
Control and Cybernetics 
vol. 27 (1998) No. 2 

Shape optimization of a loudspeaker diaphragm with 
respect to sound directivity properties 

by 

S!Ziren T .  Christensen a n d  Niels  Olhoff 

Institute of Mechanical Engineering, Aalborg University, 
Pontoppidanstraede 101, DK-9220 Aalborg East, Denmark 

A b s t r a c t :  This paper presents a novel method for optimiz-
ing the directivity of the sound emission from the diaphragm of 
an electro dynamic loudspeaker. The analysis of the diaphragm is 
performed by finite element analysis of the structural dynamic be-
haviour and using the boundary element method for the acoustic 
analysis. Through optimization of a dead mass distribution on the 
diaphragm, or of the shape of the mid-surface of the diaphragm, 
it has been possible to improve its directivity properties for sound 
emission. Several illustrative examples are presented at the end of 
the paper. 
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design, finite element method, boundary element method 

1. Introduction
An ideal diaphragm would have a piston-like behaviour with a variable, fre-
quency dependent radius. This is obviously not possible with an ordinary loud-
speaker unit where the radius is fixed, and the diaphragm only behaves as a 
piston in the lower part of its frequency range. This is the reason why a typi-
cal loudspeaker has several units of different radii, in order to cover the entire 
audible frequency range. 

Modern loudspeaker units exhibit good mechanical and acoustic behaviour, 
but only within a specific frequency range, which is due to the physical be-
haviour of the diaphragm "breaking up" when the excitation frequency exceeds 
a threshold value. At the same time, while the sound radiation is uniform in all 
directions when the frequency is in the lower part of its range, the diaphragm 
has a tendency to radiate within a more narrow angle for increasing excitation 
frequencies. This is caused by interference phenomena that occur when the 
sound wave length in the air becomes equal to or larger than the circumferen-
tial distance of the diaphragm. This naturally leads to the idea of designing a 
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diaphragm which has a frequency dependent effective radius, i.e., to perform an 
optimization of the diaphragm design with a view to decouple the outer parts 
of the diaphragm for frequencies above the threshold value. Such an approach 
was taken by Vollesen (1994), who formulated a mechanical objective function 
for the optimization which was based on a frequency dependent decoupling of 
the diaphragm. However, due to problems concerning differentiability of the 
objective function, definitive optimum designs were not obtained. 

Several formulations of objective functions have been investigated in this 
paper: first a mechanical objective function based on a frequency dependent 
effective radius was tried, then an acoustic objective function based on the 
energy flux from the diaphragm was formulated, but both failed in being able 
to make the directivity uniform. Finally, an objective function directly based 
on the attainment of a desired directivity diagram was formulated and led to 
successful results. 

Three different types of axisymmetric design models have been investigated 
in this paper, first a flat circular diaphragm with the design variables taken to be 
the masses and radial positions of a set of concentric, dead ring masses attached 
to the diaphragm. Secondly, we applied a design model taking the shape of the 
mid-surface of a membrane of constant thickness as design variable, describing 
the surface by a quadratic B-spline. Finally, we used a design model similar to 
the previous one, but based on a cubic spline and inserted in a soft surround, 
with consideration that both the diaphragm and the surround have a variable 
thickness. Furthermore, both single and multiple frequency optimizations have 
been performed for these types of design model. 

In order to be able to perform the optimization, a structural-acoustic cou-
pled combination of the Finite Element (FE) and the Boundary Element (BE) 
methods has been used. The B E  code has been implemented in the general op-
timum design system ODESSY which is being developed at Aalborg University 
and makes it possible to use a wide range of design variables, see Lund (1994) 
and Rasmussen et al. (1993). 

