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1. Introduction

In this paper, we study the following control problem

(P) { uMienZIilze J(u) == F(u) + aj(u)
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where a > 0,

Flu) = / () — yale, ) e dt,
0 Q

JiD0" =R ) = [ ],
i=170
Uaa = {u €U : |lui|lpro,00) < vis 1 <7 <mj,

with yg € L?(Q), U = LP(0,00)™ N L'(0,00)™, m € N, 2 < p < o0, and
0 < <ooforl<i<m. Here y, denotes the solution of the equation:

O+ Ay + J(o.t) = o)+ Bu mQ=0x (0,09,
OnaYu =00n X =T x (0,00), yu(0)=1yp in Q, )

where Bu = Z u; (1)1 (x) for some functions {¢; }7; C L () with supp(¢;)N

i=1
supp(¢;) = 0 for i # j, and A is the linear elliptic operator

Ay = Z 81'3’ [a’ij (.13, t) ax,ly] + Clo(.]?, t)y

ij=1

Assumptions on the coefficients of A and the functions f, g, and yo will be given
in the next section.

We observe that U is continuously embedded in L?(0, 00)™, which follows by
interpolation between the spaces L'(0,00)™ and LP(0,00)™. As a consequence,
we also have that Bu € L%(Q) N LP(0,00; L*(Q)).

By studying (P) we continue our investigations of nonlinear pde-constrained
optimal control problems over infinite time horizons. Such problems have re-
ceived little attention, although they arise quite naturally, for example, in the
context of optimal stabilization, or in the case of modeling with finite horizons,
where the length of the horizon is ambiguous and choosing an infinite horizon
would be a safe way out. For infinite horizon optimal control problems. related
to ordinary differential equations, we cite the monograph by Carlson, Haurie
and Leizarowitz (1991), and selected papers by Aseer, Krastanov and Veliov
(2017), Basco, Cannarsa and Frankowska (2018), and Kalkin (1974), where the
latter might well be one of the earliest publications on the subject. In our work
we treated infinite horizon problems related to semilinear parabolic equations
in, e.g., Casas and Kunisch (2023a), and to the Navier Stokes equations in Casas
and Kunisch (2024a). The specificity of problem (P), which is not considered
in our previous work, consists in the fact that (P) does not contain a quadratic
space-time cost of the control, but rather the sparsifying term in time only,
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and that the explicit control constraint is of energy type in time, rather than
pointwise in time as it was in our previous work. This necessitates a different
treatment of the optimality conditions, especially the second order necessary
and sufficient optimality conditions. The control action enters (1.1) by means
of finitely many time dependent controls u;. The spatial distribution of the
controllers is fixed and described by ;. We shall utilize a feasibility assump-
tion guaranteeing that there exists at least one control vector w satisfying the
constraints and rendering the corresponding cost J finite. Such an assumption
is justified by stabilizability results, which guarantee that for properly chosen
m and 1;, there exists a control in feedback form for which the associated state
decays exponentially, see, e.g., Azmi, Kunisch and Rodrigues (2021). The spar-
sifying term j in the cost then guarantees that optimal controls will individually

shut off an remain shut off from times 77 on.

The paper is organised as follows. Section 2 presents properties of the state
equation needed for the analysis that follows. In the following Section 3 we
prove the existence of a solution for (P) and establish the first order necessary
conditions. Second order necessary and sufficient optimality conditions for (P)
are presented in Section 4, where special attention is paid to the fact that the
gap between these two conditions is small. Finally, Section 5 is devoted to the
approximation of the infinite horizon control problem by finite horizon control
problems.

2. Analysis of the state equation

In this section, we are concerned with the existence, uniqueness, and regularity
of the solution of (1.1). To this end, we make the following assumptions:

Assumption 2.1 We assume 1 <n <3, yo € L>®(Q) and g € L™(0,00; L*(2))N
L2(Q) with X + 3= < 1.
The function f : Q x R — R is measurable with respect to (z,t) € Q and

of class C? with respect to y € R and satisfies the following hypotheses

f(x’ t? 0) = 0’ (2'1)
of
307 €10,1) : a—y(m,t,O) > —drap(x,t), (2.2)
of
My >0 f(z,t,y)y > 0 and @(x,t,y) >0 V|y| > My, (2.3)
o f ‘
VM > 0300 >0: ’—(x,t,y)’ <Cry Yyl<M, j=1,2, (2.4)

oyl
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Vp >0 and VM >0 de > 0 such that
0% f 0% f . .
aiyg(x’t?yQ) - Tyg(x?tyl) S 4 V|yl| S M,Z = 1727 Zf |y2 - y1| S g,
(2.5)

for almost all (x,t) € Q.
The coefficients of A satisfy a; j,a0 € L=(Q) and

JA>0: Z ai j(,0)&E& > MNEP* VE € R™ and for a.a. (z,t) € Q, (2.6)
ij=1

ap(z,t) >0 for a.a. (z,t) € Q, and ag # 0. (2.7)

We mention that (2.3) and (2.4) imply that

g—;(:zr,t,y) > —Cyu,; Yy € R and for a.a. (r,t) € Q. (2.8)

Hereafter, we will follow the standard notation
W(0,T) = {y € L*(0,T; H'(Q)) : dyy € L*(0,T; H'(Q2)*)} for 0 < T < o0,

where H!(2)* denotes the conjugate of H!(Q). A function y is called solution
of (1.1)if y € W(0, T)NL>®(Qr) for all 0 < T < oo and it satisfies the following
equation in the variational sense

{ oy + Ay + f(z,t,y)

=g(x,t)+ Bu in Qr = Q x (0,7),
On,y=0o0nXr =TI x

g(
. 2.9
(0.7), y(0) =y in 9, 29)
We know that (2.9) admits a unique solution y,, in W(0,7) N L*>°(Qr) for
every u € LP(0,00) and all T < oo. Moreover, if u € U and y, € L?(Q), then
the regularity y,, € W(0,00) N L>°(Q) holds. Further the following estimates

are satisfied:

lyulle < K1 (Hyu||L2(Q) +llyollz2() + llg + BUHB(Q)), (2.10)

lwallze@) < Kz (lvall 2@ + lvollz=(o) + lg + Bullz2(q)

+ 191l 0,00,5 (2)) + | Bull Lo (0,00; L5 (02)) + Mf)7 (2.11)
where

1
2
lyullo = (HyuH%%o,oo;Hl(Q) + ||yu||2L°°(0,oo;L2(Q))> )
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see Casas and Kunisch (2024b) for the proof. Using (2.1), (2.4), and the mean
value theorem we infer that

@ty 1))] = g—imt,mx,wyu(x,t» lya(220)] < Catly (.,

where M = ||yu| p(g) and 0 < 6(z,t) < 1. Since y, € L*(Q) N L>(Q), the
above inequality implies that f(-,-,y,) € L*(Q) N L>(Q) and the following
estimates hold

Gt li~i@) < CrarM and [£C,w)llza@) < Crallvall oy (212)
Using these properties we deduce from the equation (1.1) that y, € W(0,00) N
L>(Q). Moreover, from (2.10) and (2.12) we get
[yullw(0,00) < K3 ((1+Cf,M)Hyu||L2(Q) +lyoll£2(e) + ||9+Bu||L2(Q))~ (2.13)
We define the set
A= {ue€ L*0,00)™ : y, € L*(Q)}.

Now we introduce the mapping G : A — W (0,00) N L>(Q) define by G(u) =
yy. The following theorem was proven in Casas and Kunisch (2023a, Theorems
2.2 and 3.1).

