1)?̃

=
: ():+1) − ~̃

=
: (): )?̃

=
: (): )

)
dG

=

∫ ):+1

):

�)1 |Λ
− (!) |?̃=: (C, !)Ẽ

=
: dC +

∫ ):+1

):

∫ !

0

D̃=:�
)
3 ?̃

=
: dG dC

+ `
∫ ):+1

):

∫ !

0

~̃=: ~̃
=
: dG dC

−
∫ ):+1

):

∫ !

0

~̃=:
( (
D~ 5: (C, ~=: )

⊤)
?̃=: +

(
D~ 5: (C, ~=: )

⊤ − D~ 5: (C, ~: )⊤
)
?:

)
− (5: (C, ~=: ) − 5: (C, ~: ))?̃

=
: dG dC .

(47)

Up to now, we have not made use of the assumption that the controls are uncon-
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strained. If we do, we obtain from (47) that

∫ !

0

(
~̃=: ():+1)?̃

=
: ():+1) − ~̃

=
: (): )?̃

=
: (): )

)
dG

=

1

d

∫ ):+1

):

|�)1 |Λ
− (!) |?̃=: (C, !) |

2 dC + 1
a

∫ ):+1

):

∫ !

0

|�)3 ?̃
=
: |
2 dG dC

+ `
∫ ):+1

):

∫ !

0

~̃=: ~̃
=
: dG dC

−
∫ ):+1

):

∫ !

0

~̃=:
( (
D~ 5: (C, ~=: )

⊤)
?̃=: +

(
D~ 5: (C, ~=: )

⊤ − D~ 5: (C, ~: )⊤
)
?:

)
− (5: (C, ~=: ) − 5: (C, ~: ))?̃

=
: dG dC

(48)

holds. Obviously, if there is no nonlinearity, the left-hand side of (48) is positive. In
the case of appearance of the nonlinear term 5 , we need to absorb the last integral in
(48) into the quadratic terms. For this, we will resort to (1). We derive from (48) the
following expression for F :

1

2V
F =

 ∑
:=0

∫ !

0

(
~̃=: ():+1)?̃

=
: ():+1) − ~̃

=
: (): )?̃

=
: (): )

)
dG −

∫ ):+1

):

~̃= () +1)?̃= () +1) dC

= ^

∫ !

0

|~̃=: () ) | dG + `
 ∑
:=0

∫ ):+1

):

∫ !

0

~̃=: ~̃
=
: dG dC

+ 1

d

 ∑
:=0

∫ ):+1

):

|�)1 |Λ
− (!) |?̃=: (C, !) |

2 dC + 1
a

 ∑
:=0

∫ ):+1

):

∫ !

0

|�)3 ?̃
=
: |
2 dG dC

−
 ∑
:=0

∫ ):+1

):

∫ !

0

~̃=:
( (
D~ 5: (C, ~=: )

⊤)
?̃=: +

(
D~ 5: (C, ~=: )

⊤ − D~ 5: (C, ~: )⊤
)
?:

)
− (5: (C, ~=: ) − 5: (C, ~: ))?̃

=
: dG dC .

(49)

In order to compensate the last term of (49), we invoke Assumption 1. We have

 ∑
:=0

∫ ):+1

):

∫ !

0

( (
5: (C, ~=: ) − 5: (C, ~: ) − D~ 5: (C, ~=: )~̃

=
:

)
?̃=:

−
(
D~ 5: (C, ~=: ) − D~ 5: (C, ~: )

)
~̃=:?: ) dG dC

≤
 ∑
:=0

∫ )

0

∫ !

0

(
f ‖~̃=: ‖

2 + [‖?̃=: ‖
2
)

dG dC

(50)

for some suitable numbers f, [ > 0 that depend on ! and the !∞-norm of ?, i.e., of
the adjoint of the underlying global optimality system, which is also equal to aD. The
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estimation in (49), together with (50), leads to

F ; ≥ 2V

{
^

∫ !

0

|~̃=: () ) | dG +
 ∑
:=0

(∫ ):+1

):

∫ !

0

`‖~̃;: ‖
2 + 1

a
‖?̃;: ‖

2 dG dC

+ 1
d

∫ ):+1

):

|�)1 |Λ
− (!) |?̃;: (C, !)

2 | dC −
∫ ):+1

):

∫ !

