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1Departmento de Matemática Aplicada y Ciencias de la Computación,
E.T.S.I. Industriales y de Telecomunicación, Universidad de Cantabria, 39005

Santander, Spain
eduardo.casas@unican.es

2Institute for Mathematics and Scientific Computing, University of Graz,
A-8010 Graz, Austria, and Radon Institute, Austrian Academy of Sciences,

A-4040 Linz, Austria
karl.kunisch@uni-graz.at

Abstract: In this paper, infinite horizon optimal control prob-
lems subject to semilinear parabolic equations are investigated. A
finite number of only time-dependent controls intervening at dis-
joint positions in the space domain are considered. The controls are
subject to integral constraints and a term is included in the cost
functional that promotes control sparsity. The existence of optimal
controls is proven, first and second order optimality conditions are
derived, and the approximation by finite horizon control problems
is addressed.
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1. Introduction

In this paper, we study the following control problem

(P)

{

Minimize J(u) := F (u) + α j(u)
u ∈ Uad
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where α > 0,

F (u) =

∫ ∞

0

∫

Ω

|yu(x, t)− yd(x, t)|2 dx dt,

j : L1(0,∞)m −→ R, j(u) =

m
∑

i=1

∫ ∞

0

|ui(t)| dt,

Uad = {u ∈ U : ‖ui‖Lp(0,∞) ≤ γi, 1 ≤ i ≤ m},

with yd ∈ L2(Q), U = Lp(0,∞)m ∩ L1(0,∞)m, m ∈ N, 2 ≤ p ≤ ∞, and
0 < γi <∞ for 1 ≤ i ≤ m. Here yu denotes the solution of the equation:

{

∂tyu +Ayu + f(x, t, yu) = g(x, t) +Bu in Q = Ω× (0,∞),
∂nA

yu = 0 on Σ = Γ× (0,∞), yu(0) = y0 in Ω,
(1.1)

where Bu =

m
∑

i=1

ui(t)ψi(x) for some functions {ψi}mi=1 ⊂ L∞(Ω) with supp(ψi)∩

supp(ψj) = ∅ for i 6= j, and A is the linear elliptic operator

Ay = −
n
∑

i,j=1

∂xj
[aij(x, t) ∂xi

y] + a0(x, t)y.

Assumptions on the coefficients of A and the functions f , g, and y0 will be given
in the next section.

We observe that U is continuously embedded in L2(0,∞)m, which follows by
interpolation between the spaces L1(0,∞)m and Lp(0,∞)m. As a consequence,
we also have that Bu ∈ L2(Q) ∩ Lp(0,∞;L∞(Ω)).

By studying (P) we continue our investigations of nonlinear pde-constrained
optimal control problems over infinite time horizons. Such problems have re-
ceived little attention, although they arise quite naturally, for example, in the
context of optimal stabilization, or in the case of modeling with finite horizons,
where the length of the horizon is ambiguous and choosing an infinite horizon
would be a safe way out. For infinite horizon optimal control problems. related
to ordinary differential equations, we cite the monograph by Carlson, Haurie
and Leizarowitz (1991), and selected papers by Aseer, Krastanov and Veliov
(2017), Basco, Cannarsa and Frankowska (2018), and Kalkin (1974), where the
latter might well be one of the earliest publications on the subject. In our work
we treated infinite horizon problems related to semilinear parabolic equations
in, e.g., Casas and Kunisch (2023a), and to the Navier Stokes equations in Casas
and Kunisch (2024a). The specificity of problem (P), which is not considered
in our previous work, consists in the fact that (P) does not contain a quadratic
space-time cost of the control, but rather the sparsifying term in time only,
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and that the explicit control constraint is of energy type in time, rather than
pointwise in time as it was in our previous work. This necessitates a different
treatment of the optimality conditions, especially the second order necessary
and sufficient optimality conditions. The control action enters (1.1) by means
of finitely many time dependent controls ui. The spatial distribution of the
controllers is fixed and described by ψi. We shall utilize a feasibility assump-
tion guaranteeing that there exists at least one control vector u satisfying the
constraints and rendering the corresponding cost J finite. Such an assumption
is justified by stabilizability results, which guarantee that for properly chosen
m and ψi, there exists a control in feedback form for which the associated state
decays exponentially, see, e.g., Azmi, Kunisch and Rodrigues (2021). The spar-
sifying term j in the cost then guarantees that optimal controls will individually
shut off an remain shut off from times T ∗

i on.

The paper is organised as follows. Section 2 presents properties of the state
equation needed for the analysis that follows. In the following Section 3 we
prove the existence of a solution for (P) and establish the first order necessary
conditions. Second order necessary and sufficient optimality conditions for (P)
are presented in Section 4, where special attention is paid to the fact that the
gap between these two conditions is small. Finally, Section 5 is devoted to the
approximation of the infinite horizon control problem by finite horizon control
problems.

2. Analysis of the state equation

In this section, we are concerned with the existence, uniqueness, and regularity
of the solution of (1.1). To this end, we make the following assumptions:

Assumption 2.1 We assume 1 ≤ n ≤ 3, y0 ∈ L∞(Ω) and g ∈ Lr(0,∞;Ls(Ω))∩
L2(Q) with 1

r
+ n

2s < 1.

The function f : Q × R −→ R is measurable with respect to (x, t) ∈ Q and
of class C2 with respect to y ∈ R and satisfies the following hypotheses

f(x, t, 0) = 0, (2.1)

∃δf ∈ [0, 1) :
∂f

∂y
(x, t, 0) ≥ −δfa0(x, t), (2.2)

∃Mf > 0 : f(x, t, y)y ≥ 0 and
∂f

∂y
(x, t, y) ≥ 0 ∀|y| > Mf , (2.3)

∀M > 0 ∃Cf,M > 0 :
∣

∣

∣

∂jf

∂yj
(x, t, y)

∣

∣

∣
≤ Cf,M ∀|y| ≤M, j = 1, 2, (2.4)
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∀ρ > 0 and ∀M > 0 ∃ε > 0 such that
∣

∣

∣

∂2f

∂y2
(x, t, y2)−

∂2f

∂y2
(x, t, y1)

∣

∣

∣
≤ ρ ∀|yi| ≤M, i = 1, 2, if |y2 − y1| ≤ ε,

(2.5)

for almost all (x, t) ∈ Q.

The coefficients of A satisfy ai,j , a0 ∈ L∞(Q) and

∃Λ > 0 :

n
∑

i,j=1

ai,j(x, t)ξiξj ≥ Λ|ξ|2 ∀ξ ∈ R
n and for a.a. (x, t) ∈ Q, (2.6)

a0(x, t) ≥ 0 for a.a. (x, t) ∈ Q, and a0 6≡ 0. (2.7)

We mention that (2.3) and (2.4) imply that

∂f

∂y
(x, t, y) ≥ −Cf,Mf

∀y ∈ R and for a.a. (x, t) ∈ Q. (2.8)

Hereafter, we will follow the standard notation

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)∗)} for 0 < T ≤ ∞,

where H1(Ω)∗ denotes the conjugate of H1(Ω). A function y is called solution
of (1.1) if y ∈W (0, T )∩L∞(QT ) for all 0 < T <∞ and it satisfies the following
equation in the variational sense

{

∂ty +Ay + f(x, t, y) = g(x, t) +Bu in QT = Ω× (0, T ),
∂nA

y = 0 on ΣT = Γ× (0, T ), y(0) = y0 in Ω,
(2.9)

We know that (2.9) admits a unique solution yu in W (0, T ) ∩ L∞(QT ) for
every u ∈ Lp(0,∞) and all T < ∞. Moreover, if u ∈ U and yu ∈ L2(Q), then
the regularity yu ∈ W (0,∞) ∩ L∞(Q) holds. Further the following estimates
are satisfied:

‖yu‖Q ≤ K1

(

‖yu‖L2(Q) + ‖y0‖L2(Ω) + ‖g +Bu‖L2(Q)

)

, (2.10)

‖yu‖L∞(Q) ≤ K2

(

‖yu‖L2(Q) + ‖y0‖L∞(Ω) + ‖g +Bu‖L2(Q)

+ ‖g‖Lr(0,∞,Ls(Ω)) + ‖Bu‖Lp(0,∞;L∞(Ω)) +Mf

)

, (2.11)

where

‖yu‖Q =
(

‖yu‖2L2(0,∞;H1(Ω) + ‖yu‖2L∞(0,∞;L2(Ω))

)
1
2

;
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see Casas and Kunisch (2024b) for the proof. Using (2.1), (2.4), and the mean
value theorem we infer that

|f(x, t, yu(x, t))| =
∣

∣

∣

∂f

∂y
(x, t, θ(x, t)yu(x, t))

∣

∣

∣
|yu(x, t)| ≤ Cf,M |yu(x, t)|,

where M = ‖yu‖L∞(Q) and 0 ≤ θ(x, t) ≤ 1. Since yu ∈ L2(Q) ∩ L∞(Q), the
above inequality implies that f(·, ·, yu) ∈ L2(Q) ∩ L∞(Q) and the following
estimates hold

‖f(·, ·, yu)‖L∞(Q) ≤ Cf,MM and ‖f(·, ·, yu)‖L2(Q) ≤ Cf,M‖yu‖L2(Q). (2.12)

Using these properties we deduce from the equation (1.1) that yu ∈W (0,∞) ∩
L∞(Q). Moreover, from (2.10) and (2.12) we get

‖yu‖W (0,∞) ≤ K3

(

(1+Cf,M )‖yu‖L2(Q)+‖y0‖L2(Ω)+‖g+Bu‖L2(Q)

)

. (2.13)

We define the set

A = {u ∈ L2(0,∞)m : yu ∈ L2(Q)}.
Now we introduce the mapping G : A −→ W (0,∞) ∩ L∞(Q) define by G(u) =
yu. The following theorem was proven in Casas and Kunisch (2023a, Theorems
2.2 and 3.1).

