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Abstract: This note presents sufficient conditions for the pro-
perty of strong metric subregularity (SMSr) of the system of first
order optimality conditions for a mathematical programming prob-
lem in a Banach space (the Karush-Kuhn-Tucker conditions). The
constraints of the problem consist of equations in a Banach space
setting and a finite number of inequalities. The conditions, under
which SMSr is proven, assume that the data are twice continuously
Fréchet differentiable, the strict Mangasarian-Fromovitz constraint
qualification is satisfied, and the second-order sufficient optimality
condition holds. The obtained result extends the one known for
finite-dimensional problems. Although the applicability of the re-
sult is limited to the Banach space setting (due to the twice Fréchet
differentiability assumptions and the finite number of inequality con-
straints), the paper can be valuable due to the self-contained expo-
sition, and provides a ground for extensions. One possible extension
was recently implemented in Osmolovskii and Veliov (2021).
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1. Introduction

Let X and Y be Banach spaces, and let the mappings

f0 : X → R, fi : X → R (i = 1, . . . , k), g : X → Y
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be twice continuously Fréchet differentiable. Consider the optimization (math-
ematical programming) problem

min f0(x) (1)

subject to g(x) = 0, fi(x) ≤ 0 (i = 1, . . . , k). (2)

The following system of equations and inequalities is known as Karush-Kuhn-
Tucker (KKT) system associated with problem (1)–(2):

f ′
0(x) +

k
∑

i=1

αif
′
i(x) + (g′(x))∗y∗ = 0, (3)

g(x) = 0, (4)

αifi(x) = 0, i = 1, . . . , k, (5)

fi(x) ≤ 0, αi ≥ 0, i = 1, . . . , k, (6)

where x ∈ X, y∗ ∈ Y ∗ (Y ∗ denotes the dual space to Y ), and α := (α1, . . . , αk) ∈
R

k. Moreover, “primes” indicate Fréchet derivatives, and (g′(x))∗ : Y ∗ → X∗

is the adjoint of the continuous linear operator g′(x) : X → Y .

Under additional conditions, usually referred to as (versions of) “Mangasarian-
Fromovitz constraint qualification”, the existence of a pair (y∗, α) ∈ Y ∗ × R

k,
such that the KKT system is fulfilled, is a necessary condition for x ∈ X to be
a local solution of problem (1)–(2). The relations in the last two lines of the
KKT system can be equivalently rewritten as

f(x) ∈ N
R

k

+
(α),

where f = (f1, . . . , fk), R
k
+ is the set of all elements of Rk with non-negative

components, and the normal cone to the set Rk
+ is defined as usual:

N
R

k

+
(α) :=

{

{λ ∈ R
k : 〈λ, β − α〉 ≤ 0 for all β ∈ R

k
+} if α ∈ R

k
+,

∅ if α 6∈ R
k
+,

where 〈·, ·〉 is the scalar product in R
k. Consequently, one can reformulate the

KKT system as

F (x, y∗, α) :=





f ′
0(x) +

∑k

i=1 αif
′
i
(x) + (g′(x))∗y∗

g(x)
f(x)



−{0}×{0}×N
R

k

+
(α) ∋ 0.

(7)

Therefore, F : S := X × Y ∗ × R
k
⇒ Z := X∗ × Y × R

k is called optimality
mapping, while its inverse is called (in the case of a finite-dimensional space X,
see Dontchev and Rockafellar, 1998 and 2014, p. 134) KKT mapping.
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The regularity properties of the mapping F with respect to perturbations
are of key importance in the qualitative analysis of optimization problems, such
as (1)–(2), including convergence of numerical methods. In this paper we focus
on the so-called Strong Metric Subregularity (SMSr) (see, e.g., Dontchev and
Rockafellar, 2014, Chapter 3.9, and the recent paper by Cibulka, Dontchev and
Kruger, 2018). We recall the definition for a set-valued mapping F acting from
a metric space (S, dS) to another metric space (Z, dZ): F is called SMSr at
s̄ ∈ S for z̄ ∈ Z if z̄ ∈ F (s̄) and there is a constant λ along with neighborhoods
U of s̄ and V of z̄ such that

dS(s, s̄) ≤ λ inf
z∈F (s)∩V

dZ(z, z̄) for all s ∈ U.