THEOREM 2.2 Let us assume that A is not empty. Then, A is an open subset
of L*(0,00)™ and the mapping G is of class C*. Moreover, given u € A and
v,v1,v2 € L%(0,00)™ we have that z, = G'(u)v and 2, », = G" (u)(v1,v2) are
the unique solutions of the equations

5‘tz+Az+g—£(x,t,yu)z:Bv n Q, (2.14)
On,z=00n3%, 2z(0)=0inQ, '

2
Oz + Az + %(m,t,yu)z = f%(x,t, Yu) 2w, Zos 0 Q, (2.15)
On,z2=00n%, 2z(0)=0i1inQ.

3. Existence of a solution and first order optimality con-
ditions for (P)

To address the existence of a solution of (P) first we observe that there exists
a unique solution ¥, of (1.1) for every u € U,q. However, it could happen that
the solution y,, does not belong to L?(Q) and, consequently, J(u) = co. In the
sequel, we say that u is a feasible control for (P) if u € U,q and the associated
state y, belongs to L?(Q), or, equivalently, u € U,q N .A. We point out that
Uaq N A is not necessarily convex. Hence, regarding the existence of a solution
for (P) we have the following result.
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THEOREM 3.1 If there exists a feasible control ug for (P), then it has at least
one solution.

PROOF Let {u}72 ; be a minimizing sequence of (P) formed by feasible controls
with associated states {yx}52 . Since J(ug) — inf (P) < J(ug) < 0o, we deduce
that {u}?2, and {yx}32, are bounded in U and L?*(Q), respectively. From
(2.11) and (2.13) we get that {yx}72, is bounded in W (0, c0) N L>°(Q). More-
over, the continuous embedding U C L?(0, o) implies that {uy}?2 ; is bounded
in L?(0, 00)™. Therefore, taking a subsequence, we obtain that (ug,yx) — (,7)
in L2(0,00)™ N LP(0,00)™ x W(0,00) N L>(Q). This implies that Buj, — Bu
in L2(Q) N LP(0, 00; L>=(9)). Using these properties one can pass to the limit
in the state equation (1.1) and deduce that § is the state associated with a; see
Casas and Kunisch (2023, Theorem 2.1) for details. Moreover, since uy — @
in L?(0,00)™ we deduce that u satisfies the control constraints. It remains to
prove that @ € L1(0,00)™ and J(u) = inf (P). To this end, we proceed as fol-
lows. For every T < oo, using the compact embedding W(0,T) C L*(Qr) and
the weak convergence uy — @ in L*(0,T)™ we obtain

1 T m T
5/ /|§fyd|2dxdt+a2/ ;] dt
0o Ja =170

1 <
< lim inf (2/62 Iy — yal? dadt + QZ/ luk 51 dt) < likrginf J(uy) = inf (P).
T j=1 0 b

k—oc0

Taking the supremum as T — oo we infer that 4 € L'(0,00)™ and J(ii) <
inf (P), which concludes the proof. ]

Next we derive the first order optimality conditions satisfied by a local mini-
mizer @ of (P). If nothing is specifically said, @ is called a local minimizer of (P)
if J(u) < oo and there exists € > 0 such that J(a) < J(u) for every u € Uyq such
that ||u — @l < e. By interpolation we have that U is continuously embedded
in L9(0,00)™ for every q € [1,p]. Therefore, if @ is a local minimizer of (P),
then it is also a local minimizer in the L9(0, 00)™ sense.

To write the optimality conditions, satisfied by a local minimizer, we need
to analyze separately the functions F' and j, defining the cost functional J.
Regarding the functional F'; we make the following assumption on yg4:

Assumption 3.2 yq € L*(Q) N L7(0,00; L3(Q)) with + + 55 < L.

7

As a straightforward consequence of this assumption and Theorem 2.2 we get
that F' : A — R is of class C? and for all v,v1,vs € L?(0,00)™ we have the
following expressions
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F’ = LBudrdt = - 0 q(t) dt, 3.1

(w)v Qsﬁ vdz dt ;_1/0 Gu,i(t)vi(t) di (3.1)
1/ azf

F"(u)(vi,v9) = /Q (1 — —ayQ (Jc,t,yu)npu)zvlzv2 dx dt, (3.2)

where ¢ i(t) = [, ¢u(t); dz and ¢, € W(0,00) N L>(Q) is the adjoint state
associated with u satisfying

—Op + A% + (2.t yu) o = yu —ya I Q, 53)
Onyp=0o0n %, lim [[p(t)r2@@) =0in Q. :
t—o0
For the proof of (3.1) and (3.2) the reader is referred to Casas and Kunisch
(2023a, Theorem 2.3 and Corollary 3.1). The existence and uniqueness of a
solution of (3.3) was established in Casas and Kunisch (2023a, Theorem A.4).
We observe that the identity lim; o [[u(t)| 2(q) = 0 is a consequence of the
fact that ¢, € W(0,00); see Casas and Kunisch (2022, Theorem 2.4).

The functional j : L'(0,00)™ — R can be written in the form j(u) =
S jolus), where jo : L*(0,00) — R is defined by jo(w) = [|w]|p1(0,00)- It
is clear that jy is Lipschitz continuous and convex. Hence, the convex sub-
differential djo(w) # 0 and the directional derivatives j)(w;v) exist for all
w,v € L'(0,00). The following properties hold:

=41 ifw(t) >0,

NEDjo(w) A = -1 ifw(t) <0, (3.4)
e[-1,+1] ifw(t) =0,
Jb(wiv) = /m o(t) dt — /Iw vwats [ ewlar (3.5)

;vohere{luf (E {t)e (8,)00)0} w(t) > 0}, I, = {t € (0,00) : w(t) < 0}, and
w =1t € (0,00) :w(t) = 0y.

We define the sets
;d = {v € LP(0, o) ﬂL1(07oo) ollzr,00) vt 1< <m

and observe that U,q = [, ;d. We have the following necessary optimality
conditions.

THEOREM 3.3 If @ is a local minimizer of (P), then there exist \; € 9jo(;) for
1=1,...,m, satisfying

/Ooo(gm(t) +aXi(t)(u(t) —a; () dt >0 Yuell,, (3.6)

where ¢;(t) = [, ¢(t)v; dz and @ is the adjoint state associated with .
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PRrOOF Using the convexity of U,q and j we get for every u € Uyq

0 < lim J(@+ pu—1a))— J(a)
p—0 P

< Fl(a)(u—1u) +alj(u) —j@)].  (3.7)

Let us fix ¢ € {1,...,m} and take u € U,q with up = g if k # i and u; =
v € U',. Then, using (3.1) and the definition of ¢;, we infer from the above
inequality that

/Ooo (1) (v(t) — (1)) dt + aljo(v) = Jo(@)] =0 Vv € Upg.

Denoting by ;i L'(0,00) N LP(0,00) —> [0, 0] the indicator function of the
convex set Z/Ié 4 We obtain that #; is the minimizer of the convex function

) = [ G0l de-+ ajo(e) + Iy, (o)

This implies the existence of \; € 97y (;) such that
0e ng +a\ + (9]2,{;0[ (t;),
which is equivalent to (3.6). m

COROLLARY 3.4 Let @ = {u; }7~; and {(Ai, ¢s)}1% be as in Theorem 3.3. Then,
{(N\is @:)}™ are continuous functions in [0,00) and the following relations hold
forallt € [0,00) and alli=1,...,m

If ||ﬂiHLP(O,oo) < Yi, then Qgi(t) + Oéj\z(t) =0, (38)

_ . 1_

Ai(t) = Proji_y 11 <— E¢i(t))' (3.9)
If p € [2,00) and ¢; + a)\; = 0, then for almost every t € [0,00) we have

if 4;(t) > 0, then ¢;(t) = —a,
if wi(t) <0, then ¢;(t) = +a, (3.10)
if |i(t)| < @, then w;(t) = 0.

