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A b s t r a c t :  We study optimal layout of piece-wise periodic struc-
tures of linearly elastic materials. The effective tensors of these 
structures are constant within pre-specified regions, the optimal-
ity is understood as the minimum of complementary energy. The 
suggested formulation leads to a construction that is stable under 
variation of the loading and which does not degenerates into checker-
board type structures. We derive necessary conditions of optimality 
of such layouts and analyze them. Numerically, we find optimal 
structures for a number of examples, which are analyzed. 

K e y w o r d s :  structural optimization, composites, optimality con-
ditions, optimal design. 

1. Introduction
The present paper deals with optimization of planar structures assembled from 
two isotropic materials characterized by different values of their elastic moduli. 
Given the amount of the two materials, the applied loads, the possible supports 
and a planar design domain n ,  we seek the distribution of material in n that 
determines a structure with maximum integral stiffness. Maximization of the 
integral stiffness is equivalent to minimization of the total complementary en-
ergy, and thus expressing the equilibrium problem for the structure using the 
principle of minimum total complementary energy, we arrive at the following 
formulation for the maximum stiffness design problem 

mm 
u(X)EB(x) 

! ( u(x): C(x) :  u(x)dO
2 lo (1) 

where C ( x) is a fourth-rank material compliance tensor, C a d  a set of admissi-
ble compliance tensors, and where the inner minimization with respect to the 
stresses u is taken over the set S of statically admissible stress fields, 

S ( x )  = { u(x)  I divu(x) + p(x) = 0 i n n ,  u(x)n(x)  = t(x) on f r }  (2) 
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with p and t as body forces and surfaces tractions, n as the normal vector to 
the surface, and rr as the traction part of the surface.

In situations where the material properties are allowed to change from point 
to point in structure we generally have the discrete choice of either "Material 1" 
or "Material 2" at each point of the structure and thus, denoting the compliance 
tensors for the two isotropic materials by C 1 and C 2 ( C1 < C 2 ) , C a d becomes 
expressed by 

{ 
1 if X E !11 

C(x) = x(x)C1 + ( 1 - x(x)) C2 with x(x) = 
0 if X E !12 

giving the following formulation for the maximum stiffness design problem 

mm mm 
x(x) a(x) E S(x) 

s . t . : l x(x)dO = V 

  { a ( x ) :  (x(x)C1 + ( 1 - x(x) )C2) :  a(x)dO 
2 lo 

(3) 

(4) 

Here the constraint l x(x)dO = V has been added to the formulation in order

to avoid the trivial solution in which the stiffer material C 1 is used everywhere. 

Class of optimum microstructures 

A numerical solution of an optimization problem generally requires a finite di-
mensional approximation of it. We face here the following problem. The opti-
mum material distribution is known to be characterized by an infinitely often 
alternating sequence of domains occupied by each of the two materials. A well-
posed formulation of the optimization problem may then be obtained e.g. by 
extending the set of admissible compliance tensors C a d• Materials with an op-
timum composite microstructure assembled from the base materials should be 
added to the class of available materials. 

For the design of structures of maximal rigidity it is known that optimal mi-
crostructures are found within the class of finite-rank matrix-layered composites 
see Gibiansky, Cherkaev (1997a), Avellaneda (1987), Avellaneda, Milton (1989), 
Lipton (1993), Diaz, Lipton, Soto (1994). For maximum stiffness design prob-
lems in plane elasticity optimum microstructures are second-rank and third-rank 
matrix-layered composites. Here, second-rank microstructures should be used 
in situations where we want maximum rigidity against a single loading, see Gib-
iansky, Cherkaev (1997a), while third-rank microstructures should be used in 
situations where we want maximum rigidity against several independent stress 
fields or against an over domain varying macroscopic stress field (or both), see 
Avellaneda (1987), Avellaneda, Milton (1989). 
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Effective properties of matrix-la y ered composites are given by simple ana-
lytic functions of the structural parameters describing their composition. The 
effective compliance tensor for the class of planar matrix-la y ered composites of 
given rank N is defined by 

c '•mN   C ,  - (1 - p) ( ( C ,  - C , ) - '  - pE,  t P n (t n 0 t n ) 0 (tn 0 t n )) _, (5) 

in which all Pn 2 0, and ' £ : = l  Pn = 1, see Gibiansky, Cherkaev (1997b). In 
this formula, C 1 , C 2 represent the compliance tensors for our isotropic base 
materials, E 1 the Young's modulus for the stiffer material C 1 , p the volume 
fraction of the stiffer material in the microstructure, and Pn and t n are the 
relative la y er thicknesses and the tangent vectors to the la y ers, respectively. 
In (5), the dyadic product G = a® b of two vectors a = [a1 , . . .  , an ] and
b = [b1 , . . .  , bn ] is defined as a second rank tensor (matrix) with elements Gij = 
aibj . Similarly, the dyadic product of two second-rank tensors is defined as a 
fourth-rank tensor, and so on. 