The SMSr property is equivalent to isolated calmness of the inverse mapping
F−1 at z̄ (see Dontchev and Rockafellar, 2014, Chapter 3.9). We use this fact
in the definition below, which is given in terms of the specific mapping F , and
the spaces S and Z defined around (7).

Definition 1 The mapping F is strongly metrically subregular at (x̂, ŷ∗, α̂)
for zero if 0 ∈ F (x̂, ŷ∗, α̂) and there exist a number λ and neighborhoods U of
(x̂, ŷ∗, α̂) and V of 0 ∈ Z such that for every z ∈ V and for every (x, y∗, α) ∈ U ,
satisfying z ∈ F (x, y∗, α), it holds that

‖x− x̂‖+ ‖y∗ − ŷ∗‖+ ‖α− α̂‖ ≤ λ‖z‖.

The SMSr property was introduced under this name in Dontchev and Rock-
afellar (2004), but has also been used under several other names (see also Klatte
and Kummer, 2002, Chapter 1, for the related but stronger property of (strong)
upper regularity). A more detailed historical account can be found in Cibulka,
Dontchev and Kruger (2018), Section 1.

In the present paper, SMSr of the optimality mapping is proven under strict
Mangasarian-Fromovitz conditions together with second-order sufficient condi-
tions (formulated in Section 3). In the case of finite-dimensional spaces X and
Y the result is known from Dontchev and Rockafellar (1998), Theorem 2.6, and
Cibulka, Dontchev and Kruger (2018), Section 7.1. We mention that in the first
of the quoted papers also local non-emptiness of F−1 is proven, as well as a
number of related results that substantially use the finite dimensionality. More
about the regularity properties of the problem (1)–(2) in the finite-dimensional
case can be found in Klatte and Kummer (2002), Chapter 8, and Bonnans and
Shapiro (2000), Chapter 5.2.

Various Lipschitz stability results, related to problem (1)–(2) (in Banach
spaces), and the associated Lagrange multipliers are obtained in Bonnans and
Shapiro (2000), Chapter 4, which, as far as we can see, do not imply the result,
given in the present note.

The twice Fréchet differentiability assumption involved restricts the appli-
cability of the result in infinite-dimensional problems. However, the purpose of
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this paper is to present a detailed, straightforward and self-contained proof of
the SMSr property of the optimality map. It serves as the basis for our fur-
ther study of the strong metric subregularity of the optimal system, already
implemented in Osmolovskii and Veliov (2021) for the general problem of the
calculus of variations and awaiting its implementation for nonlinear optimal
control problems. In the present paper, we would like to highlight a narrower
perspective than in Osmolovskii and Veliov (2021), and thus to provide shorter
and simpler proofs.

The authors wish to express their gratitude to Asen Dontchev, who made
numerous important suggestions for improving the exposition of the paper.

2. Preliminaries

In order to make the exposition more enlightening, in this section we recall some
basic facts, mainly concerning systems of linear inequalities and equations.

Let X be a Banach space, X∗ its dual space. If Ω is a cone in X, then Ω∗

denotes its dual cone, consisting of all linear functionals x∗ ∈ X∗, nonnegative
on Ω. The following theorem is a simple consequence of the separation theorem
(see Dubovitskii and Milyutin, 1965, and Dmitruk and Osmolovskii, 2018).

Theorem 1 (Dubovitskii - Milyutin) Let Ωi ⊂ X, i=1,. . . ,k be nonempty
open convex cones, Ω ⊂ X a nonempty convex cone. Then

(

k
⋂

i=1

Ωi

)

⋂

Ω = ∅

if and only if there are functionals x∗
i
∈ Ω∗

i
, i = 1, . . . , k and x∗ ∈ Ω∗, not all

equal zero and such that
k
∑

i=1

x∗
i + x∗ = 0.

Let l ∈ X∗ be a nonzero functional, and Ω = {x ∈ X : 〈l, x〉 < 0} an open
half-space. It is easy to realize that x∗ ∈ Ω∗ if and only if x∗ = −αl with some
α ≥ 0. Now, let Y be a Banach space, A : X → Y a surjective linear continuous
operator, that is, AX = Y . In this case the adjoint operator A∗ : Y ∗ → X∗

is injective and has a closed image A∗Y ∗ ⊂ X∗. By the Banach open mapping
theorem, the inverse operator (A∗)−1 : A∗Y ∗ → Y ∗ is bounded, and hence there
is a constant a > 0 such that

‖A∗y∗‖ ≥ a‖y∗‖.