If p € [2,00) and ¢; +a\; Z 0, then U is a continuous function and we have for
all t € [0, 00)

ui(t) >0 iff ¢i(t) < —a,
w;i(t) <0 iff ¢i(t) > +a, (3.11)
w(t) =0 iff [6:i(t)] <

~— —
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If p = oo, then we have for almost all t € [0, 00)

if gi(t) < —a then u;(t) = 4+,
if ¢i(t) > +a then u;(t) = —vy;, (3.12)
if |pi(t)| < a then u;(t) = 0.

Finally, the multipliers {\;}, satisfying (3.6) are unique.

PROOF Since ¢ € W(0,00) C C([0,00); L?(Q2)), we deduce from the definition of

¢; its continuity in [0, 00). The continuity of ); is a consequence of the identity
(3.9), which will be proven below.

We start with assuming that ||%;]| 1»(0,00) < 7 and set e; = i — ||| v (0,00)-
Given T' < oo, for every v € LP(0,T) with [[9]|s(0,1) < & we put

o(t) + as(t) ift e (0,T),
v(t) = { w(t)  ift>T.

Then, it is evident that v € Z/Iéd and, consequently, we deduce from (3.6) that

T o)
/ (i +aX)odt = / (i +aX;)(v—u;)dt > 0 for every 9] Lo 0,1y < &i-
0 0

This implies that ¢; + aX; = 0 in (0,7). Since T was arbitrarily large, (3.8)
follows.

The relations (3.10) are an immediate consequence of (3.4). Let us prove
(3.11). Since ¢; + aX; # 0, the equality ||%;]|1r(0,00) = Vi follows from (3.8).
Then, there exists Ty < oo such that ¢; +aX; # 0 in [0, To] and [|@;|Le0,1,) > 0
by (3.6). For every T' > Ty we put v;, 7 = ||| z»0,r) > 0. For all v € LP(0,T')
such that [[v||zro,7) < vi,r We define

) o(t) ifte (0,T),
o) = { a;(t) ift>T.

We observe that ¢ € LP(0,00) N Iil(O,og) and [|9]| e (0,00) < 1Tl Le(0,00) = Ve
and thus ¢ € U’ ;. Then, for 7; = ¢; + a\;, (3.6) leads to

/0 7:(8) (v(t) — w;(t)) dt > 0.

This yields

T T
- / Pvdt < — / ity &t < |7l o 0.9 1l o 0.1y = 3oz 17 0.1
0 0
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Taking the supremum over all elements v € LP(0,T') such that |[v|[z»0,17) < 73,75
we obtain

T
vl or) < - [ B A<l 00y
0
This implies the representation formula

|6 (t) + aXi ()P ~2(i(t) + adi(t))

= —
H¢l + O‘/\iHI[),p’(O’T)

u;(t) = —vi,r a.e.in (0,T).  (3.13)

Since T > Ty is arbitrary, from the above formula and (3.4), the relations (3.11)
follow. Moreover, if p € [2,00) then (3.9) is deduced from (3.8) and (3.11) by
simple computations. The continuity of ); is the consequence of the continuity
of ¢; and (3.9). Finally, the continuity of %, is the consequence of (3.13) and
the continuity of \; and ¢;.

For the proof of (3.12) and the associated representation formula (3.9) the

reader is referred to Casas (2012). The uniqueness of the multipliers {\;}7, is
an immediate consequence of (3.9). |

COROLLARY 3.5 Let @ € Uaa satisfy the optimality conditions (3.6), then there
exist time instances {T;}", C (0,00) such that @;(t) = ¢i(t) + aXi(t) =0 for
everyt > 1T, 1 <i<m.

PROOF Since lim; o0 [|¢(2)| 2(0) = 0, we deduce that
Tim [34(0)] < Jim |60 2oy [l gy = 0. 1< i <.

This leads to the existence of T} < oo such that |¢;(t)| < « for every t > T.
Then, the equality @;(t) = 0 follows from (3.10)—(3.12). Finally, it is enough
to use the representation formula (3.13) to deduce that ¢;(t) + aX;(t) = 0 for
every t > T as well. ]

COROLLARY 3.6 Let @ € Uqq satisfy the optimality conditions (3.6) and assume
that ¢; + aX; £ 0 for some 1 < i < m. Then, the following representation
formula for u; holds:

s |6i(t) + aXi ()P ~2(i(t) + aXi(t))

az(t) =% = = T
16+ Al oo

for a.e. t €]0,00). (3.14)

Proor We use (3.13) for ' > T. As a consequence of Corollary 3.4 we have
that vi,r = v and [|;+aXi|l 1o o,y = [|¢i + il L (0,00)- Hence, (3.13) implies
(3.14). |
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4. Second order optimality conditions for (P)
In this section we address the second order optimality conditions for problem
(P). We will distinguish the cases 2 < p < 0o and p = 0.
4.1. Case I: 2 <p < oo.
We associate the following Lagrangian functions to the control problem (P)
LF: AxR™ —R
1 m

Flus) = Fu)+ - 37 Slullo,) and £lus p) = Flusp) +aj(u).
i=1 't

According to (3.1) and (3.4) we have the following directional derivative

%(uv piv) = %(U, wv + aj/(u; v)
= Z (/Ooo[fbi(t) + M*;|ui(t)\1)—2ui(t)]vi(t) dt + ajé(”i;'l)i)),

(4.1)

where ¢;(t) = [, ¢u(t)¥; dz. The second derivative of F with respect to u is
given by the expression

02 F o2
W(%H)(Ulﬂb) = /Q (1 - aiy‘;c(x7tayu)¢u)zvlzﬂz dzdt

+(-1) Z 57’ /OOO i ()P~ 201 ()2 (2) dt. (4.2)
=1 '*

Let @ € U,q be a control satisfying the first order optimality conditions (3.6).
Associated with u we define the Lagrange multipliers

p={m}y with fi; = ill¢s + Xl 1o (0,00 - (4.3)
Since @,/_\i € L>(0,00) and ¢;(t) + aXi(t) = 0 for t > T, we have that
¢; + aX; € L9(0,00) for all ¢ € [1,00] and every 1 < i < m. The choice of i is

justified by the following proposition.

PROPOSITION 4.1 Let @ satisfy the first order optimality conditions (3.6) and
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let fi be defined by (4.3). Then, the following properties hold:
i) ﬂz‘ >0 and [i(||UllLr0,00) =) =0 for i=1,...,m,
m)—(’ ;) >0 Yvel,

ii1) Z—E(ﬂ,ﬂ;v) =0 iff [v;(t)] = Ni(t)vi(t) ae. in I for i=1,.
u

PROOF The statement i) is an immediate consequence of the definition (4.3) of
f; and (3.8). Let us prove ii). If g; = 0, then the definition (4.3) along with
(3.4) and (3.5) imply

[ Tl + B (020 0)us() i + o 0)
0 I

(4.4)

Now we consider the case where i; > 0. Using the representation formula (3.14)
we get

| (£) [P~ 2 (t) = —~P ! fbi(t) + aXi(t) |
16 + Xl 2o (0.00)

By combining this with the definition of fi; we obtain

Bl ~2a,(t) = ~(@:(6) + aAu(0).

%

Therefore, the same expressions as in (4.4) apply in this situation. Finally, (4.4)
yields ). |
Remark 4.2 We observe that it was established in the above proof that
e 17 -
/ 6. + SO 2w 00 dt + i) 20 Voel  (45)
0 i
and for alli=1,...,m

Now we address the necessary second order conditions. To this end, we
define the cone of critical directions as follows

Ca = {v eU:J'(Gv) =0 and / | (4) P23 (t)vs (£) dt < 0 Vi € SO},
0

where Sy = {i € {1,...,m} : [|@|1r(0,00) = i} We also define S = {i € S :
f; > 0}. We have the following property on Cjy.
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ProrosiTION 4.3 If v € Cy then we have
i) / s (£) P2 (£)vs () dt = 0 Vi € S,
0

oL,
i) o (1, i) = 0.