In particular, the case of C 2 = oo corresponds to a material weakened by
a system of infinitesimal holes. In this case, the effective compliance tensor 
c l a m N (5) for matrix-la y ered composite ma y  be written as 

c l a m N = C 1 + ..::1- 1 

where 

pE1   ..::1 = T-=- , G P n (t n ® t n ) ® (tn ® t n )
p n=l

(6) 

(7) 

To describe the involved fourth-rank tensors, it is convenient to introduce the 
following orthogonal basis of second-rank tensors 

1 
[ 1 0 ]a1 = v'2 0 - 1  

1 
[ 

0 1] 
a2 = v'2 1 0 '

1 
[ 1 0]  

a3 = v'2 0 1 . (8) 

In this basis, any symmetric second-rank tensor is represented as a vector, and 
any symmetric fourth-rank tensor as a symmetric three by three matrix. 

Particularly, the fourth-rank tensor ..::1 in (7) ma y  be rewritten as rl + cos(40k) sin(40k)
(2e )1 

E 3 2 2 
- c o s  k 

L l =  P 1 
° " ' P k 1-cos(40k) . ( 0 )2(1 - p) L - - - ' - - - - - ' - - - sm 2 k k=l 2 

1 

(9) 

Finally we note that the matrix ..::1 in (9) has two linear invariants called the 
spherical trace Trs  and the deviatoric trace Tr  d. These quantities are defined 
as 

(10) 
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and 
pE1 

T r d  L1 = [ u] + [ 22] = 2(1 - p) 

Further on, we will use the notation 

pE1c - - - -
- 2 ( 1 - p ) '

Furthermore, the inverse statement is also true: 
Any matrix L1 that 

(1) is strongly positive definite: det L1 > 0
(2) has two linear invariants as in (10, 11),

admits the representation (9), (see Avellaneda, Milton, 1989).

1.1. Optimal design problem 

(11) 

(12) 

Application of (5) allow us to obtain a parameterization of an extended maxi-
mum stiffness material in ( 4) which definitely has a solution. Such a formulation 
is obtained by considering a division of the design domain n into a finite number 
of sub-domains Di, i = 1, . . .  , I, and allow an optimal matrix-layered composite
to be generated within each of the sub-domains, i.e. by considering the following 
finite parameter approximation to the problem in (4) 

min mm 
C i E ClamN a(x) E S(x) 

I 

s . t . :  I : / v i = V
i=l 

I l { 
I : - Jr: a(x): C i :  a(x)dD 
i=l 

2 n, 
(13) 

Allowing the density variables pi in (5) to vary continuously between O and 1, we 
obtain a formulation where within each of the sub-domains Di we can generate 
either: pure "material l " ,  pure "material 2" or an optimum composite mixture 
thereof. Taking the size of the sub-domains Di to correspond to the grid size 
in a finite element mesh and taking the second material in the matrix-layered 
composite as a very compliant material (representing void), zero appears in the 
above formulation, then the compliance tensor of the structure is finite, even if 
the compliance of the enveloped material C 2 is infinite, and therefore they are 
more stable with respect to the change in the loading and with respect to the 
error in their orientation. Second-rank laminates as well as simple laminates 
correspond to the degeneration of the high-rank composites. Roughly speaking, 
the layers of strong material form triangles instead of rectangles, which provide 
the uniform rigidity to the microstructures. 
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A natural generalization of (13) can be written as 

min 
C i E Clam3

I 

min 
Uj(x) E S j (x ) 

s.t.: I : / v i = V
i=l 

J 
I 11L L 2 Uj(x): c i :  Uj (x )drl 

j=l i=l !1; 

269 

(14) 

for i = 1, . . .  , I. In this formulation, the structure is supposed to have several 
loadings pi, pz, · · ·, PJ· 

2. The formulation
Considering the singl<:, load case formulation in (13) and the multiple load case 
formulation in (14) we see that both problems involve minimization of a sum of 
integrals of complementary energy density over the sub-domains of the structure. 