Each functional of the form x∗ = A∗y∗ vanishes on kerA. The opposite is also
true: if x∗ vanishes on kerA, that is, x∗ ∈ (kerA)∗, then there exists a uniquely
defined functional y∗ ∈ Y ∗, such that x∗ = A∗y∗. (Hereafter, for a subspace
L ⊂ X, we denote by L∗ the set of all linear functionals vanishing on L).
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Let li ∈ X∗, i = 1, . . . , k be nonzero linear functionals and A : X → Y a
surjective linear continuous operator. Consider a system of linear inequalities
and equality

〈li, x〉 < 0, i = 1, . . . , k, Ax = 0. (8)

The Dubovitskii - Milyutin theorem easily implies the following lemma.

Lemma 1 System (8) is inconsistent if and only if there are reals α1, . . . , αk

and a functional y∗ ∈ Y ∗ such that

αi ≥ 0, i = 1, . . . , k,

k
∑

i=1

αi > 0,

k
∑

i=1

αili +A∗y∗ = 0.

Recall that a system of linear functionals li ∈ X∗ (i = 1, . . . , k) is said to be
positively independent on X if

α ∈ R
k

+,

k
∑

i=1

αili = 0 ⇒ α = 0.

For a system of linear functionals li ∈ X∗ (i = 1, . . . , k) and a linear con-
tinuous operator A : X → Y with a closed image AX consider the following
condition

α ∈ R
k

+, y
∗ ∈ Y ∗,

k
∑

i=1

αili +A∗y∗ = 0 ⇒ α = 0, y∗ = 0. (9)

It can be easily realized that condition (9) is equivalent to the following one:
AX = Y and the functionals li : kerA → Y , i = 1, . . . , k (the restrictions of the
functionals li to the subspace kerA) are positively independent. In this case we
say that A is surjective and li, i = 1, . . . , k are positively independent on kerA.
Then, by Lemma 1, there is x̃ ∈ kerA such that 〈li, x̃〉 < 0, i = 1, . . . , k.

Proposition 1 Suppose that AX = Y and li, i = 1, . . . , k are positively inde-
pendent on kerA, that is – condition (9) is fulfilled. Then there exists a constant
c > 0 such that

∥

∥

∥

k
∑

i=1

αili +A∗y∗
∥

∥

∥
≥ c

(

k
∑

i=1

αi + ‖y∗‖
)

∀α ∈ R
k

+, ∀ y
∗ ∈ Y ∗. (10)

Proof Since the condition (10) is positively homogeneous, it suffices to prove

it for pairs (α, y∗) ∈ R
k
+ × Y ∗ such that

∑k

i=1 αi + ‖y∗‖ = 1. Suppose that the
proposition is not true. Then, there is a sequence (αn, y

∗
n) ∈ R

k
+×Y ∗ such that

k
∑

i=1

αin + ‖y∗n‖ = 1 and ‖
k
∑

i=1

αinli +A∗y∗n‖ → 0 (n → ∞).
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Without loss of generality we can assume that αn → α ∈ R
k
+. Then

‖
k
∑

i=1

αili +A∗y∗n‖ → 0 (n → ∞).

Consequently, A∗y∗n strongly converges to some x∗ ∈ (kerA)∗. The latter implies
that x∗ = A∗y∗ with some y∗ ∈ Y ∗. Then, we have that ‖A∗y∗n − A∗y∗‖ → 0,
whence ‖y∗n − y∗‖ → 0 as n → ∞. Consequently,

k
∑

i=1

αili +A∗y∗ = 0 and

k
∑

i=1

αi + ‖y∗‖ = 1.

We came to a contradiction. ✷

Proposition 2 Suppose that ÂX = Y and l̂i, i = 1, . . . , k are positively inde-
pendent on ker Â. Let ĉ > 0 be the constant for the system l̂1, . . . , l̂k, Â as in
(10). Let the functionals li ∈ X∗, i = 1, . . . , k and operator A : X → Y satisfy

‖li − l̂i‖ < ε, i = 1, . . . , k, ‖A− Â‖ < ε, 0 < ε < ĉ.

Then, for the system l1, . . . , lk, A inequality (10) holds with c = ĉ− ε.