PrOOF Using Proposition (4.1), the definition of Cy, and (4.1) we obtain that

05 % o) = @) + 3o /O " @) P2t (e) dt

=1

=D W /ODO @i ()P~ 2aq ()i (t) dt <0,

ieSy

This implies the statement of the proposition. [

THEOREM 4.4 If @ is a local minimizer of (P), then %1“‘2—' (@; 1)v? > 0 Yo € Cy.

PROOF First we take an element v € Cy N L>°(0,00), satisfying the following
property

36 > 0 such that v;(¢t) = 01if 0 < |g;(t)] < d for 1 < i < m. (4.6)

We will get rid of these assumptions later. Let us denote
Ey = {2 € S / i (£) P2 () vy (t) dt = o}.
0

If i ¢ Ey, we define the mappings h; : R — LP(0,00) N L*(0,00) and
oi R —s R by hi(p) = @ + pui and 03(p) = [a(p) 20,y 16§ & So, then
0:(0) < ~? and, consequently, there exists £; > 0 such that o;(p) < ¥ for every
lpl < e

If i € Sp \ Ep, then ¢;(0) =+ and

o/(0) = p /0 i (8) P2 (£) v () dt < 0,

Again, this implies the existence of €; > 0 such that o;(p) < ¥ for all p € (0,¢;).
In both cases we have that h;(p) € U’ for every p € (0,¢;). In all cases, we

assume that ¢; < 5—7>——.
2||villLoo (0,00)
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If i € Ey, then there exists €; > 0 such that

Vi

%; + pvill Lo (0,00) = 1Till 7 (0,00) = PIlVill P (0,00) > 5 if lpl < e

u; + PY;
Vi = .
‘ @i + pvill L (0,00)
This choice also implies that h;(p) € U ,;. For i € Ey we define

1 i J
0<e <3 min{ . ’ }
2 [0ill 22 (0,00) " Vil Lo 0,00)

We define h; : (—e;,&;) — LP(0,00)NLY(0,00) by h;(p) =

For 0 < ¢ < min{e; : 1 < ¢ < m} the mapping h : [0,&) — Ugq, given by
h(p) = (hi(p))™,, is well defined and of class C?. We observe that h;(0) = i,
and A'(0) = v; for every i = 1,...,m and, as a consequence, we get that
h(0) =@ and K/ (0) = v. Associated with this function we set w : [0,&) — R by
w(p) = J(h(p)). From Propositions 4.3-ii and 4.1-iii, using (4.6) and the choice
of € it follows that |h;(p)(t)| = Ai(t)hi(p)(t) for almost all ¢ € (0,00). Hence,
we have

w(p) = ko) +a" [ Kii(p)at.
i=170
Therefore, w is of class C? and satisfies w(0) = J(u) and
m o0 _
w'(0) = F' (@) (0) + aZ/ bl (0)dt = J' (5 v) = 0.
i=170

Since @ is a local minimizer of (P), then 0 is a local minimizer of w, hence
w”(0) > 0. Let us compute this derivative. First we observe that

w'(p) = F'(h(p)l(p) + 0y / b (p) dt.
i=1
By derivating this expression, we get

m o0 _

w”’(0) = F"(a)o® + F'(@)h"(0) + oy / AihY(0) dt
i=170

= F"(a)v* + Z / (i 4+ XY (0) dt
i=170

=F'(ap? + > / m(éi +aX)h! (0)dt,
0

i€Sy
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where we have used the fact that 7;||¢; + a||r(0,00) = fti = 0 if i & S . Let us
compute hY/(0) for i € S§ C Ey. The first derivative is given by

i T I~ 1@ + puilP=2 (u; + pv;)v; dt
I+ pvilzr oo s+ puilE o

hi(p) =

Now we use Proposition 4.3-i to deduce

; p—2 th
p(0) = (p— B i
Vi
Upon inserting this expression in the obtained formula for w”(0) we infer with
Holder inequality, (4.3), (3.2), and (4.2) that

p—2 th B
0 < w"(0) = F"(a)v? ny e |u’| Y / (Bi +aX)a; dt
1»’:‘5+ 0
16i + aXill 1o (0,00 o

< F'(@)w? + (p—1) Z pL (0, )||aiHLp(0,oo)/ @ P~ 202 dt

. + 77, 0

€Sy
<SF'a)p*+(p—1) ) “1/ ;P20 dt

zGSJr

O*F
_F//( U + _1 Z / |* ;D 2 2 W(a’/j)UZ'

To conclude the proof we prove that all elements v € Cj can be approximated
in the norm of & by a sequence {v;}32, C Cz N L*(0,00), satistying (4.6) for
appropriate 6 > 0. By doing this we obtain that

0*F 9 0% F
a, fi i 0, i)ve > 0.
Gz ()0 = lim o (o, )
Let us construct such a sequence {vy}32,. Given v € Cg, for every i = 1,...,m

and every integer k > 1 we introduce the functions

b 0 if0<la(t)] <+
7\ wi(t)  otherwise.

Now, we set Sy = {ieSy: fooo |t;[P~2u;v; dt = 0}. For every i € So we put
oo
Oi = / ‘ﬂi|p_2ﬂi PrOj[_k7+k] (@;) dt and €,
0

(o)
— o [ mP et
ai,k 0 1+k| zk|
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Finally, we define
D4,k (1) oA
T oo, oy — ik Proj—g 4y (Wi(t)) if i € S,
vk (t) = 5 10k (8)] o)

T otherwise.
1+ "U1 k (t)l

It is obvious that 6; , — ||ﬂiH]Zp(O,OO) = 4P for all i € Sp. We also have that

D4,k (t)
145194,k (8)]

LP(0,00) N LY(0, 00). Hence
a consequence, we get

— v;(t) pointwise in (0,00) and the sequence is dominated by v; €

, ﬁ — v; strongly in LP(0,00) N L*(0,00). As

1 < o 4
ik = —p \ul|p wv;dt =0 Vi € .Sp.
Vi Jo

Setting vy = (v;%)5,, we deduce from these facts that vy, — v strongly in U
and by the choice of 0;  and ¢; ; we find for k large enough

o =0 Vie§
_ip 2_1'1' dt 0, R
/0 [l v {<0 Vi € Sp \ So.

Further, by construction it is obvious that {v}7>, C L>(0,00)™. It remains to
prove that J'(@;vx) = 0, so as to conclude that {vx}%2, C Cg. To this end we
first observe that since v € Cy, Propositions 4.3-4 and 4.1-44 imply that |v;(¢)| =
Ai(t)v;(t) for almost all ¢ € (0,00) and all 4 = 1,...,m. By construction, it is
immediate to check that the property is satisfied by the functions v; ;. Using
again Proposition 4.1-i7 we infer that a (u f;v) = 0 for every k. This leads
to

oL , i )P2a ) _ i
0= == (@, fi;v) = J'(1; v +;%/ (8P~ 2 (t)vy 1. (1) At = J'(@; vy.),

where we have used that the above integral vanishes if i € Sy and ;= 0 if
) Q SO. |

Now we address the second order sufficient optimality conditions. We limit
this study to the case of p = 2. In infinite dimensional optimization, it is well
known that we cannot consider the same cone Cj for the second order necessary
and sufficient conditions. In general, an extended cone is necessary to deal with
the sufficient conditions; see, for instance, Casas and Mateos (2020), Casas and
Troltzsch (2015), Dunn (1998), or Maurer and Zowe (1979). Given a control
U € Uyg, satislying the first order optimality conditions (3.6), we define for every
7 > 0 the extended cone

Cz={ve: J'@v) <zl
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and

/‘X’ﬂ_v_dt{ <0ViesS }
o > —7llzllL2q) Vie S S

where z, = G'(u)v is the solution of (2.14) with u replaced by @. Using Propo-
sition 4.1-4i we get for every v € C7

0< g—i(ﬁ,ﬂ;v) = J'(w;v) + Z %/ U () v (£) dt < J'(w;v).
i€Sy P70

Thus, for every small 7 > 0 and all v € C? the terms J'(@;v) and fooo u;v; dt
for @ € Sa' are not necessarily zero, but they are small. Taking into account
Proposition 4.3-i, we observe that Cy C C7 for all 7 > 0 and C} is a small
extension of Cy if 7 is small.