Theorem 2.2 Let us assume that A is not empty. Then, A is an open subset
of L2(0,∞)m and the mapping G is of class C2. Moreover, given u ∈ A and
v, v1, v2 ∈ L2(0,∞)m we have that zv = G′(u)v and zv1,v2

= G′′(u)(v1, v2) are
the unique solutions of the equations

{

∂tz +Az + ∂f
∂y

(x, t, yu)z = Bv in Q,

∂nA
z = 0 on Σ, z(0) = 0 in Ω,

(2.14)

{

∂tz +Az + ∂f
∂y

(x, t, yu)z = −∂2f
∂y2 (x, t, yu)zv1

zv2
in Q,

∂nA
z = 0 on Σ, z(0) = 0 in Ω.

(2.15)

3. Existence of a solution and first order optimality con-

ditions for (P)

To address the existence of a solution of (P) first we observe that there exists
a unique solution yu of (1.1) for every u ∈ Uad. However, it could happen that
the solution yu does not belong to L2(Q) and, consequently, J(u) = ∞. In the
sequel, we say that u is a feasible control for (P) if u ∈ Uad and the associated
state yu belongs to L2(Q), or, equivalently, u ∈ Uad ∩ A. We point out that
Uad ∩ A is not necessarily convex. Hence, regarding the existence of a solution
for (P) we have the following result.
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Theorem 3.1 If there exists a feasible control u0 for (P), then it has at least
one solution.

Proof Let {uk}∞k=1 be a minimizing sequence of (P) formed by feasible controls
with associated states {yk}∞k=1. Since J(uk) → inf (P) ≤ J(u0) <∞, we deduce
that {uk}∞k=1 and {yk}∞k=1 are bounded in U and L2(Q), respectively. From
(2.11) and (2.13) we get that {yk}∞k=1 is bounded in W (0,∞) ∩ L∞(Q). More-
over, the continuous embedding U ⊂ L2(0,∞) implies that {uk}∞k=1 is bounded

in L2(0,∞)m. Therefore, taking a subsequence, we obtain that (uk, yk)
∗
⇀ (ū, ȳ)

in L2(0,∞)m ∩ Lp(0,∞)m ×W (0,∞) ∩ L∞(Q). This implies that Buk
∗
⇀ Bū

in L2(Q) ∩ Lp(0,∞;L∞(Ω)). Using these properties one can pass to the limit
in the state equation (1.1) and deduce that ȳ is the state associated with ū; see

Casas and Kunisch (2023, Theorem 2.1) for details. Moreover, since uk
∗
⇀ ū

in Lp(0,∞)m we deduce that ū satisfies the control constraints. It remains to
prove that ū ∈ L1(0,∞)m and J(ū) = inf (P). To this end, we proceed as fol-
lows. For every T < ∞, using the compact embedding W (0, T ) ⊂ L2(QT ) and
the weak convergence uk ⇀ ū in L1(0, T )m we obtain

1

2

∫ T

0

∫

Ω

|ȳ − yd|2 dx dt+ α

m
∑

j=1

∫ T

0

|ūj | dt

≤ lim inf
k→∞

(1

2

∫

QT

|yk − yd|2 dx dt+ α

m
∑

j=1

∫ T

0

|uk,j | dt
)

≤ lim inf
k→∞

J(uk) = inf (P).

Taking the supremum as T → ∞ we infer that ū ∈ L1(0,∞)m and J(ū) ≤
inf (P), which concludes the proof.

Next we derive the first order optimality conditions satisfied by a local mini-
mizer ū of (P). If nothing is specifically said, ū is called a local minimizer of (P)
if J(ū) <∞ and there exists ε > 0 such that J(ū) ≤ J(u) for every u ∈ Uad such
that ‖u− ū‖U ≤ ε. By interpolation we have that U is continuously embedded
in Lq(0,∞)m for every q ∈ [1, p]. Therefore, if ū is a local minimizer of (P),
then it is also a local minimizer in the Lq(0,∞)m sense.

To write the optimality conditions, satisfied by a local minimizer, we need
to analyze separately the functions F and j, defining the cost functional J .
Regarding the functional F , we make the following assumption on yd:

Assumption 3.2 yd ∈ L2(Q) ∩ Lr̂(0,∞;Lŝ(Ω)) with 1
r̂
+ n

2ŝ < 1.

As a straightforward consequence of this assumption and Theorem 2.2 we get
that F : A −→ R is of class C2 and for all v, v1, v2 ∈ L2(0,∞)m we have the
following expressions
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F ′(u)v =

∫

Q

ϕuBv dx dt =
m
∑

i=1

∫ ∞

0

φu,i(t)vi(t) dt, (3.1)

F ′′(u)(v1, v2) =

∫

Q

(

1− ∂2f

∂y2
(x, t, yu)ϕu

)

zv1
zv2

dx dt, (3.2)

where φu,i(t) =
∫

Ω
ϕu(t)ψi dx and ϕu ∈ W (0,∞) ∩ L∞(Q) is the adjoint state

associated with u satisfying
{

−∂tϕ+A∗ϕ+ ∂f
∂y

(x, t, yu)ϕ = yu − yd in Q,

∂nA∗ϕ = 0 on Σ, lim
t→∞

‖ϕ(t)‖L2(Ω) = 0 in Ω.
(3.3)

For the proof of (3.1) and (3.2) the reader is referred to Casas and Kunisch
(2023a, Theorem 2.3 and Corollary 3.1). The existence and uniqueness of a
solution of (3.3) was established in Casas and Kunisch (2023a, Theorem A.4).
We observe that the identity limt→∞ ‖ϕu(t)‖L2(Ω) = 0 is a consequence of the
fact that ϕu ∈W (0,∞); see Casas and Kunisch (2022, Theorem 2.4).

The functional j : L1(0,∞)m −→ R can be written in the form j(u) =
∑m

i=1 j0(ui), where j0 : L1(0,∞) −→ R is defined by j0(w) = ‖w‖L1(0,∞). It
is clear that j0 is Lipschitz continuous and convex. Hence, the convex sub-
differential ∂j0(w) 6= ∅ and the directional derivatives j′0(w; v) exist for all
w, v ∈ L1(0,∞). The following properties hold:

λ ∈ ∂j0(w) iff λ(t)







= +1 if w(t) > 0,
= −1 if w(t) < 0,

∈ [−1,+1] if w(t) = 0,
(3.4)

j′0(w; v) =

∫

I+
w

v(t) dt−
∫

I−

w

v(t) dt+

∫

I0
w

|v(t)| dt, (3.5)

where I+w = {t ∈ (0,∞) : w(t) > 0}, I−w = {t ∈ (0,∞) : w(t) < 0}, and
I0w = {t ∈ (0,∞) : w(t) = 0}.

We define the sets

U i
ad = {v ∈ Lp(0,∞) ∩ L1(0,∞) : ‖v‖Lp(0,∞) ≤ γi}, 1 ≤ i ≤ m

and observe that Uad =
∏m

i=1 U i
ad. We have the following necessary optimality

conditions.

Theorem 3.3 If ū is a local minimizer of (P), then there exist λ̄i ∈ ∂j0(ūi) for
i = 1, . . . ,m, satisfying

∫ ∞

0

(φ̄i(t) + αλ̄i(t))(u(t)− ūi(t)) dt ≥ 0 ∀u ∈ U i
ad, (3.6)

where φ̄i(t) =
∫

Ω
ϕ̄(t)ψi dx and ϕ̄ is the adjoint state associated with ū.
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Proof Using the convexity of Uad and j we get for every u ∈ Uad

0 ≤ lim
ρ→0

J(ū+ ρ(u− ū))− J(ū)

ρ
≤ F ′(ū)(u− ū) + α[j(u)− j(ū)]. (3.7)

Let us fix i ∈ {1, . . . ,m} and take u ∈ Uad with uk = ūk if k 6= i and ui =
v ∈ U i

ad. Then, using (3.1) and the definition of φ̄i, we infer from the above
inequality that

∫ ∞

0

φ̄i(t)(v(t)− ūi(t)) dt+ α[j0(v)− j0(ūi)] ≥ 0 ∀v ∈ U i
ad.

Denoting by IUi
ad

: L1(0,∞) ∩ Lp(0,∞) −→ [0,∞] the indicator function of the

convex set U i
ad we obtain that ūi is the minimizer of the convex function

J (v) =

∫ ∞

0

φ̄i(t)v(t) dt+ αj0(v) + IUi
ad
(v).

This implies the existence of λ̄i ∈ ∂j0(ūi) such that

0 ∈ φ̄i + αλ̄i + ∂IUi
ad
(ūi),

which is equivalent to (3.6).

Corollary 3.4 Let ū = {ūi}mi=1 and {(λ̄i, φ̄i)}mi=1 be as in Theorem 3.3. Then,
{(λ̄i, φ̄i)}mi=1 are continuous functions in [0,∞) and the following relations hold
for all t ∈ [0,∞) and all i = 1, . . . ,m

If ‖ūi‖Lp(0,∞) < γi, then φ̄i(t) + αλ̄i(t) = 0, (3.8)

λ̄i(t) = Proj[−1,+1]

(

− 1

α
φ̄i(t)

)

. (3.9)

If p ∈ [2,∞) and φ̄i + αλ̄i ≡ 0, then for almost every t ∈ [0,∞) we have

if ūi(t) > 0, then φ̄i(t) = −α,
if ūi(t) < 0, then φ̄i(t) = +α, (3.10)

if |φ̄i(t)| < α, then ūi(t) = 0.

If p ∈ [2,∞) and φ̄i +αλ̄i 6≡ 0, then ū is a continuous function and we have for
all t ∈ [0,∞)

ūi(t) > 0 iff φ̄i(t) < −α,
ūi(t) < 0 iff φ̄i(t) > +α, (3.11)

ūi(t) = 0 iff |φ̄i(t)| ≤ α.
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If p = ∞, then we have for almost all t ∈ [0,∞)

if φ̄i(t) < −α then ūi(t) = +γi,

if φ̄i(t) > +α then ūi(t) = −γi, (3.12)

if |φ̄i(t)| < α then ūi(t) = 0.

Finally, the multipliers {λ̄i}mi=1 satisfying (3.6) are unique.

Proof Since ϕ̄ ∈W (0,∞) ⊂ C([0,∞);L2(Ω)), we deduce from the definition of
φ̄i its continuity in [0,∞). The continuity of λ̄i is a consequence of the identity
(3.9), which will be proven below.