Proof Let α ∈ R
k
+, y

∗ ∈ Y ∗. Then

∥

∥

∥

k
∑

i=1

αili +A∗y∗
∥

∥

∥ ≥
∥

∥

∥

k
∑

i=1

αi l̂i + Â∗y∗
∥

∥

∥−
∥

∥

∥

k
∑

i=1

αi(li − l̂i)
∥

∥

∥− ‖(A∗ − Â∗)y∗‖

≥ ĉ
(

k
∑

i=1

αi + ‖y∗‖
)

− ε
(

k
∑

i=1

αi + ‖y∗‖
)

. ✷

The following lemma has the spirit of the so called Hoffman’s lemma, origi-
nally proven in Hoffman (1952) in the case when X is finite dimensional.

Lemma 2 (Ioffe, 2017, Theorem 3) Let A : X → Y be a surjective linear
continuous operator and li ∈ X∗, i = 1, . . . , k. Then, there is a constant CH > 0
such that, for any ξ = (ξ1, . . . , ξk) ∈ R

k, η ∈ Y and x0 ∈ X satisfying

〈li, x0〉 ≤ ξi, Ax0 = η,

there is a solution x′ to the system

〈li, x0 + x′〉 ≤ 0, A(x0 + x′) = 0

such that
‖x′‖ ≤ CH

(

max{ξ+1 , . . . , ξ
+
k
}+ ‖η‖

)

,

where ξ+
i
= max{ξi, 0}.
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3. Statement of the problem

In this section we formulate the assumptions needed and provide some basic
facts concerning problem (1)–(2).

Let x̂ be an admissible point. Define the set of active indices

I = {i ∈ {1, . . . , k} : fi(x̂) = 0}.

Assumption 1 (a) g′(x̂)X = Y . (b) There exists x̃ ∈ X such that g′(x̂)x̃ = 0
and 〈f ′

i
(x̂), x̃〉 < 0 ∀ i ∈ I.

In the case, in which X and Y are finite dimensional, these conditions are often
called the Mangasarian-Fromovitz constraint qualification.

According to Lemma 1, Assumption 1 is equivalent to the condition:

αi ≥ 0 (i ∈ I), y∗ ∈ Y ∗,
∑

i∈I

αif
′
i(x̂)+(g′(x̂))∗y∗ = 0 ⇒ αi = 0 (i ∈ I), y∗ = 0.

We formulate the well-known first-order necessary optimality condition in
problem (1)–(2) under Assumption 1 (see, e.g., Theorem 4 in Chapter 1 of Ioffe
and Tikhomirov, 1974).

Theorem 2 If x̂ is a local minimum in problem (1)–(2) such that Assumption 1
is fulfilled, then there are multipliers α ∈ R

k and y∗ ∈ Y ∗ such that

α ≥ 0, αifi(x̂) = 0, i = 1, . . . , k, (11)

f ′
0(x̂) +

k
∑

i=1

αif
′
i(x̂) + (g′(x̂))∗y∗ = 0. (12)

Now, fix an admissible point x̂ and denote by Λ the set of pairs (α, y∗) ∈ R
k×Y ∗

such that conditions (11) and (12) hold (x̂ is not necessarily assumed to be a
solution of (1)–(2)). Assume that Λ 6= ∅ and let us fix an element (α̂, ŷ∗) ∈ Λ.
Define two sets of indices

I0 = {i ∈ I : α̂i = 0}, I1 = {i ∈ I : α̂i > 0}.

Note that α̂i = 0 for any i /∈ I. Now we make a stronger assumption than
Assumption 1.

Assumption 2 The following implication holds:

α ∈ R
k, y∗ ∈ Y ∗, αi ≥ 0 (i ∈ I0),

∑

i∈I

αif
′
i(x̂) + (g′(x̂))∗y∗ = 0

⇒ αi = 0 (i ∈ I), y∗ = 0. (13)
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We emphasize that on the left-hand side of the implication (13) the signs of
αi for i ∈ I1 are not prescribed. In the finite dimensional case this condition is
known as strict Mangasarian-Fromovitz condition.

Condition (13) means that

a) g′(x̂)X = Y ,
b) the functionals f ′

i
(x̂), i ∈ I1 are linearly independent on ker g′(x̂),

and
c) the functionals f ′

i
(x̂), i ∈ I0 are positively independent on the subspace

{x ∈ X : f ′
i(x̂)x = 0, i ∈ I1, g

′(x̂)x = 0}.