0

d ‖~̃;: ‖
2 + [‖?̃;: ‖

2 dG dC

)}

≥ 2V

{
^

∫ !

0

|~̃=: () ) | dG +
 ∑
:=0

(∫ ):+1

):

∫ !

0

(
(` − f)‖~̃;: ‖

2 +
(
1

a
− [

)
‖?̃;: ‖

2

)
dG dC

+ 1
d

∫ ):+1

):

|�)1 |Λ
− (!) |?̃;: (C, !)

2 | dC
)}
.

Assume now that the parameters^, ` are chosen sufficiently large and d, a sufficiently
small, such that X1 := ` − f > 0 and X2 := 1

a
− [ > 0 holds. Then, Proposition 1 (2)

yields

E=+1 +
=+1∑
;=1

2; (Y)
{
^

∫ !

0

|~̃=: () ) | dG +
 ∑
:=0

(∫ ):+1

):

∫ !

0

X1‖~̃;: ‖
2 + (X2) ‖?̃;: ‖

2 dG dC

+ 1

d

∫ ):+1

):

|�)1 |Λ(!) |?̃
;
:8 (C, 1) |

2 dC

)}
≤ E1, = = 1, 2, . . .

(51)

and, in turn, (51) provides

E= is bounded,

~̃;: → 0, ?̃;: → 0 in !2
(
�: ;!2(0, 1)

)
,

?̃;:8 (C, !) → 0, 8 =< + 1, . . . , , 3 ~̃;: (), ·), ?̃ (), ·) → 0 in !2(0, !)3
(52)

as ; → ∞ and for Y ∈ [0, 1). From (52), it is now clear that ~̃=
:
():+1), ~̃=: (): ), ?̃

=
:
():+1),

and ?̃=
:
(): ) converge to zero. In other words, the transmission conditions are satisfied

in the limit. We know, however, that E= is bounded and, hence, that there is a weakly
convergent subsequence. Notice, though, that on a subsequence it is not necessarily
clear that with index : also : + 1 is a part of that subsequence and, thus, the iteration
cannot be used.

On the other hand, we see from (52) that D̃=
:
→ 0 and Ẽ=

:
→ 0 in !2(0,) ;!2 (0, 1))3

or !2(0,) )< , respectively. Due to the continuity of the nonlinear functions 5: and61, we
obtain vanishing right-hand sides in the state and adjoint equations and homogeneous
boundary conditions in the limit on the entire sequence. Due to the uniqueness of the
solution of the optimality system, the initial and final data ~̃=

:
(): ), ~̃=: ():+1), ?̃

=
:
(): ),

and ?̃=
:
():+1) converge to zero in !2(0, 1)3 . As the functions ~: (·) and ?: (·) satisfy

Conditions (13), in the limit, the transmission conditions hold. This is true even
for Y = 0.

Theorem 4 The solutions (~=
:
, ?=
:
) of (16), (7), (8), (14), (15) with Y ∈ [0, 1) converge

to (2), (5), (39) strongly in !2
(
0,) ;!2(0, 1)

)
to (~: , ?: ), which is the solution of (17),

for : = 0, . . . ,  .
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Remark 7 For Y ∈ (0, 1), we can derive the convergence of the initial and final data

for ~=
:
, ?=
:

at ): , ):+1 directly. To this end, we consider the term

〈)-=, -=〉 =
 −1∑
:=0

(
~̃=: ():+1) + V?̃

=
: ():+1)

) (
~̃=:+1():+1) + V?̃:+1 ():+1)

)

+
 ∑
:=1

(
~̃=: (): ) − V?̃

=
: (): )

) (
~̃=:−1(): ) − V?̃

=
:−1 (): )

)

= 2

 −1∑
:=0

(
~̃=: ():+1)~̃

=
:+1():+1) + V

2?̃=: ():+1)?̃
=
:+1():+1)

)
.

Thus,

1

2
‖)-= − -= ‖2 = E= − 〈)-=, -=〉

=

 −1∑
:=0

(
‖~̃=: ():+1) − ~̃

=
:+1():+1)‖

2 + V2‖?̃=: ():+1) − ?̃
=
:+1():+1)‖

2
)
.

On the other hand

‖)=Y - 1 −)=−1Y - 1‖ = (1 − Y)‖)-= − -= ‖ → 0

holds according to Schaefer’s fixed-point theorem (Schaefer, 1957) for Y ∈ (0, 1). This

directly shows the desired convergence.