We start with assuming that ‖ūi‖Lp(0,∞) < γi and set εi = γi−‖ūi‖Lp(0,∞).
Given T <∞, for every v̂ ∈ Lp(0, T ) with ‖v̂‖Lp(0,T ) < εi we put

v(t) =

{

v̂(t) + ūi(t) if t ∈ (0, T ),
ūi(t) if t ≥ T.

Then, it is evident that v ∈ U i
ad and, consequently, we deduce from (3.6) that

∫ T

0

(φ̄i+αλ̄i)v̂ dt =

∫ ∞

0

(φ̄i+αλ̄i)(v− ūi) dt ≥ 0 for every ‖v̂‖Lp(0,T ) < εi.

This implies that φ̄i + αλ̄i = 0 in (0, T ). Since T was arbitrarily large, (3.8)
follows.

The relations (3.10) are an immediate consequence of (3.4). Let us prove
(3.11). Since φ̄i + αλ̄i 6≡ 0, the equality ‖ūi‖Lp(0,∞) = γi follows from (3.8).
Then, there exists T0 <∞ such that φ̄i+αλ̄i 6≡ 0 in [0, T0] and ‖ūi‖Lp(0,T0) > 0
by (3.6). For every T > T0 we put γi,T = ‖ūi‖Lp(0,T ) > 0. For all v ∈ Lp(0, T )
such that ‖v‖Lp(0,T ) ≤ γi,T we define

v̂(t) =

{

v(t) if t ∈ (0, T ),
ūi(t) if t ≥ T.

We observe that v̂ ∈ Lp(0,∞) ∩ L1(0,∞) and ‖v̂‖Lp(0,∞) ≤ ‖ūi‖Lp(0,∞) = γi,
and thus v̂ ∈ U i

ad. Then, for η̄i = φ̄i + αλ̄i, (3.6) leads to

∫ T

0

η̄i(t)(v(t)− ūi(t)) dt ≥ 0.

This yields

−
∫ T

0

η̄iv dt ≤ −
∫ T

0

η̄iūi dt ≤ ‖η̄i‖Lp′ (0,T )‖ūi‖Lp(0,T ) = γi,T ‖η̄i‖Lp′ (0,T ).
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Taking the supremum over all elements v ∈ Lp(0, T ) such that ‖v‖Lp(0,T ) ≤ γi,T ,
we obtain

γi,T ‖η̄i‖Lp′ (0,T ) ≤ −
∫ T

0

η̄i(t)ūi(t) dt ≤ γi,T ‖η̄i‖Lp′ (0,T ).

This implies the representation formula

ūi(t) = −γi,T
|φ̄i(t) + αλ̄i(t)|p

′−2(φ̄i(t) + αλ̄i(t))

‖φ̄i + αλ̄i‖p
′−1

Lp′ (0,T )

a.e. in (0, T ). (3.13)

Since T > T0 is arbitrary, from the above formula and (3.4), the relations (3.11)
follow. Moreover, if p ∈ [2,∞) then (3.9) is deduced from (3.8) and (3.11) by
simple computations. The continuity of λ̄i is the consequence of the continuity
of φ̄i and (3.9). Finally, the continuity of ūi is the consequence of (3.13) and
the continuity of λ̄i and φ̄i.

For the proof of (3.12) and the associated representation formula (3.9) the
reader is referred to Casas (2012). The uniqueness of the multipliers {λ̄i}mi=1 is
an immediate consequence of (3.9).

Corollary 3.5 Let ū ∈ Uad satisfy the optimality conditions (3.6), then there
exist time instances {T ∗

i }mi=1 ⊂ (0,∞) such that ūi(t) = φ̄i(t) + αλ̄i(t) = 0 for
every t > T ∗

i , 1 ≤ i ≤ m.

Proof Since limt→∞ ‖ϕ̄(t)‖L2(Ω) = 0, we deduce that

lim
t→∞

|φ̄i(t)| ≤ lim
t→∞

‖ϕ̄(t)‖L2(Ω)‖ψi‖L2(Ω) = 0, 1 ≤ i ≤ m.

This leads to the existence of T ∗
i < ∞ such that |φ̄i(t)| < α for every t > T ∗

i .
Then, the equality ūi(t) = 0 follows from (3.10)–(3.12). Finally, it is enough
to use the representation formula (3.13) to deduce that φ̄i(t) + αλ̄i(t) = 0 for
every t > T ∗

i as well.

Corollary 3.6 Let ū ∈ Uad satisfy the optimality conditions (3.6) and assume
that φ̄i + αλ̄i 6≡ 0 for some 1 ≤ i ≤ m. Then, the following representation
formula for ūi holds:

ūi(t) = −γi
|φ̄i(t) + αλ̄i(t)|p

′−2(φ̄i(t) + αλ̄i(t))

‖φ̄i + αλ̄i‖p
′−1

Lp′ (0,∞)

for a.e. t ∈ [0,∞). (3.14)

Proof We use (3.13) for T > T ∗
i . As a consequence of Corollary 3.4 we have

that γi,T = γi and ‖φ̄i+αλ̄i‖Lp′ (0,T ) = ‖φ̄i+αλ̄i‖Lp′ (0,∞). Hence, (3.13) implies

(3.14).
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4. Second order optimality conditions for (P)

In this section we address the second order optimality conditions for problem
(P). We will distinguish the cases 2 ≤ p <∞ and p = ∞.

4.1. Case I: 2 ≤ p <∞.

We associate the following Lagrangian functions to the control problem (P)

L,F : A× R
m −→ R

F(u, µ) = F (u) +
1

p

m
∑

i=1

µi

γ
p
i

‖ui‖pLp(0,∞) and L(u, µ) = F(u, µ) + αj(u).

According to (3.1) and (3.4) we have the following directional derivative

∂L
∂u

(u, µ; v) =
∂F
∂u

(u, µ)v + αj′(u; v)

=
m
∑

i=1

(

∫ ∞

0

[φi(t) +
µi

γ
p
i

|ui(t)|p−2ui(t)]vi(t) dt+ αj′0(ui; vi)
)

,

(4.1)

where φi(t) =
∫

Ω
ϕu(t)ψi dx. The second derivative of F with respect to u is

given by the expression

∂2F
∂u2

(u, µ)(v1, v2) =

∫

Q

(

1− ∂2f

∂y2
(x, t, yu)ϕu

)

zv1
zv2

dx dt

+ (p− 1)

m
∑

i=1

µi

γ
p
i

∫ ∞

0

|ui(t)|p−2v1(t)v2(t) dt. (4.2)

Let ū ∈ Uad be a control satisfying the first order optimality conditions (3.6).
Associated with ū we define the Lagrange multipliers

µ̄ = {µ̄i}mi=1 with µ̄i = γi‖φ̄i + αλ̄i‖Lp′ (0,∞). (4.3)

Since φ̄i, λ̄i ∈ L∞(0,∞) and φ̄i(t) + αλ̄i(t) = 0 for t > T ∗
i , we have that

φ̄i + αλ̄i ∈ Lq(0,∞) for all q ∈ [1,∞] and every 1 ≤ i ≤ m. The choice of µ̄ is
justified by the following proposition.

Proposition 4.1 Let ū satisfy the first order optimality conditions (3.6) and
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let µ̄ be defined by (4.3). Then, the following properties hold:

i) µ̄i ≥ 0 and µ̄i(‖ūi‖Lp(0,∞) − γi) = 0 for i = 1, . . . ,m,

ii)
∂L
∂u

(ū, µ̄; v) ≥ 0 ∀v ∈ U ,

iii)
∂L
∂u

(ū, µ̄; v) = 0 iff |vi(t)| = λ̄i(t)vi(t) a.e. in I
0
ūi

for i = 1, . . . ,m.

Proof The statement i) is an immediate consequence of the definition (4.3) of
µ̄i and (3.8). Let us prove ii). If µ̄i = 0, then the definition (4.3) along with
(3.4) and (3.5) imply

∫ ∞

0

[φ̄i(t) +
µ̄i

γ
p
i

|ūi(t)|p−2ūi(t)]vi(t) dt+ αj′0(ūi; vi)

= −α
∫ ∞

0

λ̄i(t)vi(t) dt+ αj′0(ūi; vi) = α

∫

I0
ūi

[|vi(t)| − λ̄i(t)vi(t)] dt ≥ 0.

(4.4)

Now we consider the case where µ̄i > 0. Using the representation formula (3.14)
we get

|ūi(t)|p−2ūi(t) = −γp−1
i

φ̄i(t) + αλ̄i(t)

‖φ̄i + αλ̄‖Lp′ (0,∞)

.

By combining this with the definition of µ̄i we obtain

µ̄i

γ
p
i

|ūi(t)|p−2ūi(t) = −(φ̄i(t) + αλ̄i(t)).

Therefore, the same expressions as in (4.4) apply in this situation. Finally, (4.4)
yields iii).

Remark 4.2 We observe that it was established in the above proof that
∫ ∞

0

[φ̄i(t) +
µ̄i

γ
p
i

|ūi(t)|p−2ūi(t)]vi(t) dt+ αj′0(ūi; vi) ≥ 0 ∀v ∈ U (4.5)

and for all i = 1, . . . ,m.

Now we address the necessary second order conditions. To this end, we
define the cone of critical directions as follows

Cū =
{

v ∈ U : J ′(ū; v) = 0 and

∫ ∞

0

|ūi(t)|p−2ūi(t)vi(t) dt ≤ 0 ∀i ∈ S0

}

,

where S0 = {i ∈ {1, . . . ,m} : ‖ūi‖Lp(0,∞) = γi}. We also define S+
0 = {i ∈ S0 :

µ̄i > 0}. We have the following property on Cū.
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Proposition 4.3 If v ∈ Cū then we have

i)

∫ ∞

0

|ūi(t)|p−2ūi(t)vi(t) dt = 0 ∀i ∈ S+
0 ,

ii)
∂L
∂u

(ū, µ̄; v) = 0.

Proof Using Proposition (4.1), the definition of Cū, and (4.1) we obtain that

0 ≤ ∂L
∂u

(ū, µ̄; v) = J ′(ū; v) +

m
∑

i=1

µ̄i

∫ ∞

0

|ūi(t)|p−2ūi(t)vi(t) dt

=
∑

i∈S+
0

µ̄i

∫ ∞

0

|ūi(t)|p−2ūi(t)vi(t) dt ≤ 0,

This implies the statement of the proposition.