THEOREM 4.5 Let @ € U,qNA satisfy the first order optimality conditions (3.6)
and the following second order condition:

82‘F = 7\ 2 2 T
36 >0 and It > 0: W(u,u)v > 6|20 ll72(q) Vv € CF, (4.7)

where z, = G'(@)v. Then, there exist € >0 and k > 0 such that

K _ _ _
J(“)‘*’gHyu—yHQLz(Q) < J(u) Vu € Uga : 1yu=9llL2(Q) t1vu—T0llL=(@) <& (4.8)

Before proving this theorem we establish two auxiliary lemmas.

LEMMA 4.6 Assume that @ € Uyg N A. Then, there exist &1 > 0 and M > 0
such that for every u € Uy with lyu — FllL=(q) < €1 we have that v € A and
yullw (0,000 < M. Moreover, the following inequalities hold

yu = (T + 2u—a)ll2(Q) < Killyu — Fllze (@) lyu — ¥llL2(@)> (4.9)

lyu = Yll2(@) < 2lzu—allL2(q); (4.10)
3 _

lzu—allz2(@) < §||Z/u —9llz2(Q), (4.11)

2uw — 20llL2(Q) < Kallyu — Gl l20ll2(q) Yo € L*(0,00)™, (4.12)

||zu7v||L2(Q) < 2||Zv||L2(Q) Yv € LZ(O,oo)m, (4.13)

where 2y, = G'(W)v, z, = G'(W)v, and zy—z = G'(7)(u — @).
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PROOF Let u satisfy the assumptions of the lemma and set w = y,, —y. By sub-
tracting the equations satisfied by ¥, and  and performing a Taylor expansion
of f around § we obtain

2 .
atw+Aw+%{/(x7tag)w:B(u_’a)_%%(xatvye)(yu_g)Q m Qa (414)
Op,w=0o0n%, w(0)=0inQ,

where 0 < 0(z,t) < 1 and yp = ¥+ 0(y, — ). Since ||ygllr=) < M =
1] Lo (@) + €1, we infer from assumption (2.4) and Casas and Kunisch (2023a,
Theorem A.3)

lwllwior < C(Cy+ Craretllvn = Fllrzen ) ¥T < o,

where C depends on the parameters {v;}/,. This implies that ; can be
chosen small enough such that |lw|[w o) < M for every T < oo and some
constant M. Hence, the inequality lyullw,00) < M = M + 171l (0,00) holds
and, consequently, we have that u € A.

Now we set w = y, — (J+ 2y—a) = W— 2zy—gz. Upon subtracting the equations
satisfied by w and z,_3 it follows that

2
Optd + At + L (2,8, g = — 5 5 (2.8, y0) (yu — 9)* In Q,
Op, 0 =0o0n%, w(0)=0inQ.

na

Arguing as we did for w we deduce (4.9). Now, we redefine & = min{ey, ﬁ}
Then, using (4.9), we infer

19u = Fll22@) < 1Yu — (¥ + 2u—a)l22(@) + l2u-allz2(q)
1 _
< 5w =lle2@) + lzu-allz2(0):

which implies (4.10). Inequality (4.11) follows in a similar way:

_ _ 3 _
lzu—allzz(Q) < llyu — (¥ + 2u—a)llz2(Q) + 1Yu — Ullz2(@) < 5l1Yu — FllL2(@)-

Now, we prove (4.12). Setting z = z,, — 2,, by subtracting the equations
satisfied by z,, and z,, and using the mean value theorem we arrive at

2
Oz + Az + %(:c,t,yu)z = —%gy!j (@, t,95)(Yu — )20 in Q,
On,z2=00n%, 2z(0)=0in Q.

Then, (4.12) is the consequence of Casas and Kunisch (2023a, Theorem A.3)
applied to the above equation and the assumptions on y,.

Finally, we redefine again ¢; = min{ey, %2} Then (4.13) is an immediate
consequence of (4.12). [
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LEMMA 4.7 Letu € UNA and g1 be as in Lemma 4.6. Given p > 0, there exists
€ (0,e1] such that

_ _ _ 1 _ B p
F(u) — F(a) > F'(@)(u — u) + 5F"(u)(u —a)? - §||zu,ﬂ||‘12(@) (4.15)
for every u € U such that ||y, — §||L=(Q) < €p, where zy_q = G'(4)(u — u).

PRrROOF As in the proof of Lemma 4.6, we set w = y,, — §. Then, using the
adjoint state equation (3.3) associated with @ and (4.14), we get

1
F = F(@) = [ 5= -9 dedt+ 5 [ (- doe
Q Q
0 1
— [ (ow+ap+ L te) -+ 5 [ (5= v dod
Q dy 2 Jq
_ af _ 1 _
oyw + Aw + = (x,t,5)w dxdt—l—f/ —yy)?dxdt
/Qw(t 8y( y)) 2Q(y Yu)
_ D*f _ 2 Lf 2
=/ ¢B(u —u)dx dt—*/ 9y 5 (%, t,90)P(yu — ¥) dxdt+§/(y—yu) dzdt
Q Q
RS B I PR Nw — 12
= F@) 1) + /Q 1= G e - 9P s (4.16)
From here and (3.2) we deduce

F(u) — F(u) = F'(a)(u — @) + %F”(ﬂ)(u —u)?

_;(/Q [1 - ?éc(ffvf,ﬂ)@]ZZudxdt_/

. {1 ;J;(x t yg)w} (Yo — 9)* dz dt).

To prove (4.15) we have to estimate the difference of the last two integrals. To
this end we proceed as follows:

‘/ y)‘P} udxdt‘/Q[1—gzljgt(%t,ye)@}(yu—y)zdxdt’
</ ?Hﬁ( =) ‘dxdﬁr/’a ,t,Yp) — gzz(x,t,g)hﬂzg_udxdt

|22_a— (yu — 9)?|dadt = I + Ir + I5.

/lagztvyG
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For the first term we have with (4.9) and (4.10)
10 < Ny = (@ + zu-a)ll2(@) (12u-all L2(@) + 1yu = FllL2(@)
< 6Killyu — 9l l2u-alliz(o) < Sllzualliz)
if |yu — JllL=(@) < €p1 = min{er, i -
To estimate I we use (2.5) and the fact that [y — 9llzec@) < [[Yu —

?]”LOC(Q) < €1. Hence, we deduce the existence of €,2 € (0,&1] such that for
Y0 — Ul (@) < €p,2 We have

*f *f _ . P
Il < || G2t -gann)|, o I2le@lzdltg < §le-alia)

The term I3 is estimated in almost the same way as Iy

I < Crarl@le(o) /Q 2 (g2 dear

= - P

< 6Cr Mm@l ) K1llyu — y||L°°(Q)||ZU—ﬁ||2L2(Q) < 3
if [|yu — 7l Lo (0) < €p,3 = min{ey, m}. Then, it is enough to take
gp =min{e, 1,€,2,€p,3} to deduce (4.15). ]
Proof of Theorem 4.5. Let €1 be the number given in Lemma 4.6. From

(4.16) and (4.10) we infer

F(u) — F(a) > F'(

<

1 _ _
Ju—u) = 5 (1+ Crull@llz=@)lve = 720

> F'(@)(u =) = (14 Cral|@lli=@)llzu-ullZz o)
— F/(@)(u— 1) — Ksllzu—al32(0)- (4.17)
Rig _ B

Let ig € Sy satisfy T = min; e 5. We put v = min{1, i—z"} and 19 = vT.
0 ; i

We take ¢ € (0,e1] such that 2 — K3 > 2, where § satisfies (4.7). We also
assume that ¢ < e, and p = g, where €, was introduced in Lemma 4.7.