We rewrite the energy density a- : C : a- as 

a-: C :  a-= Tr(C · Z) (15) 
where Z is a three by three matrix corresponding to the fourth-rank tensor 
a- 0 a-, or as tensor notation Za(3 1,,-y = O"a f 3 0"1,,-y in the basis given in (8). 

This formulation is especially convenient to deal with multiple load case and 
with the case of domain-wise constant material properties. Indeed, introducing 
the 3x3 matrices Zi which collect the information about the stress fields in the 
sub-domains rli, the multiple load case problem in (14) may be restated as 

min n11n 
C i E Clam3  a-(x) E S(x) 

I 

s.t.: I : / v i = V
i=l 

i = 1, . . .  , I

(16) 

where the matrices Zi correspond to positive definite fourth-rank tensors Zi = 
Z 

f 3
"''Y defined by 

z i  = ! t l a-j (x) ® a-j (x )drl 
2 j=l !1; 

(17) 

Any positive symmetric definite fourth-rank tensor Zi admits a represen-
tation via its non-negative eigenvalues (k and its corresponding second order 
· t k k · e1gen ensors a = aa(3, 1.e., 

3 

z = L ( k a k 0 a k ' ( k > 0, 
k=l 

(18) 
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where a i : a_J = Oi j . The tensor Z is a second order homogeneous function of
the stresses. It is convenient to introduce the square root of this tensor as a 
positive symmetric fourth-rank tensor S such that Z = S • S T .

Let Ak be eigenvalue of S. Then the energy density becomes 

3 

Tr(Z · C) = :Z::)>--kak) : C : (Xioak) (19) 
k=l 

The minimizing quantity in (16) can be seen as a sum of complementary 
energy densities associated with the three orthogonal stress tensors Si = Aiai,
k = l ,  . . .  ,3.

2.1.  N e c e s s a r y  conditions 

We use the above representations to derive necessary conditions of optimality. 
Let us formulate a local problem of the best microstructure of the composite. 
The volume fractions supposed to be fixed (they will be determined later). 

The functional 

W=Tr(C-Z) (20) 

is minimized with respect to the effective tensor of matrix laminates C. The 
extremal tensor C corresponds to the minimal energy function for fixed volume 
of material. It is treated here as an arbitrary matrix of the form (5) subject 
to two linear constraints (11). B y  adding the last constraints with Lagrange 
multipliers µ 1 and µ 2 , we get the extended Lagrangian 

(21) 

The stationary conditions include differentiation of the equation (21) with re-
spect to the matrix .Ll. 

R e m a r k :  The derivative of a scalar function q\(A) with respect to the matrix A 

with components [aij] is defined as a matrix B with components [bij] = : i : i)  
We observe the following result for a matrix .L1 = [dijhx3:

(22) 

where 

(23) 
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and 
8 8  

..d is a matrix whose all entries are zero except that the ij-th entry is 
dij 

one. By  using the definition of matrix inner product, (23) becomes 

Tr (.::1- 1 · Z) = -(S · .,.::1- 2 · ST): .::1. 
8dij 8dij 

The derivative of the remaining terms in (21) are 

8 [o o ol
B.::1 Trs .::1 = 0 0 0

0 0 1 

a  Trd .::1 = [     i-0 0 0 
Substituting (24) and (25) into (21) gives 

:   = ( - ( S  .,.::1- 2 . s T ) + A
2

) : a : i j  .::1 = 0

where 
A =  diag[0½, 0 ½ ,  y'µi]. 

The latter result is correct if and only if 

- 1  - 1  T = T 
- ( S · .::1 ) · ( .::1 · S )  + A · A = 0

(24) 

(25) 

(26) 

(27) 

(28) 
Thus, from the equation (28), we have the following equation for the optimal 

.::1 matrix 
= - 1  

. . d = S - A (29) 
Note that the positiveness and the symmetry of the involved matrices ensure 
the uniqueness of the square root of a matrix and therefore the uniqueness of 
this equation. 