Theorem 4.4 If ū is a local minimizer of (P), then ∂2F
∂u2 (ū; µ̄)v

2 ≥ 0 ∀v ∈ Cū.

Proof First we take an element v ∈ Cū ∩ L∞(0,∞), satisfying the following
property

∃δ > 0 such that vi(t) = 0 if 0 < |ūi(t)| < δ for 1 ≤ i ≤ m. (4.6)

We will get rid of these assumptions later. Let us denote

E0 =
{

i ∈ S0 :

∫ ∞

0

|ūi(t)|p−2ūi(t)vi(t) dt = 0
}

.

If i 6∈ E0, we define the mappings hi : R −→ Lp(0,∞) ∩ L1(0,∞) and
σi : R −→ R by hi(ρ) = ūi + ρvi and σi(ρ) = ‖hi(ρ)‖pLp(0,∞). If i 6∈ S0, then

σi(0) < γ
p
i and, consequently, there exists εi > 0 such that σi(ρ) < γ

p
i for every

|ρ| < εi.

If i ∈ S0 \ E0, then σi(0) = γ
p
i and

σ′
i(0) = p

∫ T

0

|ūi(t)|p−2ūi(t)vi(t) dt < 0.

Again, this implies the existence of εi > 0 such that σi(ρ) < γ
p
i for all ρ ∈ (0, εi).

In both cases we have that hi(ρ) ∈ U i
ad for every ρ ∈ (0, εi). In all cases, we

assume that εi ≤ δ
2‖vi‖L∞(0,∞)

.
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If i ∈ E0, then there exists εi > 0 such that

‖ūi + ρvi‖Lp(0,∞) ≥ ‖ūi‖Lp(0,∞) − ρ‖vi‖Lp(0,∞) ≥
γi

2
if |ρ| < εi.

We define hi : (−εi, εi) −→ Lp(0,∞)∩L1(0,∞) by hi(ρ) = γi
ūi + ρvi

‖ūi + ρvi‖Lp(0,∞)
.

This choice also implies that hi(ρ) ∈ U i
ad. For i ∈ E0 we define

0 < εi ≤
1

2
min

{ γi

‖vi‖Lp(0,∞)
,

δ

‖vi‖L∞(0,∞)

}

.

For 0 < ε ≤ min{εi : 1 ≤ i ≤ m} the mapping h : [0, ε) −→ Uad, given by
h(ρ) = (hi(ρ))

m
i=1, is well defined and of class C2. We observe that hi(0) = ūi

and h′(0) = vi for every i = 1, . . . ,m and, as a consequence, we get that
h(0) = ū and h′(0) = v. Associated with this function we set w : [0, ε) −→ R by
w(ρ) = J(h(ρ)). From Propositions 4.3-ii and 4.1-iii, using (4.6) and the choice
of ε it follows that |hi(ρ)(t)| = λ̄i(t)hi(ρ)(t) for almost all t ∈ (0,∞). Hence,
we have

w(ρ) = F (h(ρ)) + α

m
∑

i=1

∫ ∞

0

λ̄ihi(ρ) dt.

Therefore, w is of class C2 and satisfies w(0) = J(ū) and

w′(0) = F ′(ū)h′(0) + α

m
∑

i=1

∫ ∞

0

λ̄ih
′
i(0) dt = J ′(ū; v) = 0.

Since ū is a local minimizer of (P), then 0 is a local minimizer of w, hence
w′′(0) ≥ 0. Let us compute this derivative. First we observe that

w′(ρ) = F ′(h(ρ))h′(ρ) + α

m
∑

i=1

∫ ∞

0

λ̄ih
′
i(ρ) dt.

By derivating this expression, we get

w′′(0) = F ′′(ū)v2 + F ′(ū)h′′(0) + α

m
∑

i=1

∫ ∞

0

λ̄ih
′′
i (0) dt

= F ′′(ū)v2 +

m
∑

i=1

∫ ∞

0

(φ̄i + αλ̄i)h
′′
i (0) dt

= F ′′(ū)v2 +

m
∑

i∈S+
0

∫ ∞

0

(φ̄i + αλ̄i)h
′′
i (0) dt,
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where we have used the fact that γi‖φ̄i +αλ̄‖Lp(0,∞) = µ̄i = 0 if i 6∈ S+
0 . Let us

compute h′′i (0) for i ∈ S+
0 ⊂ E0. The first derivative is given by

h′i(ρ) =
γi

‖ūi + ρvi‖Lp(0,∞)
vi −

γi
∫∞

0
|ūi + ρvi|p−2(ūi + ρvi)vi dt

‖ūi + ρvi‖p+1
Lp(0,∞)

(ūi + ρvi).

Now we use Proposition 4.3-i to deduce

h′′i (0) = (p− 1)

∫∞

0
|ūi|p−2v2i dt

γ
p
i

ūi.

Upon inserting this expression in the obtained formula for w′′(0) we infer with
Hölder inequality, (4.3), (3.2), and (4.2) that

0 ≤ w′′(0) = F ′′(ū)v2 + (p− 1)
∑

i∈S+
0

∫∞

0
|ūi|p−2v2i dt

γ
p
i

∫ ∞

0

(φ̄i + αλ̄i)ūi dt

≤ F ′′(ū)v2 + (p− 1)
∑

i∈S+
0

‖φ̄i + αλ̄i‖Lp′ (0,∞)

γ
p
i

‖ūi‖Lp(0,∞)

∫ ∞

0

|ūi|p−2v2i dt

≤ F ′′(ū)v2 + (p− 1)
∑

i∈S+
0

µ̄i

γ
p
i

∫ ∞

0

|ūi|p−2v2i dt

= F ′′(ū)v2 + (p− 1)

m
∑

i=1

µ̄i

γ
p
i

∫ ∞

0

|ūi|p−2v2i dt =
∂2F
∂u2

(ū, µ̄)v2.

To conclude the proof we prove that all elements v ∈ Cū can be approximated
in the norm of U by a sequence {vk}∞k=1 ⊂ Cū ∩ L∞(0,∞), satisfying (4.6) for
appropriate δk > 0. By doing this we obtain that

∂2F
∂u2

(ū, µ̄)v2 = lim
k→∞

∂2F
∂u2

(ū, µ̄)v2k ≥ 0.

Let us construct such a sequence {vk}∞k=1. Given v ∈ Cū, for every i = 1, . . . ,m
and every integer k ≥ 1 we introduce the functions

v̂i,k =

{

0 if 0 < |ūi(t)| < 1
k
,

vi(t) otherwise.

Now, we set Ŝ0 = {i ∈ S0 :
∫∞

0
|ūi|p−2ūivi dt = 0}. For every i ∈ Ŝ0 we put

θi,k =

∫ ∞

0

|ūi|p−2ūi Proj[−k,+k](ūi) dt and εi,k

=
1

θi,k

∫ ∞

0

|ūi|p−2ūi
v̂i,k

1 + 1
k
|v̂i,k|

dt.
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Finally, we define

vi,k(t) =







v̂i,k(t)

1+ 1
k
|v̂i,k(t)|

− εi,k Proj[−k,+k](ūi(t)) if i ∈ Ŝ0,
v̂i,k(t)

1+ 1
k
|v̂i,k(t)|

otherwise.

It is obvious that θi,k → ‖ūi‖pLp(0,∞) = γ
p
i for all i ∈ S0. We also have that

v̂i,k(t)

1+ 1
k
|v̂i,k(t)|

→ vi(t) pointwise in (0,∞) and the sequence is dominated by vi ∈
Lp(0,∞)∩L1(0,∞). Hence,

v̂i,k

1+ 1
k
|v̂i,k|

→ vi strongly in Lp(0,∞)∩L1(0,∞). As

a consequence, we get

εi,k → 1

γ
p
i

∫ ∞

0

|ūi|p−2ūivi dt = 0 ∀i ∈ Ŝ0.

Setting vk = (vi,k)
m
k=1, we deduce from these facts that vk → v strongly in U

and by the choice of θi,k and εi,k we find for k large enough

∫ ∞

0

|ūi|p−2ūivi,k dt

{

= 0 ∀i ∈ Ŝ0,

< 0 ∀i ∈ S0 \ Ŝ0.

Further, by construction it is obvious that {vk}∞k=1 ⊂ L∞(0,∞)m. It remains to
prove that J ′(ū; vk) = 0, so as to conclude that {vk}∞k=1 ⊂ Cū. To this end we
first observe that since v ∈ Cū, Propositions 4.3-ii and 4.1-iii imply that |vi(t)| =
λ̄i(t)vi(t) for almost all t ∈ (0,∞) and all i = 1, . . . ,m. By construction, it is
immediate to check that the property is satisfied by the functions vi,k. Using
again Proposition 4.1-iii we infer that ∂L

∂u
(ū, µ̄; vk) = 0 for every k. This leads

to

0 =
∂L
∂u

(ū, µ̄; vk) = J ′(ū; vk) +

m
∑

i=1

µ̄i

γ
p
i

∫ ∞

0

|ūi(t)|p−2ūi(t)vi,k(t) dt = J ′(ū; vk),

where we have used that the above integral vanishes if i ∈ Ŝ0 and µ̄i = 0 if
i 6∈ Ŝ0.

Now we address the second order sufficient optimality conditions. We limit
this study to the case of p = 2. In infinite dimensional optimization, it is well
known that we cannot consider the same cone Cū for the second order necessary
and sufficient conditions. In general, an extended cone is necessary to deal with
the sufficient conditions; see, for instance, Casas and Mateos (2020), Casas and
Tröltzsch (2015), Dunn (1998), or Maurer and Zowe (1979). Given a control
ū ∈ Uad, satisfying the first order optimality conditions (3.6), we define for every
τ > 0 the extended cone

Cτ
ū =

{

v ∈ U : J ′(ū; v) ≤ τ‖zv‖L2(Q)
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and

∫ ∞

0

ūivi dt

{

≤ 0 ∀i ∈ S0

≥ −τ‖zv‖L2(Q) ∀i ∈ S+
0

}

,

where zv = G′(ū)v is the solution of (2.14) with u replaced by ū. Using Propo-
sition 4.1-ii we get for every v ∈ Cτ

ū

0 ≤ ∂L
∂u

(ū, µ̄; v) = J ′(ū; v) +
∑

i∈S+
0

µ̄i

γ2i

∫ ∞

0

ūi(t)vi(t) dt ≤ J ′(ū; v).