Given an element u € Uyq such that ||y, — 72y + |yu — Ul =) < €, we
distinguish two cases to prove (4.8).

Case I: J'(w)(u — @) > 7ol 2u—allL2(0)-

Using the convexity of j, (4.17),(4.10), and the assumption ||y, —¥||12(@) < €
we obtain
J'(@u—1a) = Ksllzu-aliziq) = Tollzu-allr2@) — Ksllzu-alliz(q)
( 27’0

1)
—,—K)z_72 2,2_72 .
3Hyu_y||L2(Q) 3)llzu ”HLZ(Q) 4H u u||L2(Q)
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Case II: J'(u)(u — u) < 1ol|zu—all£2(Q)-

Under this assumption we have that w — u € C7. Indeed, since 79 < 7, we
have that J'(u)(u — u) < 7[|zu—allL2(g). Moreover, since u € Uyq, we have for
every i € Sy

(oo}
/0 i (8) (ui(t) = @i(t)) dt < )|l 2 (0,00) 14ill £2(0,00) = 1%l 72(0,00)
= %(HUiHm(o,oo) - %‘) <0.

Now we check the last condition to prove that u — u belongs to the critical cone
C?. From Proposition 4.1-i we get

—(a, p;u—u) = J (a;u—1u b Ooﬁi ui(t) — u;
0 O (s — ) = J' >+i6250+%2/0 (0)(uat) — (1)) d,

which implies with the definition of v

oo 2 T
/ 5 () (s (8)— s (1)) dt > —%J’(a; wm) > =zl = sl
0 7

for every i € Si". Thus, u — @ € CJ holds. Using the fact that ||us||12(0,00) —
%3] 22 (0,00) < 0 for all i € Sy, the convexity of j, Proposition 4.1-i, (4.7), and
(4.15) with p = £, we obtain

Ju) = J(@) > L) — £ 7) > O (i, i — 1)
1, 8 , 5 ,
+3 (@) (u —a)® — Z”ZH—EHL?(Q) > Z”ZM—TLH[P(Q)'

Finally, using (4.10) we infer for both cases that

B 5 1) _
T(w) = 7@ 2 Tl = 1=l — 5l ). -

Remark 4.8 The inequality (4.15) is a key issue in the proof of Theorem 4.5.
The way in which (4.15) is proven here is different from the usual procedure;
see Casas and Troltzsch (2016) or Casas, Mateos and Résch (2019). Here, the
main difficulty in following the approach of Casas and Tréltzsch (2016) or Casas,
Mateos and Résch (2019) is that we cannot perform a Taylor expansion of F(u)
around u for arbitrary u € A, since it is not known whether ug = u + 0(u — @)
is an element of A. Despite the fact that y,,y € L™ (Q), we do not know if yy,
belongs to L (Q).
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COROLLARY 4.9 Under the assumptions of Theorem 4.5 there exist € > 0 and
6 > 0 such that

_ K _ _
J(u) + §|Iyu = 0ll72(g) < J(u) Yu € Uaa N Be(a),
where Bz(u) C A C L?(0,00)™ is the ball centered at u and radius é.

This corollary is an immediate consequence of Theorem 4.5 and the conti-
nuity of the mapping G : A — W(0,00) N L>=(Q).

4.2. Case Il: p=o0

In this case, the control constraints are linear, consequently, the second order
analysis is simpler. We start by establishing the second order necessary condi-
tions for optimality. Assuming that u € U,q satisfies the first order optimality
conditions (3.6), we define the associated cone of critical directions as follows:

Ca={vel:J (uv)=0 and v satisfies (4.18)}
with

' >0 if ’U,Z(t) = —%, .
vl(t){ 20 il =g L<ism. (4.18)

The proof of the following lemma can be found in Casas, Herzog and Wachsmuth
(2017).
LEMMA 4.10 The following properties hold:
i) J'(w;v) > 0 for every v satisfying the sign conditions (4.18).

it) For every v € Cy we have

T T
0 0
i11) Cy 18 a closed, convex cone inU.

Since u — @ satisfies the sign conditions (4.18) for every u € U,q, the statement
i) implies that J'(@;u — @) > 0 for all u € Uyg.

Now, we formulate the second order necessary optimality conditions.

THEOREM 4.11 Let @ € Uyqa N A be a local minimizer of (P), then F"(uw)v? > 0
for every v € Cy.
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PRrROOF Given v € Cz we define for every integer k > 1

0 if i — 5 <la(t)] <,
Proji_y 11 (vi(t)) otherwise,

vik(t) = {

1<i1<m.
It is immediate that vy — v strongly in & and there exists pr > 0 such that
a+ pv, € A for every p € (0,pr). Following the steps of the proof of Casas,

Herzog and Wachsmuth (2012, Theorem 3.7), we obtain that F”(@)vi > 0.
Then, we pass to the limit as k — oo and get the desired result. [ ]

As we did for p = 2, we need to extend the critical cone Cy to formulate the
second order sufficient optimality conditions. For every 7 > 0 we define

Cl ={vel:J(uv) <7z 12(0) and v satisfies (4.18)}.
Then we have the following result.

THEOREM 4.12 Let u € Uyq N A satisfy the first order optimality conditions
(3.6) and the following second order condition:

aQF = =\,2 2 T
36 >0 and 31 >0 : W(u, pv” > 8|\ zull72(q) Yo € CF, (4.19)

where z, = G'(u)v. Then, there exist ¢ > 0 and k > 0 such that

K _ _ _
J(U)+§||yu—y||i2(cg) <J(u) Vu € Uaa : lyu=9ll 2@ HIYu =7l L= (@) <& (4.20)

The proof of this theorem follows the same steps as the one of Theorem 4.5,
with some simplifications. Given u € U,q N A, we know that u — u satisfies the
sign conditions (4.18). Hence, u — 4 € C7 holds if and only if J'(@;u — @) <
7| zu—allz2(@)- Then, we distinguish two cases as in the proof of Theorem 4.5,
but with 79 = 7. Then, the proof is the same, with just replacing £ by J and
F by F.

5. Approximation by finite horizon problems

In this section we consider the approximation of (P) by finite horizon optimal
control problems and provide error estimates for these approximations. For
every 0 < T < oo we consider the control problem

(Pr) min Jp(u),

UWEUT ad
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where Ur g4 = {u S Lp(O,T)m : ||UiHLP(O,T) < ’Yi},

, 1 e
JT(’U,) = FT(U) + Oé]T(u) = 5 /Q (yT,u - yd)2 dxdt + QZA \ul(t)| dt,
T i=1

and yr,, is the solution of

ot

(5.1)
sy =0o0n Sy =T x (0,7), y(0) = yo in Q.

0
{ Y ¢ Ay+ay+ f(o.t,y) =g+ Buin Qr = 2 x (0,T),

For every control u € L?(0,T)™ with associated state yr.,, and adjoint state
@1, we define extensions to (0,00) and @, denoted by @, §r., and @7y, by
setting (4, pr4)(z,t) = (0,0) if ¢ > T and gr, is the solution of (1.1) for
u = Up. It is obvious that if u € Urp 4, then & € Uyq holds. Given a local
minimizer ur of (Pr), we denote by yr and @7 its associated state and adjoint
state, respectively. Arguing as in the proof of Theorem 3.3, we obtain that urp
satisfies the following optimality conditions

/0 (¢T,i(t) + a/\T,Z-(t))(u(t) — uTJ'(t)) dt >0 VYue U%’ad, (52)

where ¢7i(t) = [, er(t)Yide and Ar; € djro(ur;), 1 < i < m. Hereafter,
jr,0 : L'(0,T) — R denotes the mapping jr,0(u) = ||lul/11(0,7)-

As a consequence of (5.2), Corollary 3.4 is also satisfied, with (0,00) and
(ﬂv >‘, ¢) replaced by (07 T) and (uTa )‘Ta (bT)

The next two theorems establish the convergence of the approximating prob-
lems (Pr) to (P) as T — .