It is known that in the finite dimensional case the strict Mangasarian-
Fromovitz condition is equivalent to single-valuedness of Λ, see, e.g., Kyparisis
(1985). This fact is also valid in the Banach space setting.

Lemma 3 Under Assumption 2, the set Λ is the singleton {(α̂, ŷ∗)}.

Proof For (α̂, ŷ∗) ∈ Λ, we have

f ′
0(x̂) +

k
∑

i=1

α̂if
′
i(x̂) + (g′(x̂))∗ŷ∗ = 0. (14)

Take any other pair (α, y∗) ∈ Λ. It satisfies conditions (11) and (12). Sub-
tracting (14) from (12) and taking into account the definitions of I0 and I1, we
get

∑

i∈I0

αif
′
i(x̂) +

∑

i∈I1

(αi − α̂i)f
′
i(x̂) + (g′(x̂))∗(y∗ − ŷ∗) = 0.

In view of (2), it follows that

αi = 0, i ∈ I0, αi−α̂i = 0, i ∈ I1, y∗−ŷ∗ = 0. ✷

So, (α̂, ŷ∗) is the only element of the set Λ. Introduce the Lagrange function

L(x, α, y∗) = f0(x) +

k
∑

i=1

αifi(x) + 〈y∗, g(x)〉.

We have Lx(x̂, α̂, ŷ
∗) = 0. Taking into account the definitions of I0 and I1, define

the critical cone

K = {δx ∈ X : 〈f ′
i(x̂), δx〉 ≤ 0, i ∈ I0; 〈f

′
i(x̂), δx〉 = 0, i ∈ I1; g

′(x̂)δx = 0}.

The following second-order sufficient condition for local optimality is well
known (Levitin, Milyutin and Osmolovskii, 1978):
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Assumption 3 There exists c0 > 0 such that

Ω(δx) := 〈Lxx(x̂, α̂, ŷ
∗)δx, δx〉 ≥ c0‖δx‖

2 ∀ δx ∈ K.

Theorem 3 Suppose that for an admissible point x̂ the set Λ is nonempty and
Assumption 2 is fulfilled (in this case, Λ is a singleton). Let also Assumption 3
be fulfilled. Then the following quadratic growth condition for the cost function
f0 holds at x̂: there exist c > 0 and ε > 0 such that f0(x) − f0(x̂) ≥ c‖x − x̂‖2

for all admissible x such that ‖x− x̂‖ < ε. Hence, x̂ is a strict local minimizer
in problem (1)–(2).

4. Strong metric sub-regularity

In this section we prove strong metric subregularity of the optimality mapping
associated with problem (1)–(2) under assumptions formulated below. For this,
along with the original unperturbed system of optimality conditions (3)–(6), we
consider the perturbed system of optimality conditions:

fi(x) ≤ ξi, i = 1, . . . , k, (15)

g(x) = η, (16)

αi(fi(x)− ξi) = 0, i = 1, . . . , k, (17)

αi ≥ 0, i = 1, . . . , k, (18)

f ′
0(x) +

k
∑

i=1

αif
′
i(x) + (g′(x))∗y∗ = ζ, (19)

where ξ ∈ R
k, η ∈ Y , ζ ∈ X∗. Note that the original system (3)–(6) corresponds

to zero values of the parameters ξ, η, ζ in (15)–(19).

Theorem 4 Let (x̂, α̂, ŷ∗) be a solution of the unperturbed optimality system
(15)–(19) (that is, with ξ = 0, η = 0 and ζ = 0) and let Assumptions 1–3 be
fulfilled. Then, there are reals ε > 0, δ > 0 and λ > 0 such that if |ξ| < ε,
‖η‖ < ε, and ‖ζ‖ < ε, and then, for any solution (x, α, y∗) of the perturbed
system (15)-(19), such that ‖x− x̂‖ < δ, the following estimate holds:

‖x− x̂‖+ |α− α̂|+ ‖y∗ − ŷ∗‖ ≤ λ(|ξ|+ ‖η‖+ ‖ζ‖).

We shall reformulate the above theorem in terms of SMSr (Definition 1). To
shorten the notation, we denote Ξ := X × Y ∗ × R

k, ŝ = (x̂, ŷ∗, α̂). We also
remind that the definition of the optimality mapping F is given in (7).