Remark 8 We see from the proof of Theorem 4 that with the given nonlinearity 5: , we

need the distributed control D: to compensate for the appearance of the nonlinearity in

the estimates. We also need the tracking term with ^ > 0 being distributed over space

and time. On the other hand, in this setting, we obtain stronger convergence results

than in Lagnese and Leugering (2003, 2004).

Remark 9 Distributed control with full access to the state are typically hard to imple-

ment in practice. Here, observers can be useful as they can provide estimates of the

states also based upon pointwise-in-space measurements. See, e.g., Gugat, Giessel-

mann and Kunkel (2021) for a recent work on nodal observers for networked semilinear

systems.

For boundary controls, on the other hand, full access is a not critical issue. As our

convergence proofs reveal, full access to the state is, however, essential to compensate

for the distributed nonlinear term. In this respect, we add that one may replace the

distributed control by yet another virtual control, however, at the expense of introducing

an approximation to the adjoint variable appearing in the optimality system on the

decomposed level. We do not have the space to elaborate on that variant here in detail

but rather sketch the idea and refer to a further publication. Indeed, assume we have an

approximation ?̂=
:8

of the true global adjoint variable ?: := ? |&:
such that ?̂=

:8
→ ?:8 .
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Then, we can write

mC~
=
: + ΛmG~

=
: +"~

=
: = 5: (C, ~: ) +

1

f
?=: −

1

f
?̂=: , (C, G) ∈ &: ,

mC?
=
: + ΛmG?

=
: = ^ (~=: − ~3 ) − (D~ 5

⊤
: + mG� −") )?=: , (C, G) ∈ &: ,

on the level of&: and= with the same initial and boundary conditions as in (16). We can

interpret the appearance of 1
f
?=
:

as the result of an unconstrained distributed control,

where 1
f
?̂=
:

is seen as an external input. Obviously, if there is convergence, then, in the

limit, ?: and its approximation do no longer appear in the state equation—therefore,

the notion of a virtual control. Then, if we consider the errors, we have

mC~̃
=
: + ΛmG~̃

=
: = 5: (~=: ) − 5: (~: ) +

1

f
?̃=: +

1

f
(?: − ?̂=: ), (C, G) ∈ &: ,

mC ?̃
=
: + mG�?̃

=
: −"

) ?̃=: = ^~̃=: − (D~ 5 (~=: )
⊤)?̃=: − (D~ 5: (~=: )

⊤ − D~ 5: (~: )⊤)?: ,
(C, G) ∈ &: .

The additional virtual load, which is indeed the error between the original adjoint

variable and its numerical approximation 1
f
(?: − ?̂=: ) then accumulates in the crucial

energy inequality (51). The assumed boundedness of the accumulated error

=+1∑
ℓ=1

 ∑
:=0

3∑
8=1

1

f

∫ ):+1

):

∫ !

0

(?̂ℓ:8 − ?:8 )
2 dG dC

then provides the same result as in Theorem 4. It is then the question of how to design the

approximate solutions in terms of the actual interface values to obtain a coarse-grain-

small-grain error analysis. This procedure results in a different concept of non-exact

time-domain decomposition, which is beyond the scope of this article. We remark that

the approach by Benamou (1996) also uses the idea of adding 1
f
?=
:
− 1
f
?=−1
:

. However,

this will not be sufficient to compensate for the nonlinear terms.

6. Convergence in the presence of control constraints and linear

dynamics

In this section, we consider pointwise constraints on D and E , i.e.,

D (C) ∈ * d
ad, E (C) ∈ * b

ad a. e. in (0,) ) . (53)

However, we do not take into account nonlinearities. It turns out that the interaction of
the control bounds with the bounds on the nonlinearities is rather complicated and not
fully explored up to now. Nevertheless, we provide the convergence proof as also this
extension is new in the context of optimal control for linear hyperbolic systems. We
stay in the context of problem (4), together with (53). We notice that this has already
been considered in Krug et al. (2021) for simpler boundary conditions. We recall the
optimality conditions (7) and (8). Moreover, we also have∫ ):+1

):

∫ !

0

(aD=: − ?
=
: ) (D̂: − D

=
: ) dG dC ≥ 0 for all D̂: ∈ * d

ad .
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For the corresponding errors we have (with D: ∈ * d
ad)

0 ≤
∫ ):+1

):

∫ !