THEOREM 5.1 For every T > 0 the control problem (Pr) has at least one solu-
tion ur. If (P) has a feasible control ug, then the extensions {tr}rso of any
family of solutions are bounded in LP(0,00)™. Every weak limit @ in LP(0,00)™
of a sequence {ir, }32, with T, — oo as k — oo is a solution of (P). More-
over, the weak convergence Gy, — @ in L1(0,00)™ for q € (1,p] and the strong
convergence gr, — ¥ in L*(Q) N L>(Q) hold.

Before proving this theorem, we establish the following lemma.

LEMMA 5.2 Let u € U N A satisfy u(t) = 0 for t > T* with T* € (0,00)
and denote by § € W(0,00) N L>(Q) its associated state. Then, for every
T € [T*,00) there exists € > 0 such that for all ¢ € L>(Q) with ||¢| =) < €
the problem

{ Oy + Ay + f(z,t,y) = g(a,t) in QT =Q x (T,00),

—9 (5.3)
O y=00nXT =T x (T,00), y(T)=y(T)+ ¢ inQ
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has a unique solution y € W(T,00)NL>®(QT). Moreover, there exists a constant
C independent of ¢ such that

IWllwre) + I19ll=@r) < € (Iyllzzier + 15(T) + Sl o)

+ lgllzzi@ry + lgllercr ooy + M) (5.4)

PROOF We are going to deduce this result by applying the implicit function
theorem. First, we define the space

Y ={y e W(T,00) N L¥(Q") : 8y + Ay € L"(T,00; L*(2)) N L*(Q")}
and the function G : Y x L>®(Q) — [L"(T, 00; L*(2)) N L2(QT)] x L>(Q) by

G(y,6) = (O + Ay + [ -9) = 9.5(T) = (6 + 5(T))).

Endowed with the graph norm, Y is a Banach space and G is of class C'. For
every z € Y we have

O 1:0)2 = (Oiz-+ A+ 5L (1),
Obviously, we have that G(¢,0) = 0 and %(@0) Y — [L"(T,00; L*(Q)) N
L2(QT)] x L*>(R) is a continuous linear mapping. To prove that it is an iso-
morphism we have to check that the equation

Oz + Az + g—i(x,t,y)z =h in Q7,
Onz=00n X" 2(T) =27 inQ

has a unique solution z € Y for every (h,zr) € [L"(T,00; L*(2)) N L2(QT)] x
L>(Q). This follows from Casas and Kunisch (2023a, Theorem A.3) and Casas
and Kunisch (2024b). Then, the statement of the lemma follows from the im-
plicit function theorem. [

Proof of Theorem 5.1. Since Ur 44 is not empty, the existence of solution for
(Pr) is a classical result. Actually, one can easily adapt the existence proof of
solution for (P) to (Pr). Let y° be the solution of (1.1) corresponding to ug.
By definition of feasible control we have that J(ug) < co. Using the optimality
of ur we obtain

JT(UT) < JT(U()) < J(UO) VT > 0.

This proves the boundedness of {dr}rs¢ in L'(0,00)™ and the existence of a
constant K such that ||yr||r2(q.) < K for every T'. Moreover, from the fact that
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{tr}r>0 C Ugq we deduce the boundedness of {tr }r~o in LP(0,00)™. By inter-
polation between the spaces L!(0, 00)™ and LP(0,00)™ we infer that {ar }r~o is
a bounded sequence in L?(0, 00)™ for every ¢ € [1,p|. Let {(4z,, Y1, X(0,1)) } o1
be a sequence with T}, — oo as k — oo converging weakly to (@, 7) in L?(0, 00)™ x
L?(Q). This implies the weak convergence of {dg, }32, in L9(0,00)™ for every
g € (1,p]. Since {tr,}32; C Ugq and Uyq is closed in LP(0,00)™ and convex,
we infer that @ € U,q. Moreover, we can apply Casas and Kunisch (2023a,
Theorem A1) to the equation (5.1) and deduce the existence of a constant M;
such that for all £ > 1

lyrllL2 0,111 0) + 1yl L2 (Qa,) < M1 = C(||g + Biir, || 22(q)
119l 20,0022 () + 1Baz | 220,002 () + Y0l Lo (0) + K + Mf)-
From this estimate and (2.12) we get the existence of a constant My such that
1f G ynllzz@a,) + 1£Cyn) e @q,) < M2 VE > 1.
The two above estimates and (5.1) imply that
lyrllw o) + lyr Lo (@q,) < Ms Yk =1 (5.5)

for a new constant M3. Using the convergence of y7, — § in L?(Qr) for every
T < oo, the compactness of the embedding W (0,7) C L?(Qr), and the above
estimate, it is straightforward to pass to the limit in the equation

0 .
{ g?c + Aka + YTy, + f(xvtvka) =49 + BuTk m QT? (56)
On,y=0o0n X7, yp, (0) = yo in Q

for each T}, > T, and to deduce that 3 is the solution of (5.1), associated to @ for
arbitrary 0 < T < oo. This proves that ¢ is the solution of (1.1), corresponding
to @ and [|g]|w0,00) + |7l (@) < Ms. This implies that @ € A. Let us prove
that @ is a solution of (P). Using the convergence ur, — @ in L*(Qr)™ for
every T < oo, we get for every feasible control u of (P)

Jr(u) < liminf Jp(up,) < liminf Jp, (ug,)
k—o0 k—o0 ’

< limsup Jr, (ur,) < limsup Jr, (u) = J(u).
k—o0 k—o0

Hence, the inequality J(@) = supp_,o Jr(@) < J(u) holds, which proves that

@ is a solution of (P). Moreover, replacing u by @ in the above inequalities we

infer

_ 1 ‘ 1 _ o
lim (7/ (kafyd)zdxdtJraka(uTk)) = 7/(yfyd)2dxdt+a](u).
2 Jar, Q

k—oc0 2
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This is equivalent to the identity

1

1 1 o f A _ L
lim (*/(ka,—yd)QXO,Tk)dxdt+ay(uTk)> = 7/(y_yd)2 dz dt + aj(a).
k—oo \2 Q 2 0

Once more, using the convergence ur, — @ in L (Qr)™ for every T < oo we
obtain

Jr(a) <liminf jr(ur,) < liminf j(dr,).
k—o0 k—o0

Taking the supremum in 7' we deduce j(a) < liminfy_, o j(tp,). This con-
vergence along with the weak convergence yr, X(0,7,) — ¥ in L?(Q) and the
above equality yield the strong convergence limg_, o ||y, — 7| L2(Qr,) = 0; see
Casas and Kunisch (2023b, Lemma 5.2). It remains to prove that ¢, — ¥ in
L?(Q) N L>(Q). The proof of this convergence is split in several steps.

Step L- limg o0 ||Y1y, — YllLoo(@r) = O for every T' < oco. Let us set wy, =
97, —y. Then, we have for every T, > T

0 0 .
% + Awy, + a—z(x,t,ygk)wk = B(ur, — @) in Qr,

On,wr =0 on X7, wg(0) =0 in Q,

(5.7)

where yp, = §+0k(J1, —7) and 0; : @ — [0, 1] is a measurable function. Since
{wy}$2, is bounded in L?(Q7) N L*°(Qr), we get with (2.4) that B(up, —u) —
g—g(x,t,ygk)wk is bounded in LP(0,T; L>°(£2)). Then, we deduce from Disser,
ter Elst and Rehberg (2017) the boundedness of {wy,}32, in C%#(Qr) for some
B € (0,1). Using the compactness of the embedding C%#(Qr) C C(Qr) along
with the strong convergence yr, — ¥ in L?(Qr), we infer the strong convergence
wy, — 0in C(Qr) and J7, — § in L=(Q7) as k — oo for every T < oc.