Thus, for every small τ > 0 and all v ∈ Cτ
ū the terms J ′(ū; v) and

∫∞

0
ūivi dt

for i ∈ S+
0 are not necessarily zero, but they are small. Taking into account

Proposition 4.3-i, we observe that Cū ⊂ Cτ
ū for all τ > 0 and Cτ

ū is a small
extension of Cū if τ is small.

Theorem 4.5 Let ū ∈ Uad∩A satisfy the first order optimality conditions (3.6)
and the following second order condition:

∃δ > 0 and ∃τ > 0 :
∂2F
∂u2

(ū, µ̄)v2 ≥ δ‖zv‖2L2(Q) ∀v ∈ Cτ
ū , (4.7)

where zv = G′(ū)v. Then, there exist ε > 0 and κ > 0 such that

J(ū)+
κ

2
‖yu−ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖yu−ȳ‖L2(Q)+‖yu−ȳ‖L∞(Q) ≤ ε. (4.8)

Before proving this theorem we establish two auxiliary lemmas.

Lemma 4.6 Assume that ū ∈ Uad ∩ A. Then, there exist ε1 > 0 and M̄ > 0
such that for every u ∈ Uad with ‖yu − ȳ‖L∞(Q) ≤ ε1 we have that u ∈ A and
‖yu‖W (0,∞) ≤ M̄ . Moreover, the following inequalities hold

‖yu − (ȳ + zu−ū)‖L2(Q) ≤ K1‖yu − ȳ‖L∞(Q)‖yu − ȳ‖L2(Q), (4.9)

‖yu − ȳ‖L2(Q) ≤ 2‖zu−ū‖L2(Q), (4.10)

‖zu−ū‖L2(Q) ≤
3

2
‖yu − ȳ‖L2(Q), (4.11)

‖zu,v − zv‖L2(Q) ≤ K2‖yu − ȳ‖L∞(Q)‖zv‖L2(Q) ∀v ∈ L2(0,∞)m, (4.12)

‖zu,v‖L2(Q) ≤ 2‖zv‖L2(Q) ∀v ∈ L2(0,∞)m, (4.13)

where zu,v = G′(u)v, zv = G′(ū)v, and zu−ū = G′(ū)(u− ū).
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Proof Let u satisfy the assumptions of the lemma and set w = yu− ȳ. By sub-
tracting the equations satisfied by yu and ȳ and performing a Taylor expansion
of f around ȳ we obtain
{

∂tw +Aw + ∂f
∂y

(x, t, ȳ)w = B(u− ū)− 1
2
∂2f
∂y2 (x, t, yθ)(yu − ȳ)2 in Q,

∂nA
w = 0 on Σ, w(0) = 0 in Ω,

(4.14)

where 0 ≤ θ(x, t) ≤ 1 and yθ = ȳ + θ(yu − ȳ). Since ‖yθ‖L∞(Q) ≤ M =
‖ȳ‖L∞(Q) + ε1, we infer from assumption (2.4) and Casas and Kunisch (2023a,
Theorem A.3)

‖w‖W (0,T ) ≤ C
(

Cγ + Cf,Mε1‖yu − ȳ‖L2(QT )

)

∀T <∞,

where Cγ depends on the parameters {γi}mi=1. This implies that ε1 can be

chosen small enough such that ‖w‖W (0,T ) ≤ M̂ for every T < ∞ and some

constant M̂ . Hence, the inequality ‖yu‖W (0,∞) ≤ M̄ = M̂ + ‖ȳ‖W (0,∞) holds
and, consequently, we have that u ∈ A.

Now we set ŵ = yu−(ȳ+zu−ū) = w−zu−ū. Upon subtracting the equations
satisfied by w and zu−ū it follows that

{

∂tŵ +Aŵ + ∂f
∂y

(x, t, ȳ)ŵ = − 1
2
∂2f
∂y2 (x, t, yθ)(yu − ȳ)2 in Q,

∂nA
ŵ = 0 on Σ, ŵ(0) = 0 in Ω.

Arguing as we did for w we deduce (4.9). Now, we redefine ε1 = min{ε1, 1
2K1

}.
Then, using (4.9), we infer

‖yu − ȳ‖L2(Q) ≤ ‖yu − (ȳ + zu−ū)‖L2(Q) + ‖zu−ū‖L2(Q)

≤ 1

2
‖yu − ȳ‖L2(Q) + ‖zu−ū‖L2(Q),

which implies (4.10). Inequality (4.11) follows in a similar way:

‖zu−ū‖L2(Q) ≤ ‖yu − (ȳ + zu−ū)‖L2(Q) + ‖yu − ȳ‖L2(Q) ≤
3

2
‖yu − ȳ‖L2(Q).

Now, we prove (4.12). Setting z = zu,v − zv, by subtracting the equations
satisfied by zu,v and zv, and using the mean value theorem we arrive at

{

∂tz +Az + ∂f
∂y

(x, t, yu)z = − 1
2
∂2f
∂y2 (x, t, ŷθ̂)(yu − ȳ)zv in Q,

∂nA
z = 0 on Σ, z(0) = 0 in Ω.

Then, (4.12) is the consequence of Casas and Kunisch (2023a, Theorem A.3)
applied to the above equation and the assumptions on yu.

Finally, we redefine again ε1 = min{ε1, 1
K2

}. Then (4.13) is an immediate
consequence of (4.12).
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Lemma 4.7 Let ū ∈ U ∩A and ε1 be as in Lemma 4.6. Given ρ > 0, there exists
ερ ∈ (0, ε1] such that

F (u)− F (ū) ≥ F ′(ū)(u− ū) +
1

2
F ′′(ū)(u− ū)2 − ρ

2
‖zu−ū‖2L2(Q) (4.15)

for every u ∈ U such that ‖yu − ȳ‖L∞(Q) ≤ ερ, where zu−ū = G′(ū)(u− ū).

Proof As in the proof of Lemma 4.6, we set w = yu − ȳ. Then, using the
adjoint state equation (3.3) associated with ū and (4.14), we get

F (u)− F (ū) =

∫

Q

(ȳ − yd)(yu − ȳ) dx dt+
1

2

∫

Q

(ȳ − yu)
2 dx dt

=

∫

Q

(

− ∂tϕ̄+A∗ϕ̄+
∂f

∂y
(x, t, yu)ϕ̄

)

(yu − ȳ) dx dt+
1

2

∫

Q

(ȳ − yu)
2 dx dt

∫

Q

ϕ̄
(

∂tw +Aw +
∂f

∂y
(x, t, ȳ)w

)

dx dt+
1

2

∫

Q

(ȳ − yu)
2 dx dt

=

∫

Q

ϕ̄B(u− ū) dx dt− 1

2

∫

Q

∂2f

∂y2
(x, t, yθ)ϕ̄(yu − ȳ)2 dxdt+

1

2

∫

Q

(ȳ − yu)
2 dxdt

= F ′(ū)(u− ū) +
1

2

∫

Q

[

1− ∂2f

∂y2
(x, t, yθ)ϕ̄

]

(yu − ȳ)2 dx dt. (4.16)

From here and (3.2) we deduce

F (u)− F (ū) = F ′(ū)(u− ū) +
1

2
F ′′(ū)(u− ū)2

−1

2

(

∫

Q

[

1− ∂2f

∂y2
(x, t, ȳ)ϕ̄

]

z2u−ū dx dt−
∫

Q

[

1− ∂2f

∂y2
(x, t, yθ)ϕ̄

]

(yu − ȳ)2 dx dt
)

.

To prove (4.15) we have to estimate the difference of the last two integrals. To
this end we proceed as follows:

∣

∣

∣

∫

Q

[

1− ∂2f

∂y2
(x, t, ȳ)ϕ̄

]

z2u−ū dx dt−
∫

Q

[

1− ∂2f

∂y2
(x, t, yθ)ϕ̄

]

(yu − ȳ)2 dx dt
∣

∣

∣

≤
∫

Q

∣

∣

∣
z2u−ū − (yu − ȳ)2

∣

∣

∣
dx dt+

∫

Q

∣

∣

∣

∂2f

∂y2
(x, t, yθ)−

∂2f

∂y2
(x, t, ȳ)

∣

∣

∣
|ϕ̄|z2u−ū dx dt

+

∫

Q

∣

∣

∣

∂2f

∂y2
(x, t, yθ)ϕ̄

∣

∣

∣
|z2u−ū − (yu − ȳ)2| dx dt = I1 + I2 + I3.
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For the first term we have with (4.9) and (4.10)

|I1| ≤ ‖yu − (ȳ + zu−ū)‖L2(Q)(‖zu−ū‖L2(Q) + ‖yu − ȳ‖L2(Q))

≤ 6K1‖yu − ȳ‖L∞(Q)‖zu−ū‖2L2(Q) ≤
ρ

3
‖zu−ū‖2L2(Q)

if ‖yu − ȳ‖L∞(Q) ≤ ερ,1 = min{ε1, ρ
18K1

}.
To estimate I2 we use (2.5) and the fact that ‖yθ − ȳ‖L∞(Q) ≤ ‖yu −

ȳ‖L∞(Q) ≤ ε1. Hence, we deduce the existence of ερ,2 ∈ (0, ε1] such that for
‖yu − ȳ‖L∞(Q) ≤ ερ,2 we have

|I2| ≤
∥

∥

∥

∂2f

∂y2
(x, t, yθ)−

∂2f

∂y2
(x, t, ȳ)

∥

∥

∥

L∞(Q)
‖ϕ̄‖L∞(Q)‖zu−ū‖2L2(Q) ≤

ρ

3
‖zu−ū‖2L2(Q).