Theorem 5 Let 0 ∈ F (ŝ), and let Assumptions 1–3 be fulfilled for ŝ. Then, the
mapping F : Ξ ⇒ Z is strongly metrically subregular at ŝ for zero. Moreover,
the neighborhood U in Definition 1 can be taken of the form IBX(x̂; δ)×Y ∗×R

k,
where IBX(x̂; δ) is the ball in X centered at x̂ with radius δ > 0.
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Remark 1 The optimality map F , defined in (7), is a sum of a Fréchet differ-
entiable function ϕ(s) and a normal cone, call it N(s). According to Corollary
2.2 and Remark 2.4 in Cibulka, Dontchev and Kruger (2018), the SMSr of this
mapping at a point ŝ for zero is equivalent to the same property for the par-
tially linearized mapping, ϕ(ŝ) + ϕ′(ŝ)(s − ŝ). Notice that if Assumptions 1–3
are fulfilled for the mapping F , they also hold for the corresponding linearized
functions. Dealing with linear functions only makes the proof easier. However,
we do not make use of this fact and present a direct proof, working with the
possibly nonlinear functions, partly repeating in this way the argument behind
Corollary 2.2 in Cibulka, Dontchev and Kruger (2018). This allows for obtaining
the last claim of Theorem 5. Moreover, the proof remains self-contained.

Proof Let us analyze the perturbed system (15)-(19). Let x, α, y∗ be a solution
to this system for given ξ, η, ζ. Set ∆x = x−x̂. Since f(x) → f(x̂) as ‖∆x‖ → 0,
by complementary slackness conditions (17) we have: there exist δ > 0 and
ε > 0 such that αi = 0 for all i /∈ I, and hence ∆αi := αi − α̂i = 0 for all i /∈ I,
whenever ‖∆x‖ < δ and |ξ| < ε.

Assumption 2 implies that the functionals f ′
i
(x̂), i ∈ I, are positively inde-

pendent on ker g′(x̂). Then, according to Proposition 2 and the continuity of f ′
i

and g′, there exists δ > 0 and a constant c > 0, such that for every x ∈ X with
‖x− x̂‖ ≤ δ

∥

∥

∥

∑

i∈I

αif
′
i(x) + (g′(x))∗y∗

∥

∥

∥ ≥ c
(

∑

i∈I

αi + ‖y∗‖
)

.

This and equality (19) implies that there exists a constant C such that

|α|+ ‖y∗‖ ≤ C

whenever ‖∆x‖ < δ and ‖ζ‖ < ε. Therefore, ∆α = α − α̂ and ∆y∗ = y∗ − ŷ∗

are also bounded.

Subtracting (14) from (19) we obtain

f ′
0(x)− f ′

0(x̂) +
k
∑

i=1

(αif
′
i(x)− α̂if

′
i(x̂)) + (g′(x))∗y∗ − (g′(x̂))∗ŷ∗ = ζ. (20)

Set
x− x̂ = ∆x, y∗ − ŷ∗ = ∆y∗.

Then

f ′
0(x)− f ′

0(x̂) = 〈f ′′
0 (x̂),∆x〉+ o(‖∆x‖),

αif
′
i(x)− α̂if

′
i(x̂) = α̂i(f

′
i(x)− f ′

i(x̂)) + (∆αi)f
′
i(x̂) + (∆αi)(f

′
i(x)− f ′

i(x̂))

= α̂if
′′
i (x̂)∆x+ (∆αi)f

′
i(x̂) + (∆αi)f

′′
i (x̂)∆x+ o(‖∆x‖).
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Similarly,

(g′(x))∗y∗ − (g′(x̂))∗ŷ∗ =

(g′′(x̂)∆x)∗ŷ∗ + (g′(x̂))∗(∆y∗) + (g′′(x̂)∆x)∗(∆y∗) + o(‖∆x‖).

Using these relations in (20), we get

Lxx(x̂, α̂, ŷ
∗)∆x+

k
∑

i=1

(∆αi)f
′
i(x̂) + (g′(x̂))∗(∆y∗)

+
k
∑

i=1

(∆αi)f
′′
i (x̂)∆x+ (g′′(x̂)∆x)∗(∆y∗) + o(‖∆x‖) = ζ. (21)

If i /∈ I, then αi = α̂i = 0 and ∆αi = 0. Using the fact that I = I0 ∪ I1, we
represent this equation in the form
∑

i∈I0

(∆αi)f
′
i(x̂) +

∑

i∈I1

(∆αi)f
′
i(x̂) + (g′(x̂))∗(∆y∗)

= −Lxx(x̂, α̂, ŷ
∗)∆x−

k
∑

i=1

(∆αi)f
′′
i (x̂)∆x− (g′′(x̂)∆x)∗(∆y∗)− o(‖∆x‖) + ζ.