If the equations (29) and (27) together with (10) are used, it follows that 
1 ../iii= - Trs (S) (30) 
C 

and, similarly, 
1

0 ½ =  - Trd (S) 
C 

(31) 

which are the Lagrange multipliers needed in (21). 
Finally, substitution of the Lagrange multipliers computed in (30-31) into 

(21) gives the minimal energy (for fixed volume fraction) as 

W = ! [ Trs 2 (S ) + Trd 
2 (S )] + Tr (C1Z). (32) 

C 
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2.1.1. Optimal volum.e fractions 

To observe the dependence of the volume fraction, we rewrite the functional 
I using and adding the cost "/ of material C 1 Lagrange multiplier with the 
constraint (14); 

I = f ( B  l - Pi ! + Tr ( C 1 · Z )  + P11) dD. Jn Pl C 
(33) 

where B = Trs  2 (S ) + Trd 
2 (S ). The optimal material p1 is determined by

the Euler-Lagrange equation as 

and the optimal energy density is 

if P ?
t 

< 1
(34) 

.f opt 1 i P1 = 

The last equality describes the quasi-convex envelope of the energy, that is the 
minimal energy stored in any body under given load. The specific energy stored 
in the material is equal to I(S)/ p(S). 

3. Numerics
In this section we consider examples of optimal design of planar structures with 
domain-wise constant material properties. The design variables characterize 
third-rank matrix-layered composite within each of a number of prespecified 
sub-domains of the structure. The structures are determined from a condition 
of minimum total complementary energy. Therefore, we solve the optimization 
problems by means of design sensitivity analysis and a niethod of mathematical 
program1ning. 

At this point we note that parametrization of the effective compliance tensor 
in terms of layer densities Pn and layer orientations 0n , see (35), is known to lead 
to local minima of the total complementary energy, see, e.g., Pedersen (1989). 
For the solution of the present problem we therefore choose a parameterization 
of the effective compliance tensor in terms of the so-called moment variables, 
see, e.g., Francfort & JVIurat (1986) and Avellaneda & Milton (1989). This 
parameterization of the effective compliance tensor is, due to the convexity of the 
complementary energy in terms of the moments, perfectly suited for an iterative 
hierarchical design approach where the global distribution of material (the p 
parameters) is improved in an outer loop while the optimal configuration of the 
microstructures are found numerically as solutions to a set of inner optimization 
problems in the moment variables. For a discussion of the convexity properties of 
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the moment fornrnlation the reader is referred to Lipton (1993), while examples 
on application of moment formulations to solution of topology optimization 
problems can be found in Lipton & Soto (1995); Lipton & Diaz (1994); Krog & 
Olhoff (1997). 

For the sake of completeness we shall now first give a description of the 
moment formulation, before considering examples of optimal material design 
for structures with domain-wise constant material properties. 

3.1. The moment forn1.ulation 

A parameterization of the effective compliance tensor in terms of moments is 
obtained by applying the following variable substitutions to (5) 

N N 

m1 = 2::>ncos(2Bn) m2 = 2:>nsin(20n) 
n=l n=l 

N N 
m3 = 2::>ncos( 40n) m4 = LPnSin(40n) 

n=l n=l 

whereby the effective compliance matrix in (5) becomes 

with 

M=  
2

1 + m3 m4 - - -
2 2 

1 - m3 

2 

1 

(35) 

(36) 

(37) 

The moment variables m = { m1, . . .  , m4} fulfill certain conditions. This set 
of conditions is easily established considering the case where we range over all 
possible layer directions. In this case the moments become 

/27r m1 = Jo p(0)cos(20)d0

/27r m3 = Jo p(0)cos(40)d0 ;

/27r m2 = Jo p(0)sin(20)d0

127r 
m4 = p(0)sin(40)d0 

Opi 

(38) 

With this definition of the moments and the solution to the trigonometric mo-
ment problem, see Krein & Nudelmann (1977), we easily get the set of feasible 
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01 

Figure l .  Design domain, load and boundary conditions 

moments 
mr + m  '.S 1 , - 1  '.S m3 '.S 1 ,

} 2mi 2m  ma - 4m1m2m4 l--+--+ ----=--< 1 + m3 1 - m3 1 - m  -
(39) 

The expressions in (36)-(39) give us the effective properties for the set of all 
finite-rank matrix-layered composites. A method for identifying the third-rank 
rnicrostructure which corresponds to a given set of moments can be found in 
Lipton (1993). 