The term I3 is estimated in almost the same way as I1

|I3| ≤ Cf,M‖ϕ̄‖L∞(Q)

∫

Q

∣

∣

∣
z2u−ū − (yu − ȳ)2

∣

∣

∣
dx dt

≤ 6Cf,M‖ϕ̄‖L∞(Q)K1‖yu − ȳ‖L∞(Q)‖zu−ū‖2L2(Q) ≤
ρ

3

if ‖yu− ȳ‖L∞(Q) ≤ ερ,3 = min{ε1, ρ
6Cf,M‖ϕ̄‖L∞(Q)K1

}. Then, it is enough to take

ερ = min{ερ,1, ερ,2, ερ,3} to deduce (4.15).

Proof of Theorem 4.5. Let ε1 be the number given in Lemma 4.6. From
(4.16) and (4.10) we infer

F (u)− F (ū) ≥ F ′(ū)(u− ū)− 1

2
(1 + Cf,M‖ϕ̄‖L∞(Q))‖yu − ȳ‖2L2(Q)

≥ F ′(ū)(u− ū)− (1 + Cf,M‖ϕ̄‖L∞(Q))‖zu−ū‖2L2(Q)

= F ′(ū)(u− ū)−K3‖zu−ū‖2L2(Q). (4.17)

Let i0 ∈ S+
0 satisfy

µ̄i0

γ2
i0

= mini∈S+
0

µ̄i

γ2
i

. We put ν = min{1, µ̄i0

γ2
i0

} and τ0 = ντ .

We take ε ∈ (0, ε1] such that 2τ0
3ε −K3 ≥ δ

4 , where δ satisfies (4.7). We also

assume that ε ≤ ερ and ρ = δ
2 , where ερ was introduced in Lemma 4.7.

Given an element u ∈ Uad such that ‖yu − ȳ‖L2(Q) + ‖yu − ȳ‖L∞(Q) ≤ ε, we
distinguish two cases to prove (4.8).

Case I: J ′(ū)(u− ū) > τ0‖zu−ū‖L2(Q).

Using the convexity of j, (4.17),(4.10), and the assumption ‖yu−ȳ‖L2(Q) ≤ ε

we obtain

J(u)− J(ū) ≥ J ′(ū;u− ū)−K3‖zu−ū‖2L2(Q) ≥ τ0‖zu−ū‖L2(Q) −K3‖zu−ū‖2L2(Q)

≥
( 2τ0
3‖yu − ȳ‖L2(Q)

−K3

)

‖zu−ū‖2L2(Q) ≥
δ

4
‖zu−ū‖2L2(Q).
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Case II: J ′(ū)(u− ū) ≤ τ0‖zu−ū‖L2(Q).

Under this assumption we have that u − ū ∈ Cτ
ū . Indeed, since τ0 ≤ τ , we

have that J ′(ū)(u − ū) ≤ τ‖zu−ū‖L2(Q). Moreover, since u ∈ Uad, we have for
every i ∈ S0

∫ ∞

0

ūi(t)(ui(t)− ūi(t)) dt ≤ ‖ūi‖L2(0,∞)‖ui‖L2(0,∞) − ‖ūi‖2L2(0,∞)

= γi

(

‖ui‖L2(0,∞) − γi

)

≤ 0.

Now we check the last condition to prove that u− ū belongs to the critical cone
Cτ

ū . From Proposition 4.1-ii we get

0 ≤ ∂L
∂u

(ū, µ̄;u− ū) = J ′(ū;u− ū) +
∑

i∈S+
0

µ̄i

γ2i

∫ ∞

0

ūi(t)(ui(t)− ūi(t)) dt,

which implies with the definition of ν

∫ ∞

0

ūi(t)(ui(t)−ūi(t)) dt ≥ −γ
2
i

µ̄i

J ′(ū;u−ū) ≥ −τ0
ν
‖zu−ū‖L2(Q) = −τ‖zu−ū‖L2(Q)

for every i ∈ S+
0 . Thus, u − ū ∈ Cτ

ū holds. Using the fact that ‖ui‖L2(0,∞) −
‖ūi‖L2(0,∞) ≤ 0 for all i ∈ S+

0 , the convexity of j, Proposition 4.1-ii, (4.7), and

(4.15) with ρ = δ
2 , we obtain

J(u)− J(ū) ≥ L(u, µ̄)− L(ū, µ̄) ≥ ∂L
∂u

(ū, µ̄;u− ū)

+
1

2
F ′′(ū)(u− ū)2 − δ

4
‖zu−ū‖2L2(Q) ≥

δ

4
‖zu−ū‖2L2(Q).

Finally, using (4.10) we infer for both cases that

J(u)− J(ū) ≥ δ

4
‖zu−ū‖2L2(Q) ≥

δ

16
‖yu − ȳ‖2L2(Q). ✷

Remark 4.8 The inequality (4.15) is a key issue in the proof of Theorem 4.5.
The way in which (4.15) is proven here is different from the usual procedure;
see Casas and Tröltzsch (2016) or Casas, Mateos and Rösch (2019). Here, the
main difficulty in following the approach of Casas and Tröltzsch (2016) or Casas,
Mateos and Rösch (2019) is that we cannot perform a Taylor expansion of F (u)
around ū for arbitrary u ∈ A, since it is not known whether uθ = ū+ θ(u− ū)
is an element of A. Despite the fact that yu, ȳ ∈ L∞(Q), we do not know if yuθ

belongs to L∞(Q).
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Corollary 4.9 Under the assumptions of Theorem 4.5 there exist ε̂ > 0 and
δ > 0 such that

J(ū) +
κ

2
‖yu − ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad ∩Bε̂(ū),

where Bε̂(ū) ⊂ A ⊂ L2(0,∞)m is the ball centered at ū and radius ε̂.

This corollary is an immediate consequence of Theorem 4.5 and the conti-
nuity of the mapping G : A −→W (0,∞) ∩ L∞(Q).

4.2. Case II: p = ∞

In this case, the control constraints are linear, consequently, the second order
analysis is simpler. We start by establishing the second order necessary condi-
tions for optimality. Assuming that ū ∈ Uad satisfies the first order optimality
conditions (3.6), we define the associated cone of critical directions as follows:

Cū = {v ∈ U : J ′(ū; v) = 0 and v satisfies (4.18)}

with

vi(t)
{ ≥ 0 if ūi(t) = −γi,

≤ 0 if ūi(t) = +γi,
, 1 ≤ i ≤ m. (4.18)

The proof of the following lemma can be found in Casas, Herzog andWachsmuth
(2017).

Lemma 4.10 The following properties hold:

i) J ′(ū; v) ≥ 0 for every v satisfying the sign conditions (4.18).

ii) For every v ∈ Cū we have

∫ T

0

(φ̄i(t) + αλ̄i(t))vi(t) dt = 0 and j′0(ūi, vi) =

∫ T

0

λ̄i(t)vi(t) dt.

iii) Cū is a closed, convex cone in U .

Since u− ū satisfies the sign conditions (4.18) for every u ∈ Uad, the statement
i) implies that J ′(ū;u− ū) ≥ 0 for all u ∈ Uad.

Now, we formulate the second order necessary optimality conditions.

Theorem 4.11 Let ū ∈ Uad ∩ A be a local minimizer of (P), then F ′′(ū)v2 ≥ 0
for every v ∈ Cū.
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Proof Given v ∈ Cū we define for every integer k ≥ 1

vi,k(t) =
{ 0 if γi − 1

k
< |ūi(t)| < γi,

Proj[−k,+k](vi(t)) otherwise,
1 ≤ i ≤ m.

It is immediate that vk → v strongly in U and there exists ρk > 0 such that
ū + ρvk ∈ A for every ρ ∈ (0, ρk). Following the steps of the proof of Casas,
Herzog and Wachsmuth (2012, Theorem 3.7), we obtain that F ′′(ū)v2k ≥ 0.
Then, we pass to the limit as k → ∞ and get the desired result.

As we did for p = 2, we need to extend the critical cone Cū to formulate the
second order sufficient optimality conditions. For every τ > 0 we define

Cτ
ū = {v ∈ U : J ′(ū; v) ≤ τ‖zv‖L2(Q) and v satisfies (4.18)}.

Then we have the following result.

Theorem 4.12 Let ū ∈ Uad ∩ A satisfy the first order optimality conditions
(3.6) and the following second order condition:

∃δ > 0 and ∃τ > 0 :
∂2F

∂u2
(ū, µ̄)v2 ≥ δ‖zv‖2L2(Q) ∀v ∈ Cτ

ū , (4.19)

where zv = G′(ū)v. Then, there exist ε > 0 and κ > 0 such that

J(ū)+
κ

2
‖yu−ȳ‖2L2(Q)≤J(u) ∀u ∈ Uad : ‖yu−ȳ‖L2(Q)+‖yu−ȳ‖L∞(Q) ≤ ε. (4.20)

The proof of this theorem follows the same steps as the one of Theorem 4.5,
with some simplifications. Given u ∈ Uad ∩ A, we know that u− ū satisfies the
sign conditions (4.18). Hence, u − ū ∈ Cτ

ū holds if and only if J ′(ū;u − ū) ≤
τ‖zu−ū‖L2(Q). Then, we distinguish two cases as in the proof of Theorem 4.5,
but with τ0 = τ . Then, the proof is the same, with just replacing L by J and
F by F .

5. Approximation by finite horizon problems

In this section we consider the approximation of (P) by finite horizon optimal
control problems and provide error estimates for these approximations. For
every 0 < T <∞ we consider the control problem

(PT ) min
u∈UT,ad

JT (u),



34 E. Casas and K. Kunisch

where UT,ad = {u ∈ Lp(0, T )m : ‖ui‖Lp(0,T ) ≤ γi},

JT (u) = FT (u) + αjT (u) =
1

2

∫

QT

(yT,u − yd)
2 dx dt+ α

m
∑

i=1

∫ T

0

|ui(t)| dt,

and yT,u is the solution of

{

∂y

∂t
+Ay + ay + f(x, t, y) = g +Bu in QT = Ω× (0, T ),

∂nA
y = 0 on ΣT = Γ× (0, T ), y(0) = y0 in Ω.