(22)

Let A be the operator, which takes each x ∈ X to the tuple
(

〈f ′
i(x̂), x〉, i ∈ I1, g

′(x̂)x
)

∈ R
|I1| × Y,

where |I1| is the number of elements of I1. Due to Assumption 2, this operator
is surjective, and the functionals li = f ′

i
(x̂), i ∈ I0 are positively independent

on its kernel. Applying Proposition 1 to this system of functionals and operator
and taking into account that all ∆αi and ∆y∗ are bounded, we obtain from (22)
that

k
∑

i=1

|∆αi|+ ‖∆y∗‖ ≤ c1(‖∆x‖+ ‖ζ‖) (23)

with some c1 > 0. Hereinafter we assume that ‖∆x‖ < δ and ‖ζ‖ < ε.

Recall that 〈L′′(x̂, α̂, ŷ∗)∆x,∆x〉 =: Ω(∆x). Then, ‘multiplying’ (22) by ∆x,
we get

Ω(∆x) +

k
∑

i=1

(∆αi)〈f
′
i(x̂),∆x〉+ 〈(g′(x̂))∗(∆y∗),∆x〉

+
k
∑

i=1

(∆αi)〈f
′′
i (x̂)∆x,∆x〉+ 〈(∆y∗)g′′(x̂)∆x,∆x〉

+o(‖∆x‖2) = 〈ζ,∆x〉. (24)
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Now we use conditions (15) and (17). Let us show that if ε > 0 and δ > 0
are small enough and ‖∆x‖ < δ, ‖ζ‖ < ε, then

(∆αi)(fi(x)− ξi) = 0 (25)

for all i = 1, . . . , k. It is enough to prove these equalities for i ∈ I = I0 ∪ I1,
because for i /∈ I we have ∆αi = 0.

First, let us show this for i ∈ I1. In view of (23) and the conditions ‖∆x‖ < δ
and ‖ζ‖ < ε, the vector ∆α can be regarded as arbitrarily small. Then, for i ∈ I1
we have: αi := α̂i + ∆αi > 0 (because α̂i > 0 and ∆αi is arbitrarily small).
Then, the complementary slackness conditions (17) imply

fi(x)− ξi = 0, i ∈ I1, (26)

whenever ε > 0 and δ > 0 are small enough. Hence, (25) follows for all i ∈ I1
and for ε > 0 and δ > 0 small enough.

For i ∈ I0 we have: α̂i = 0, consequently, αi = ∆αi, and then (17) implies
(25). Thus, (25) is proven for all i = 1, . . . , k, provided that ε > 0 and δ > 0
are small enough.

Consequently,

k
∑

i=1

(∆αi)
(

〈f ′
i(x̂),∆x〉 − ξi

)

=
k
∑

i=1

(∆αi)(fi(x)− fi(x̂)− ξi) + |∆α|O(‖∆x‖2)

=
k
∑

i=1

(∆αi)fi(x̂) + |∆α|O(‖∆x‖2) = |∆α|O(‖∆x‖2),

hence,

k
∑

i=1

(∆αi)〈f
′
i(x̂),∆x〉 = 〈∆α, ξ〉+ |∆α|O(‖∆x‖2). (27)

Using (27) in (24), we get

Ω(∆x) + 〈∆α, ξ〉+ |∆α|O(‖∆x‖2) + 〈(g′(x̂))∗(∆y∗),∆x〉

+

k
∑

i=1

(∆αi)〈f
′′
i (x̂)∆x,∆x〉+ 〈(∆y∗)g′′(x̂)∆x,∆x〉+ o(‖∆x‖2)

= 〈ζ,∆x〉. (28)

Equalities (26), the inequalities fi(x) ≤ ξi, i ∈ I0, and equality (16) imply,
respectively,

〈f ′
i
(x̂),∆x〉 = ξi +O(‖∆x‖2), i ∈ I1,

〈f ′
i
(x̂),∆x〉 ≤ ξi +O(‖∆x‖2), i ∈ I0,

g′(x̂)∆x = η +O(‖∆x‖2).
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Then, by Lemma 2, there exist a constant CH > 0 and a correction x′ such that