2. Acoustic analysis
The acoustic analysis is performed by using the B E  method based on the 
Helmholtz integral in the following form, see Sorokin (1995), Wu, Seybert and 
Li (1993), and Brebbia (1991) (an axisymmetric formulation may be found in 
M0ller, 1993 or Soenarko, 1993), 

C(P) p(P) = ls (p(Q)0  R) + iwpavn(Q)G(R)) dS (1) 

Here, p(P) is the acoustic pressure at the point P, vn (Q) is the normal velocity 
at the point Q of the structural surface S with the unit normal vector n, and 
it is assumed that p(Q) and p(P) satisfy the Helmholtz wave equation V2p + 
k2

p = 0 for time harmonic waves, where k = ';!- denotes the wavenumber, 
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c and w denote the speed of sound in the acoustic medium and the angular 
frequency, respectively. The function G(R) is the free-space Green's function, 
G(R) = e - ; ;R , where R is the distance between the points P and Q, and the
coefficient C(P) is the space-angle at the observation point. 

The procedure consists in subdividing the surface of the structure into N 
elements and to make a discretization of the Helmholtz integral. This makes it 
possible to set up a system of equations for the relationship between the surface 
pressure and the displacement. The system of equations is set up to formulate 
the coupled structural acoustic problem. First, equations are formulated by 
letting the points P be the nodal points on the surface. For a single node i 
the pressure can then be found as the sum of contributions from all the finite 
elements. By  setting up this equation for all the N nodes, the following system 
of equations is formed 

N N 

C(P)p(P) =   le aG , Q) p dS(Q) -   le G(Pi, Q) p0 w2 un dS(Q)(2)

where v = iwu has been inserted. 
In the following a new notation for the acoustic equations and an axisym-

metric formulation of (1) is introduced, see Moller (1993) or Soenarko (1993). 

A = C(P) - t [e 12
"    (Pi, Q) d0(Q)r(Q)dL(Q)

B = - t J, j 2

" G(Pi, Q) p0 w2 d0(Q)r(Q)dL(Q) 
j = l  Le 0 

(3) 

(4) 

Now the equation system giving the relation between surface pressures p and 
normal components of the displacement amplitudes Un is expressed as 

A p  = B Un (5) 

where the influence matrices A and B are fully populated, complex, and non-
symmetric. 

The structural equation in finite element form is found to be 

(K(nxn) - w2 M(nxn) + i w c(nxn)) u(nxl) = fm(nxl) + f a (nxl) (6) 

where f a denotes the fluid pressure load on the structure. When this equation 
is combined with the relation between surface pressure and normal displacement 
in (5), we have the following system of equations (Seybert, Wu and Li, 1991) 
which expresses the coupling between the finite element (FE) model and the 
boundary element (BE) analysis: 

[ 
K(nxn) _ w2 M(nxn) + i w c(nxn)

-B(lxl) T r (lxn)
L(nxl) ] 

{u(nxl) } {fm(nxl)} 

A(lxl) p(lx1) = o(lx1) (7) 
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Here, K, M a n d  C denote the global stiffness, mass, and damping matrices of 
the vibrating structure. The matrix T r  executes the transition from the total 
number of structural degrees of freedom n to the number of degrees of free-
dom l represented by the normal displacement amplitudes used in the acoustic 
analysis, by projection of the displacement amplitude vector onto the normal 
vector. L denotes the fluid/structure coupling matrix, and is used to find the 
force vector f a which the fluid pressure generates on the surface, 

-L(nxl) p(lx1) = f a (nxl) (8) 

The sizes of the vectors are described in terms of n structural degrees of freedom, 
the number m of modes used in the analysis, and l which denotes the number 
of surface nodes. 

2.1. Eigenvector synthesis technique 

By using the eigenvector synthesis technique it is possible to reduce the size of 
the system of equations (7), see Wu, Seybert and Li (1991). The displacement 
u can be approximated by a linear combination of the eigenvectors S for the
undamped system, i.e., the structure in vacuum. Another possibility would have 
been to use Ritz or Lanczos vectors instead of eigenvectors, which would make 
it possible to reduce the number of vectors further due to the smaller number 
of vectors to be used, see Jeans and Mathews (1991), or Seybert, Wu and Li
(1991). The displacement vectors u can thus be expressed as 

U(nxl) = S (nxm) > ,
(mxl)
s (9) 

where As denotes the participation vector, describing the participation from 
each eigenvector to the overall displacement, and m denotes the number of 
eigenvectors used in the approximation. 