Step II.- There exist T* < oo and k* > 1 such that 4, (t) = 0 for all k > k*
and almost all t > T*. Indeed, we have that the adjoint states ¢r, satisfy the
adjoint state equations

{ 7875@’1—% + A*Qka + %($7ta :ng;X(O7Tk))¢Tk = (:ng - yd)X(O,Tk) in Q? (5 8)

On .91, = 0 0n X, tlggo |61, (t)|| L2(0) = 0 in .

Given £ > 0, the convergence limg o |lyn, — ¥llr2(Qr,) = 0 and the fact that

7 —yq € L?(Q) imply the existence of k. and 7. such that for k& > k. and
T > 1T,

(@7 —ya) X 0,10) | 22T 00;22(2)) < 197 =Tl 22(Qr, ) HT—Yall L2(72 00522(0)) < €.

Using this, we deduce from (5.8) and Casas and Kunisch (2023a, Theorem A.4)
that ||@7, ||Le(7.,00;22()) < Ce for every k > k.. For every 1 < i < m, this
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yields
|pr,i (D) < |67 (D)l 22 () 1VillL22) < CllYillLz()e Yk > ke and for a.a. t > T..

Upon selecting € > 0 such that C||v;||12(q)e < a and applying Corollary 3.4 we
infer that g, (£) = 0 for every k > k. and almost all ¢t > T.

Step III.- 3ko > 1 such that {47, >k, C W(0,00)NL>¥(Q) and the conver-
gence limy_, oo (||g)Tk —Yllz2@) + 191, — Yllre(@) = 0) holds. Without loss of

generality we can assume that 7% > T for 1 < i < m, where {T;}", are given
in Corollary 3.5. Thus, we have that B(ur, —@)(¢t) = 0 Vk > k* and for almost
all ¢ > T*.

We take T > T*. Since wy, — 0 in C(Qr), we have that wy(T) — 0 in C(9).
Then, applying Lemma 5.2 we infer the existence of ko such that {gp, tx>k, C
W (T,00) N L (QT) and it is uniformly bounded in this space. Combining this
with (5.5) we infer that {7, }r>k, C W(0,00) N L>*(Q). Moreover, by applying
Casas and Kunisch (2023a, Theorem A.3) along with Casas and Kunisch (2024b)
to the equation

% + Awk + awg + %(xatvy&c)wk =0in QT7

On w, =0 on X7,
we obtain
|willw (7.00) + Wil L= @y < Cllwg(T) ||y — 0 as k — oo.

Combining this with Step I we get the desired convergence. a

Now we address a kind of converse theorem for strong local minimizers. We
say that @ is a strong local minimizer of (P) is there exists € > 0 such that

J(a) < J(u) Vu € UggN A satistying [|yu — 7l 2(@) + 1yu — 3l (@) < e (5.9)

If the above inequality is strict for v # @, then we say that @ is a strict strong
local minimizer.

THEOREM 5.3 Let @ be a strict strong local minimizer of (P). Then, there exist
To € (0,00) and a family {ur}r>1, of strong local minimizers to (Pr) such that
the weak convergence Gy — @ in L1(0,00)™ for all ¢ € (1,p] and the strong
convergence g — i in L2(Q) N L>®(Q) hold as T — c.

PROOF Let @ satisfy (5.9). We consider the control problems

(P.) min J(u) and (Pr.) min Jp(u),

ueU; ,; uGM%_’ad
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where

Ugg = {u €Uaa VA lyu — Jllz2(Q) + lyu — FllL=(@) < €},
Ut qq = {1t €Ut aa |y — Ull22(@r) + 1Yu — UllLe(@r) < €}

Obviously @ is the unique solution of (P.). Regarding the problem (Pr.),
we first observe that ), ,, € Uf,,. Moreover, it is easy to check that if
{ur}s, CUT 4 and ug — w in LP(0,T)™, then yy, Sy, in L®(Qr). Hence,
UF 44 18 nonempty, bounded, and sequentially weakly closed in LP (0, 7)™. Then,
for every T the existence of a solution ur of (Pr.) can be proven as usual by
taking a minimizing sequence. Now, arguing as in the proof of Theorem 5.1 and
using the uniqueness of the solution of (P.), we deduce the convergence 47 — @
in LP(0,00)™ as T — oo and gy — 7 in L?(Q) N L°>°(Q). This implies the
existence of Ty such that ||gr — Fllr2(Qr) + |97 — Ul (@r) < € for all T > Tp.
Hence, ur is also a strong local minimizer of (Pr) for T' > Tp. Indeed, let us
set e = |97 — llz2(Qr) + 197 — YllLo(@r)- Then, for every u € Ur 4q with
lyr — yrullL2(@r) + lvr — Yrulle(@r) < € — e we have

lyrw — 92y + YT — Lo < lyr — yrull2@r) + v — yrullie (o)
Hlyr = ¥ll2(@r) + lyr — UllL(@r) <&

Since ur is a minimizer of (Pr.) and u is a feasible control for (Pr.), the
inequality Jr(ur) < Jr(u) follows. m

In the previous theorem we proved the existence of strong local minimizers
{ur}r>T, Of problems (Pr) weakly converging to %, assuming that u is a strict
strong local minimizer of (P). Moreover, strong convergence of the associated
states g7 — ¥ in L2(Q) N L>°(Q) was established. In addition, the inequality
Jr(ur) < Jrp(a) holds for every T > Ty. In the next theorem we provide an
estimate for the difference of the corresponding states.

THEOREM 5.4 Suppose that p = 2 or p = oo and that u is a strong local min-
imizer of (P) satisfying the second order sufficient optimality condition. We
assume that g—i(m,t,y) > 0 holds for all y € R and almost all (x,t) € Q. Let
{ur}rsm, be a sequence of local minimizers of problems (Pr) such that 4r — 4
in L1(0,00)™ Vg € (1,p], 97 — ¥ in L*(Q) N L>(Q), and Jr(a) < Jr(ur).
Then, there exist T* € [Ty, 00) and a constant C' such that for every T > T*

l9r—9llz2Q) < C<”yT(T)||L2(Q)+||yd||L2(T,oo;L2(Q))+||g||L2(T,oo;L2(Q)))' (5.10)

PrOOF We use the inequalities (4.8) or (4.20). For this purpose, we take T* €
[To, 00) such that ||§r — 7l|L2(Q) + |97 — FllL= (@) < € for all T'> T*. Then, we
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have
TN _ N _ _
§HZ‘JT —l72q) < J(ar) — J(@) < Jr(ur) — Jr(a)

1 [ 1 [
45 [ (0 - @ e < 5 [ 1900) = 9a(0l30 ot
T T

which leads to
iz — 2@y < ==l — val f (5.11)
Yyr —YllL2Q) > NG Y1 — YdllL2(T,00;L2 () - .

To prove (5.10) we observe that §r satisfies the equation

Y . . .
{ L 4 Agr+ f(a,t,97) = g in @ x (T, 00),
anAyT =0onl x (T,OO), yT(T) = yT(T) n Q.
Testing this equation with ¢r, and using the fact that f(z, ¢, 9r)jr > 0 due
to the monotonicity of f with respect to y and (2.1), it follows that

o0

1.
Slir @l + [

N 1 > N
(Agr,yr)dt < §||yT(T)||2L2(Q) +/ / g9r dz di.
T T Jo

From this inequality we infer

97| L2(T 0012 () < C'(||Z/T(T)||L2(Q) + ||9||L2(T,oc;L2(ﬂ)))'

This inequality and (5.9) imply (5.8). |
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