0

(aD̃=: − ?̃
=
: + aD: − ?: ) (D: − D

=
: ) dG dC

=

∫ ):+1

):

∫ !

0

(aD̃=: − ?̃
=
: ) (−D̃

=
: ) dG dC −

∫ ):+1

):

∫ !

0

(aD: − ?: ) (D=: − D: ) dG dC

and, therefore,∫ ):+1

):

∫ !

0

(aD̃=: − ?̃
=
: ) (−D̃

=
: ) dG dC ≥

∫ ):+1

):

∫ !

0

(aD: − ?: ) (D=: − D: ) dG dC ≥ 0.

Hence,∫ ):+1

):

∫ !

0

D̃=: ?̃
=
: dG dC ≥ a

∫ ):+1

):

∫ !

0

D̃=: D̃
=
: dG dC (54)

holds. By the same argument, we obtain

∫ ):+1

):

�)1 |Λ
− (!) |?̃=: (C, 1)Ẽ

=
:8 (C) dC ≥ `

∫ ):+1

):

|Ẽ=: (C) |
2 dC, (55)

where (D=
:
, E=
:
, ?=
:
) and (D̃=

:
, Ẽ=
:
, ?̃=
:
) solve (16) and (37), respectively. We recall (46).

Then, according to (45) and (47), we obtain

F =
= 2V

{
^

∫ !

0

|~̃= |2 () ) dG +
 ∑
:=0

(∫ ):+1

):

Ẽ=:8 (C)�
)
1 |Λ

− (!) |?̃=: (C, !) dC

+
∫ ):+1

):

∫ !

0

D̃=: ?̃
=
: dG dC + `

∫ ):+1

):

∫ !

0

‖~̃=: ‖
2 dG dC

)}
.

Next, using (54) and (55), we can estimate F from below by

F = ≥ 2V

{
^

∫ !

0

|~̃= | () )2 dG
 ∑
:=0

(∫ ):+1

):

∫ !

0

`‖~̃=: ‖
2 dG dC

+
∫ ):+1

):

∫ !

0

a ‖D̃=: ‖
2 dG dC +

∫ ):+1

):

d |Ẽ=: |
2 dC

)}
.

The definitions in (40)–(44) stay unchanged also in the case under consideration. Thus,
we arrive at the conclusion that

E= is bounded,
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~̃=: → 0 in !2
(
�: , !

2(0, !)3
)
,

?̃=: → 0 in !2
(
�: , !

2(0, !)3
)
,

Ẽ=:8 → 0 in !(�: )3−<,
~̃= () ) → 0 in !2(0, !)3 ,
?̃= () ) → 0 in !2(0, !)3 ,

as = → ∞.

(56)

Theorem 5 Suppose that the controls D and E satisfy the pointwise constraints D (C) ∈
* d

ad, E (C) ∈ * b
ad, where * d

ad ⊂ !2(0, 1)3 as well as * b
ad ⊂ R< are convex and closed.

Further, let the iterates be defined as solutions (~=
:
, ?=
:
) of (16), (14), (15) with (54),

(55). Then, these iterates converge in the sense of (6) to the corresponding solutions of

(2), (5)–(8).

7. Conclusions

We have considered mixed two-point initial-boundary value problems for semilinear
hyperbolic systems with distributed and boundary controls. We provided a detailed
well-posedness analysis for both strong and weak solutions. This enabled us to rig-
orously investigate a generic tracking-type optimal control problem and we derived
optimality conditions for constrained and unconstrained controls. We then provided
an iterative time-domain decomposition in the spirit of Krug et al. (2021) and proved
convergence for unconstrained controls and, in the linear case, for constrained controls.
The numerical analysis of the iterative time-domain decomposition method derived here
is beyond the scope of this article. This and a posteriori error estimates will be subject
to a forthcoming publication. In particular, applications in the context of networks with
cycles are envisioned.

From the definition of the optimal control problem (4) it can be expected that the
optimal state shows a turnpike structure, see, e.g., Gugat (2021). This would allow to
choose longer—and therefore less—time-intervals in the decomposition of [0,) ] in a
neighborhood of) /2. This, however, exceeds the scope of this work and could possibly
motivate further research in the future.
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