It is now possible to write the system of equations as follows, where the 
number of DOF is reduced substantially compared to the initial problem: 

[K(mxm) 
_ w2 M(mxm) + i w c(mxm) 

SS SS SS -B(mxm) 
SS 

L(nxl)] 
{ 

A (mx 1) 
} 

ffm (mx 1 ) }  

A(lxl) p(lxl) =l 88

o(lxl) (10) 

If the eigenvectors S are orthonormalized with respect to the mass matrix M 
and Rayleigh damping is used, we have C = a M + (3 C, where a and (3 are 
constants. By introducing the modal damping ratio (i = ½ ( ;:, + Wi (3), 
we can find the matrices in (10) as 

K(mxm) 
SS 

c(mxm) 
SS 

[ "'--2_ ] (mxm) 
. w i",. 

[ "'-- .t. ](mxm) . w,c,i",. 

Min;'xm) = [."'--himxm) 
B(mxm) = s T  (mxl) B(lxl) s(lxm)

ss n n 



Shape optimization of a loudspeaker diaphragm 181 

Now the following equation can be derived for determination of the partici-
pation vector for each of the given eigenvectors by inserting p = A - 1 BTru in 
the structural part of (10): 

[(K(mxm) - w 2 M(mxm) + i w c ( m x m l )  + 
SS SS SS 

( sT (mxn) L(nxl) A - l ( l x l )  B(lxl)  s xm))] { Aimxl)}  = { t: (mxl)}  (11)

When the participation vector is found, it may be used for finding the pressure 
using (9) and p = A - l  BTru. Having determined both the surface pressure 
and the displacement vectors, we can determine the pressures in the acous-
tic medium by using (1). This is done by writing a new set of the equations 
and calculating the integrals corresponding to the points chosen in the acoustic 
medium. Thus, no system of equations needs to be solved; the pressures can 
be found by multiplication of the new integrals by the surface pressures and 
displacements. 

3. Optimization
In order to select an effective objective function, differently formulated objective 
functions were considered for optimizing a distribution of dead ring masses on 
flat membranes. The reason for choosing a flat structure for this investigation 
was to be able to explain and verify that the design determined was actually 
optimum, and to understand the mechanism which gives a uniform directivity. 

The following objective functions were investigated: first a mechanical ob-
jective function based on a frequency dependent effective radius was tried, and 
then an acoustic one based on the energy flux from the diaphragm, but both 
failed in being able to render the directivity uniform. Finally, an objective func-
tion directly based on the directivity diagram was formulated, and it made it 
possible to obtain a uniform directivity for a flat membrane. 

This objective function was taken to be the sum of the p-norms of the differ-
ences between a prescribed target pressure and the actual sound pressure at a 
number of N points, n = l ,  .. N, lying on a circle with a radius of 3 m from the 
center of the diaphragm, which is the usual distance applied for sound pressure, 
see Fig. 1 and (12), 

N 

f({a}) = L (R':: - R t (12) 
n=l 

where R'::, and R , are respectively, the desired and the obtained sound pressure 
values at the points n, n=l ,  ... ,N, and {a} is the vector of design variables. 

The design variables for the first design problem to be considered in this 
paper are taken to be the masses mi and the radial positions ri, i = 1, ... ,I, of 
a set of concentric, dead ring masses attached to the diaphragm, i.e., the vector 
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- - - - Target curve 
- Obtained curve 

Figure 1. The principle of the objective function 

of design variables is { a }  = {m1, .... ,m1,r1, .... ,r1} T , and the optimization
problem is formulated mathematically as 

N 

min[J({a}) = L (R':: - R Y]
n=l 

subject to: 
I 

L m i 2 ' .  M 
i=l 
0 :S mi :S m f  
0 :S ri '.S A 

i 
i 

1, .... , I 
1, .... ,I 

(13) 

Here, the first constraint specifies a total mass M of the ring masses which is 
a minimum allowable value when the targeted dB level is larger than the dB 
level of the initial and the optimized diaphragm. Normally, this constraint is 
only active during the first iterations. The subsequent constraints are simple 
side constraints on the design variables, where m f  are given upper values for 
the individual masses, and A denotes the outer radius of the diaphragm. 