Applying the above parameterization for the effective compliance matrix of 
the optimal material design problem in ( 4) we obtain the alternative form 

s.t.

min 
Pi 

L p
=

V 

min min 
Uj ES j r n i  EH 

1 I - C--Z· 2L...t i i 

i=l 
(40) 

Here the outer optimization problem determines the macroscopic distribution 
of material in the structure, while the inner optimization problem determines 
the microstructure in each of the sub-domains f k  We note that the inner 
optimization problem actually may be solved as a set of smaller minimization 
problems, one for each of the sub-domains f k  Both the outer optimization 
problem and the inner optimization problem are suited for a solution by design 
sensitivity analysis and mathematical programming. 

3.2. Example 

Applying the moment formulation described in the previous section, we now 
consider a series of examples of optimal design of planar structures with domain-
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1 2 4 8 16 
1 1.000 0.881 0.827 0.794 0.774 
2 0.765 0.658 0.598 0.565 0.548 
4 0.679 0.588 0.537 0.508 0.493 

Table l .  Normalized total complementary energy for optimal designs. (Rows 
correspond to alternative numbers of horizontal subdomains, while columns -
of vertical ones). 

wise constant material properties. A plane design domain which is subjected 
to a single concentrated load and supported as shown in Fig. 1 is considered, 
and by applying a symmetry condition we analyze only the upper half of the 
structure. 

The upper half of the structure is initially discretized into 8x32 four-node 
anisotropic finite elements. Thereafter it is divided into a number of sub-
domains which we will assume to have constant material properties. We use 
as design variables the ones which characterize the third matrix-layered com-
posite in each of the sub-domains of the structure, and study the performance 
of the optimal designs as the number of these sub-domains is increased. 

In all examples, the available amount of the stiffer material in the matrix-
layered composite is set to be 40% of the design domain volume, and we specify 
the stiffness ratio between the stiff and the soft material in the microstructure 
to be 100, while both materials are taken to have the same Poisson's ratio of 
0.3. 

Table 1 shows the total complementary energy for a series of optimal de-
signs, obtained using 1, 2 and 4 horizontal sub-domains with 1, 2, 4, 8 and 
16 vertical sub-domains. As expected, it is seen that the total complementary 
energy decreases when the number of sub-domains with independent material 
properties are increased. 
R e m a r k :  We notice the importance of actual division of the structure into 
sub-domains. Optimally this division of the structure should be obtained as 
a part of the solution to a more general optimization problem, rather than be 
performed manually. 

The pictures of the optimal designs are shown in Figs. 2-6. It should be 
stressed that the pictures are only the illustrations of the optimum microstruc-
tures. The distance between the layers has been used to illustrate the different 
length scales in the third-rank microstructure, while layer thicknesses are used to 
illustrate the density of material in each level of the third-rank microstructure. 
In reality both the distance between layers and the layer thicknesses should be 
infinitely small. It should also be mentioned that the microstructures shown 
represent just one of the possible realizations of a third-rank microstructure 
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that will give exactly the same set of effective material properties. Indeed, the 
formula ( 4) does not specify which layer is "thicker", and therefore there are at 
least three equivalent solutions to it. 

From the series of pictures of the optimal designs it becomes clear that 
the stiff material will be concentrated in the areas where the stress field has 
singularities, that is - where the concentrated load is applied and where the 
beam is attached to the rigid support. The smaller the sub-domains of the 
structure, the higher the concentration of the stiff material in these areas. 

Next, when studying the microstructure of the material we see that the 
optimal material has everywhere a third-rank microstructure. We also see that 
the stronger la y ers of the stiff material become practically speaking co-aligned 
with what we should expect to be the principal stress directions in a domain. 
That means: at =r:45degrees near the core of the beam where we have large 
shearing stresses and at zero degrees in areas where we have large bending 
stresses. Another effect which might be observed is that the stronger la y ers of 
stiff material bend when we get closer to the tip of the beam in order to catch 
the concentrated load at this point. 
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Figure 2. Optimal designs obtained using l x l ,  2xl,  and 4 x l  domains with 
constant material properties. 



278 A.V. CHERKAEV, L.A. KROG, I. KUCUK 

Figure 3. Optimal designs obtained using lx2, 2x2, and 4x2 domains with 
constant material properties. 
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Figure 4. Optimal designs obtained using 2x4, 2x4, and 4x4 domains with 
constant material properties. 
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Figure 5. Optimal designs obtained using lx8, 2x8, and 4x8 domains with 
constant material properties. 
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Figure 6. Optimal designs obtained using lxl6, 2xl6, and 4xl6 domains with 
constant material properties. 
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