〈f ′
i(x̂),∆x+ x′〉 = 0, i ∈ I1, (29)

〈f ′
i(x̂),∆x+ x′〉 ≤ 0, i ∈ I0, (30)

g′(x̂)(∆x+ x′) = 0, (31)

and, moreover,

‖x′‖ ≤ CH

(

∑

i∈I0

ξ+
i
+
∑

i∈I1

|ξi|+ ‖η‖
)

+O(‖∆x‖2)

≤ CH

(

|ξ|+ ‖η‖
)

+O(‖∆x‖2). (32)

Relations (29)-(31) imply that

δx := ∆x+ x′ ∈ K,

and then, by Assumption 3, Ω(δx) ≥ c0‖δx‖
2. Let us compare ‖δx‖2 with ‖∆x‖2

and Ω(δx) with Ω(∆x), respectively. We have

‖δx‖2 = ‖∆x‖2 + r,

where |r| ≤ 2‖∆x‖‖x′‖+ ‖x′‖2. According to (32),

‖∆x‖‖x′‖ ≤ ‖∆x‖
(

CH(|ξ|+ ‖η‖) +O(‖∆x‖2)
)

= CH‖∆x‖
(

|ξ|+ ‖η‖
)

+ o(‖∆x‖2),

‖x′‖2 ≤ 2C2
H
(|ξ|+ ‖η‖)2 + o(‖∆x‖2)

(here we used: (a+ b)2 ≤ 2a2 + 2b2). Consequently, there is cr > 0, such that

|r| ≤ cr(|ξ|+ ‖η‖)(‖∆x‖+ |ξ|+ ‖η‖) + o(‖∆x‖2). (33)

Similarly, there is cΩ > 0, such that

Ω(δx) = Ω(∆x) + rΩ,

where

|rΩ| ≤ cΩ(|ξ|+ ‖η‖)(‖∆x‖+ |ξ|+ ‖η‖) + o(‖∆x‖2). (34)

Hence, the inequality c0‖δx‖
2 ≤ Ω(δx) implies

c0(‖∆x‖2 + r) ≤ Ω(∆x) + rΩ. (35)

Moreover, the relations g′(x̂)δx = 0 and δx = ∆x+ x′ imply

〈(g′(x̂))∗(∆y∗),∆x〉 = −〈(g′(x̂))∗(∆y∗), x′〉,
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whence

|〈(g′(x̂))∗(∆y∗),∆x〉| ≤ ‖g′(x̂)‖‖∆y∗‖
(

CH(|ξ|+ ‖η‖) +O(‖∆x‖2)
)

. (36)

Using (35) and (36) in (28) and estimating from above the norm of each
term, we obtain

c0‖∆x‖2 ≤ c0|r|+ |rΩ|+ |∆α||ξ|+ |∆α|O(‖∆x‖2)

+‖g′(x̂)‖‖∆y∗‖
(

CH(|ξ|+ ‖η‖) +O(‖∆x‖2)
)

+|∆α|
(

k
∑

i=1

‖f ′′
i (x̂)‖

)

‖∆x‖2 + ‖∆y∗‖‖g′′(x̂)‖‖∆x‖2

+‖ζ‖‖∆x‖+ o(‖∆x‖2). (37)

Using (23), (33) and (34) in this inequality, we get: there exists c′0 > 0 such
that

c′0‖∆x‖2 ≤
(

|ξ|+ ‖η‖
)(

‖∆x‖+ |ξ|+ ‖η‖
)

+(‖∆x‖+ ‖ζ‖)(|ξ|+ ‖η‖+ ‖∆x‖2) + ‖ζ‖‖∆x‖.

Set ω = (ξ, η, ζ), ‖ω‖ = |ξ|+ ‖η‖+ ‖ζ‖. From the previous inequality we easily
obtain: there exist ε > 0, δ > 0, and c′′0 > 0 such that if ‖ω‖ < ε and ‖∆x‖ < δ,
then c′′0‖∆x‖2 ≤ ‖∆x‖‖ω‖+ ‖ω‖2, whence

ĉ‖∆x‖ ≤ ‖ω‖ (38)

with ĉ = 1
2

(

√

4c′′0 + 1− 1
)

. Together with (23), this completes the proof of the

theorem. ✷
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