(5.1)

For every control u ∈ L2(0, T )m with associated state yT,u and adjoint state
ϕT,u we define extensions to (0,∞) and Q, denoted by û, ŷT,u, and ϕ̂T,u, by
setting (û, ϕ̂T,u)(x, t) = (0, 0) if t > T and ŷT,u is the solution of (1.1) for
u = ûT . It is obvious that if u ∈ UT,ad, then û ∈ Uad holds. Given a local
minimizer uT of (PT ), we denote by yT and ϕT its associated state and adjoint
state, respectively. Arguing as in the proof of Theorem 3.3, we obtain that uT
satisfies the following optimality conditions

∫ T

0

(φT,i(t) + αλT,i(t))(u(t)− uT,i(t)) dt ≥ 0 ∀u ∈ U i
T,ad, (5.2)

where φT,i(t) =
∫

Ω
ϕT (t)ψi dx and λT,i ∈ ∂jT,0(uT,i), 1 ≤ i ≤ m. Hereafter,

jT,0 : L1(0, T ) −→ R denotes the mapping jT,0(u) = ‖u‖L1(0,T ).

As a consequence of (5.2), Corollary 3.4 is also satisfied, with (0,∞) and
(ū, λ̄, φ̄) replaced by (0, T ) and (uT , λT , φT ).

The next two theorems establish the convergence of the approximating prob-
lems (PT ) to (P) as T → ∞.

Theorem 5.1 For every T > 0 the control problem (PT ) has at least one solu-
tion uT . If (P) has a feasible control u0, then the extensions {ûT }T>0 of any
family of solutions are bounded in Lp(0,∞)m. Every weak limit ū in Lp(0,∞)m

of a sequence {ûTk
}∞k=1 with Tk → ∞ as k → ∞ is a solution of (P). More-

over, the weak convergence ûTk
⇀ ū in Lq(0,∞)m for q ∈ (1, p] and the strong

convergence ŷTk
→ ȳ in L2(Q) ∩ L∞(Q) hold.

Before proving this theorem, we establish the following lemma.

Lemma 5.2 Let ū ∈ U ∩ A satisfy ū(t) = 0 for t ≥ T ∗ with T ∗ ∈ (0,∞)
and denote by ȳ ∈ W (0,∞) ∩ L∞(Q) its associated state. Then, for every
T ∈ [T ∗,∞) there exists ε > 0 such that for all φ ∈ L∞(Ω) with ‖φ‖L∞(Ω) < ε

the problem
{

∂ty +Ay + f(x, t, y) = g(x, t) in QT = Ω× (T,∞),

∂nA
y = 0 on ΣT = Γ× (T,∞), y(T ) = ȳ(T ) + φ in Ω

(5.3)
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has a unique solution y ∈W (T,∞)∩L∞(QT ). Moreover, there exists a constant
C independent of φ such that

‖y‖W (T,∞) + ‖y‖L∞(QT ) ≤ C
(

‖y‖L2(QT ) + ‖ȳ(T ) + φ‖L∞(Ω)

+ ‖g‖L2(QT ) + ‖g‖Lr(T,∞,Ls(Ω)) +Mf

)

. (5.4)

Proof We are going to deduce this result by applying the implicit function
theorem. First, we define the space

Y = {y ∈W (T,∞) ∩ L∞(QT ) : ∂ty +Ay ∈ Lr(T,∞;Ls(Ω)) ∩ L2(QT )}

and the function G : Y × L∞(Ω) −→ [Lr(T,∞;Ls(Ω)) ∩ L2(QT )]× L∞(Ω) by

G(y, φ) =
(

∂ty +Ay + f(·, ·, y)− g, y(T )− (φ+ ȳ(T ))
)

.

Endowed with the graph norm, Y is a Banach space and G is of class C1. For
every z ∈ Y we have

∂G
∂y

(y, φ)z = (∂tz +Az +
∂f

∂y
(·, ·, y)z, z(T )).

Obviously, we have that G(ȳ, 0) = 0 and ∂G
∂y

(ȳ, 0) : Y −→ [Lr(T,∞;Ls(Ω)) ∩
L2(QT )] × L∞(Ω) is a continuous linear mapping. To prove that it is an iso-
morphism we have to check that the equation

{

∂tz +Az + ∂f
∂y

(x, t, y)z = h in QT ,

∂nA
z = 0 on ΣT , z(T ) = zT in Ω

has a unique solution z ∈ Y for every (h, zT ) ∈ [Lr(T,∞;Ls(Ω)) ∩ L2(QT )] ×
L∞(Ω). This follows from Casas and Kunisch (2023a, Theorem A.3) and Casas
and Kunisch (2024b). Then, the statement of the lemma follows from the im-
plicit function theorem.

Proof of Theorem 5.1. Since UT,ad is not empty, the existence of solution for
(PT ) is a classical result. Actually, one can easily adapt the existence proof of
solution for (P) to (PT ). Let y0 be the solution of (1.1) corresponding to u0.
By definition of feasible control we have that J(u0) <∞. Using the optimality
of uT we obtain

JT (uT ) ≤ JT (u0) ≤ J(u0) ∀T > 0.

This proves the boundedness of {ûT }T>0 in L1(0,∞)m and the existence of a
constant K such that ‖yT ‖L2(QT ) ≤ K for every T . Moreover, from the fact that
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{ûT }T>0 ⊂ Uad we deduce the boundedness of {ûT }T>0 in L
p(0,∞)m. By inter-

polation between the spaces L1(0,∞)m and Lp(0,∞)m we infer that {ûT }T>0 is
a bounded sequence in Lq(0,∞)m for every q ∈ [1, p]. Let {(ûTk

, yTk
χ(0,Tk))}∞k=1

be a sequence with Tk → ∞ as k → ∞ converging weakly to (ū, ȳ) in Lp(0,∞)m×
L2(Q). This implies the weak convergence of {ûTk

}∞k=1 in Lq(0,∞)m for every
q ∈ (1, p]. Since {ûTk

}∞k=1 ⊂ Uad and Uad is closed in Lp(0,∞)m and convex,
we infer that ū ∈ Uad. Moreover, we can apply Casas and Kunisch (2023a,
Theorem A1) to the equation (5.1) and deduce the existence of a constant M1

such that for all k ≥ 1

‖yTk
‖L2(0,Tk;H1(Ω)) + ‖yTk

‖L∞(QTk
) ≤M1 = C

(

‖g +BûTk
‖L2(Q)

+ ‖g‖Lr(0,∞;Ls(Ω)) + ‖BûTk
‖Lp(0,∞;L∞(Ω)) + ‖y0‖L∞(Ω) +K +Mf

)

.

From this estimate and (2.12) we get the existence of a constant M2 such that

‖f(·, ·, yTk
)‖L2(QTk

) + ‖f(·, ·, yTk
)‖L∞(QTk

) ≤M2 ∀k ≥ 1.

The two above estimates and (5.1) imply that

‖yTk
‖W (0,Tk) + ‖yTk

‖L∞(QTk
) ≤M3 ∀k ≥ 1 (5.5)

for a new constant M3. Using the convergence of yTk
⇀ ȳ in L2(QT ) for every

T < ∞, the compactness of the embedding W (0, T̂ ) ⊂ L2(QT ), and the above
estimate, it is straightforward to pass to the limit in the equation

{

∂yTk

∂t
+AyTk

+ ayTk
+ f(x, t, yTk

) = g +BuTk
in QT ,

∂nA
y = 0 on ΣT , yTk

(0) = y0 in Ω
(5.6)

for each Tk ≥ T , and to deduce that ȳ is the solution of (5.1), associated to ū for
arbitrary 0 < T <∞. This proves that ȳ is the solution of (1.1), corresponding
to ū and ‖ȳ‖W (0,∞) + ‖ȳ‖L∞(Q) ≤ M3. This implies that ū ∈ A. Let us prove
that ū is a solution of (P). Using the convergence uTk

⇀ ū in L1(QT )
m for

every T <∞, we get for every feasible control u of (P)

JT (ū) ≤ lim inf
k→∞

JT (uTk
) ≤ lim inf

k→∞
JTk

(uTk
)

≤ lim sup
k→∞

JTk
(uTk

) ≤ lim sup
k→∞

JTk
(u) = J(u).

Hence, the inequality J(ū) = supT→∞ JT (ū) ≤ J(u) holds, which proves that
ū is a solution of (P). Moreover, replacing u by ū in the above inequalities we
infer

lim
k→∞

(1

2

∫

QTk

(yTk
− yd)

2 dx dt+αjTk
(uTk

)
)

=
1

2

∫

Q

(ȳ− yd)
2 dx dt+αj(ū).
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This is equivalent to the identity

lim
k→∞

(1

2

∫

Q

(yTk
−yd)2χ0,Tk) dx dt+αj(ûTk

)
)

=
1

2

∫

Q

(ȳ−yd)2 dx dt+αj(ū).

Once more, using the convergence uTk
⇀ ū in L1(QT )

m for every T < ∞ we
obtain

jT (ū) ≤ lim inf
k→∞

jT (uTk
) ≤ lim inf

k→∞
j(ûTk

).

Taking the supremum in T we deduce j(ū) ≤ lim infk→∞ j(ûTk
). This con-

vergence along with the weak convergence yTk
χ(0,Tk) ⇀ ȳ in L2(Q) and the

above equality yield the strong convergence limk→∞ ‖yTk
− ȳ‖L2(QTk

) = 0; see

Casas and Kunisch (2023b, Lemma 5.2). It remains to prove that ŷTk
→ ȳ in

L2(Q) ∩ L∞(Q). The proof of this convergence is split in several steps.

Step I.- limk→∞ ‖ŷTk
− ȳ‖L∞(QT ) = 0 for every T < ∞. Let us set wk =

ŷTk
− ȳ. Then, we have for every Tk ≥ T







∂wk

∂t
+Awk +

∂f

∂y
(x, t, yθk)wk = B(uTk

− ū) in QT ,

∂nA
wk = 0 on ΣT , wk(0) = 0 in Ω,

(5.7)

where yθk = ȳ+θk(ŷTk
− ȳ) and θk : Q −→ [0, 1] is a measurable function. Since

{wk}∞k=1 is bounded in L2(QT )∩L∞(QT ), we get with (2.4) that B(uTk
− ū)−

∂f
∂y

(x, t, yθk)wk is bounded in Lp(0, T ;L∞(Ω)). Then, we deduce from Disser,

ter Elst and Rehberg (2017) the boundedness of {wk}∞k=1 in C0,β(Q̄T ) for some
β ∈ (0, 1). Using the compactness of the embedding C0,β(Q̄T ) ⊂ C(Q̄T ) along
with the strong convergence yTk

→ ȳ in L2(QT ), we infer the strong convergence
wk → 0 in C(Q̄T ) and ŷTk

→ ȳ in L∞(QT ) as k → ∞ for every T <∞.

Step II.- There exist T ∗ <∞ and k∗ ≥ 1 such that ûTk
(t) = 0 for all k ≥ k∗

and almost all t > T ∗. Indeed, we have that the adjoint states ϕ̂Tk
satisfy the

adjoint state equations
{

−∂tϕ̂Tk
+A∗ϕ̂Tk

+ ∂f
∂y

(x, t, ŷTk
χ(0,Tk))ϕ̂Tk

= (ŷTk
− yd)χ(0,Tk) in Q,

∂nA∗ ϕ̂Tk
= 0 on Σ, lim

t→∞
‖ϕ̂Tk

(t)‖L2(Ω) = 0 in Ω.
(5.8)

Given ε > 0, the convergence limk→∞ ‖yTk
− ȳ‖L2(QTk

) = 0 and the fact that

ȳ − yd ∈ L2(Q) imply the existence of kε and Tε such that for k > kε and
Tk > Tε

‖(ŷTk
−yd)χ(0,Tk)‖L2(Tε,∞;L2(Ω)) ≤ ‖ŷTk

−ȳ‖L2(QTk
)+‖ȳ−yd‖L2(Tε,∞;L2(Ω)) < ε.

Using this, we deduce from (5.8) and Casas and Kunisch (2023a, Theorem A.4)
that ‖ϕ̂Tk

‖L∞(Tε,∞;L2(Ω)) ≤ Cε for every k ≥ kε. For every 1 ≤ i ≤ m, this
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yields

|φTk,i(t)| ≤ ‖ϕ̂Tk
(t)‖L2(Ω)‖ψi‖L2(Ω) ≤ C‖ψi‖L2(Ω)ε ∀k ≥ kε and for a.a. t ≥ Tε.

Upon selecting ε > 0 such that C‖ψi‖L2(Ω)ε < α and applying Corollary 3.4 we
infer that ûTk

(t) = 0 for every k ≥ kε and almost all t > Tε.

Step III.- ∃k0 ≥ 1 such that {ŷTk
}k≥k0

⊂W (0,∞)∩L∞(Q) and the conver-

gence limk→∞

(

‖ŷTk
− ȳ‖L2(Q) + ‖ŷTk

− ȳ‖L∞(Q) = 0
)

holds. Without loss of

generality we can assume that T ∗ > T ∗
i for 1 ≤ i ≤ m, where {T ∗

i }mi=1 are given
in Corollary 3.5. Thus, we have that B(uTk

− ū)(t) = 0 ∀k ≥ k∗ and for almost
all t ≥ T ∗.

We take T > T ∗. Since wk → 0 in C(Q̄T ), we have that wk(T ) → 0 in C(Ω̄).
Then, applying Lemma 5.2 we infer the existence of k0 such that {ŷTk

}k≥k0
⊂

W (T,∞) ∩ L∞(QT ) and it is uniformly bounded in this space. Combining this
with (5.5) we infer that {ŷTk

}k≥k0
⊂W (0,∞)∩L∞(Q). Moreover, by applying

Casas and Kunisch (2023a, Theorem A.3) along with Casas and Kunisch (2024b)
to the equation







∂wk

∂t
+Awk + awk +

∂f

∂y
(x, t, yθk)wk = 0 in QT ,

∂nA
wk = 0 on ΣT ,

we obtain

‖wk‖W (T,∞) + ‖wk‖L∞(QT ) ≤ C‖wk(T )‖L∞(Ω) → 0 as k → ∞.

Combining this with Step I we get the desired convergence. ✷

Now we address a kind of converse theorem for strong local minimizers. We
say that ū is a strong local minimizer of (P) is there exists ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ Uad∩A satisfying ‖yu− ȳ‖L2(Q)+‖yu− ȳ‖L∞(Q) ≤ ε. (5.9)

If the above inequality is strict for u 6= ū, then we say that ū is a strict strong
local minimizer.

Theorem 5.3 Let ū be a strict strong local minimizer of (P). Then, there exist
T0 ∈ (0,∞) and a family {uT }T>T0

of strong local minimizers to (PT ) such that
the weak convergence ûT ⇀ ū in Lq(0,∞)m for all q ∈ (1, p] and the strong
convergence ŷT → ȳ in L2(Q) ∩ L∞(Q) hold as T → ∞.

Proof Let ū satisfy (5.9). We consider the control problems

(Pε) min
u∈Uε

ad

J(u) and (PT,ε) min
u∈Uε

T,ad

JT (u),
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where

Uε
ad = {u ∈ Uad ∩ A : ‖yu − ȳ‖L2(Q) + ‖yu − ȳ‖L∞(Q) ≤ ε},

Uε
T,ad = {u ∈ UT,ad : ‖yu − ȳ‖L2(QT ) + ‖yu − ȳ‖L∞(QT ) ≤ ε}.

Obviously ū is the unique solution of (Pε). Regarding the problem (PT,ε),
we first observe that ū|(0,T )

∈ Uε
T,ad. Moreover, it is easy to check that if

{uk}∞k=1 ⊂ Uε
T,ad and uk ⇀ u in Lp(0, T )m, then yuk

∗
⇀ yu in L∞(QT ). Hence,

Uε
T,ad is nonempty, bounded, and sequentially weakly closed in Lp(0, T )m. Then,

for every T the existence of a solution uT of (PT,ε) can be proven as usual by
taking a minimizing sequence. Now, arguing as in the proof of Theorem 5.1 and
using the uniqueness of the solution of (Pε), we deduce the convergence ûT ⇀ ū

in Lp(0,∞)m as T → ∞ and ŷT → ȳ in L2(Q) ∩ L∞(Q). This implies the
existence of T0 such that ‖ŷT − ȳ‖L2(QT ) + ‖ŷT − ȳ‖L∞(QT ) < ε for all T > T0.
Hence, uT is also a strong local minimizer of (PT ) for T > T0. Indeed, let us
set εT = ‖ŷT − ȳ‖L2(QT ) + ‖ŷT − ȳ‖L∞(QT ). Then, for every u ∈ UT,ad with
‖yT − yT,u‖L2(QT ) + ‖yT − yT,u‖L∞(QT ) ≤ ε− εT we have

‖yT,u − ȳ‖L2(QT ) + ‖yT,u − ȳ‖L∞(QT ) ≤ ‖yT − yT,u‖L2(QT ) + ‖yT − yT,u‖L∞(QT )

+‖yT − ȳ‖L2(QT ) + ‖yT − ȳ‖L∞(QT ) < ε.

Since uT is a minimizer of (PT,ε) and u is a feasible control for (PT,ε), the
inequality JT (uT ) ≤ JT (u) follows.

In the previous theorem we proved the existence of strong local minimizers
{uT }T>T0

of problems (PT ) weakly converging to ū, assuming that ū is a strict
strong local minimizer of (P). Moreover, strong convergence of the associated
states ŷT → ȳ in L2(Q) ∩ L∞(Q) was established. In addition, the inequality
JT (uT ) ≤ JT (ū) holds for every T > T0. In the next theorem we provide an
estimate for the difference of the corresponding states.

Theorem 5.4 Suppose that p = 2 or p = ∞ and that ū is a strong local min-
imizer of (P) satisfying the second order sufficient optimality condition. We
assume that ∂f

∂y
(x, t, y) ≥ 0 holds for all y ∈ R and almost all (x, t) ∈ Q. Let

{uT }T>T0
be a sequence of local minimizers of problems (PT ) such that ûT ⇀ ū

in Lq(0,∞)m ∀q ∈ (1, p], ŷT → ȳ in L2(Q) ∩ L∞(Q), and JT (ū) ≤ JT (uT ).
Then, there exist T ∗ ∈ [T0,∞) and a constant C such that for every T ≥ T ∗

‖ŷT−ȳ‖L2(Q) ≤ C
(

‖yT (T )‖L2(Ω)+‖yd‖L2(T,∞;L2(Ω))+‖g‖L2(T,∞;L2(Ω))

)

. (5.10)

Proof We use the inequalities (4.8) or (4.20). For this purpose, we take T ∗ ∈
[T0,∞) such that ‖ŷT − ȳ‖L2(Q) + ‖ŷT − ȳ‖L∞(Q) < ε for all T ≥ T ∗. Then, we
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have

κ

2
‖ŷT − ȳ‖2L2(Q) ≤ J(ûT )− J(ū) ≤ JT (uT )− JT (ū)

+
1

2

∫ ∞

T

‖ŷT (t)− yd(t)‖2L2(Ω) dt ≤
1

2

∫ ∞

T

‖ŷT (t)− yd(t)‖2L2(Ω) dt,

which leads to

‖ŷT − ȳ‖L2(Q) ≤
1√
κ
‖ŷT − yd‖L2(T,∞;L2(Ω)). (5.11)

To prove (5.10) we observe that ŷT satisfies the equation

{

∂ŷT

∂t
+AŷT + f(x, t, ŷT ) = g in Ω× (T,∞),

∂nA
ŷT = 0 on Γ× (T,∞), ŷT (T ) = yT (T ) in Ω.

Testing this equation with ŷT , and using the fact that f(x, t, ŷT )ŷT ≥ 0 due
to the monotonicity of f with respect to y and (2.1), it follows that

1

2
‖ŷT (t)‖2L2(Ω) +

∫ ∞

T

〈AŷT , yT 〉 dt ≤
1

2
‖yT (T )‖2L2(Ω) +

∫ ∞

T

∫

Ω

gŷT dx dt.

From this inequality we infer

‖ŷT ‖L2(T,∞;L2(Ω)) ≤ C ′
(

‖yT (T )‖L2(Ω) + ‖g‖L2(T,∞;L2(Ω))

)

.

This inequality and (5.9) imply (5.8).
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