As will be reported in Section 4, first a design model consisting of a flat 
plate with an initially uniform distribution of discrete ring-masses attached to 
the surface is investigated in order to study a mechanism which may give a 
uniform directivity. These investigations show that it is possible to obtain a 
nearly uniform directivity for a flat membrane in the whole audible frequency 
range. This is achieved by placement of large ring masses in the inner part of the 
diaphragm which makes the diaphragm work as a point source by practically 
decoupling the outer parts of the membrane at high frequencies. Furthermore, 
a multifrequency analysis is performed in Section 4 which leads to an increase of 
the frequency interval in which the uniform directivity can be maintained at the 
same sound pressure level as that of the design optimized for a single frequency. 

In Section 5, a second type of design model will be considered. In this 
design model, the shape of the mid-surface of the diaphragm is taken as a 
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design variable, and described by a quadratic B-spline. The B-spline is defined 
by 9 points where 8 of the points may move vertically, see Figs. 11 or 17. The 
design variables for this model are the positions of the points described through 
point modifiers k The optimization problem based on this design model is 
formulated as 

N 

min[f({a}) (R'-/: - R  ? l  (14) 
n=l 

subject to: 

tl   Ji  < ft i = 1, .... ,I 

where the point modifiers Ji are subjected to the lower and upper side contraints 
values Jf and ft. 

The underlying structural acoustic analysis for the optimization problems is 
carried out as described in the foregoing, Due to the complexity of the prob-
lems, the sensitivity analysis of the objective function with respect to the design 
variables is performed by a simple finite difference approach, and a method of 
sequential linear programming is used for the optimization. 

The investigations based on the design model in Section 5 confirm the results 
found in Section 4, namely that in order to obtain uniform directivity, the 
diaphragm area which radiates sound should be restricted in size. 

In Section 6, a third design model is investigated, where the diaphragm 
considered is an axisymmetric shell with a soft surround. Here, the design 
variables are taken to be 8 modifiers defin'ing a cubic B-spline that represents 
the shape of the mid-surface of the diaphragm. Furthermore, the thicknesses 
of the shell and of the surround are used as design variables. Using this model 
in Section 6, it is again shown that it is possible to obtain uniform directivity 
through a multifrequency optimization. 

4. Example: Optimization of masses
The diaphragm is first considered as a flat, uniform circular elastic plate mod-
elled with Mindlin axisymmetric elements (see Cook, 1974, and Tessler, 1982) 
to which a set of circular, concentric dead ring masses are attached. The radii 
and the magnitudes of these ring masses are adopted as design variables. For 
this flat plate structure the first term of the Helmholtz integral in (2) vanishes, 
and the integral reduces to Rayleigh's integral where the space angle C(p) is 
set to 2n due to the presence of an infinity large rigid baffie. It should be men-
tioned that the use of discrete masses for control of acoustic properties has been 
demonstrated by St. Pierre and Koopmann (1995) for the different problem of 
reducing the sound power radiation from plates by attaching optimally sized 
discrete masses to the plates, similarly, Lamancusa (1993), used the thickness 
of plates for a close formulation. 
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Figure 2. Design model for flat circular diaphragm with attached ring masses 

Fig. 2 shows the design model where 32 ring-formed dead masses are at-
tached to a circular clamped plate exited by a central, harmonically varying 
point force f( t)  = Aeiwt with A =  lN. The data for the design model can be 
seen in Table 1. 

Material data Model data 
Young's Modulus E 1.5E9 N/m:!. Plate thickness h 0.5 mm 

Plate radius a 4 0 m m  
Density p 600 kg/m3 Number of elements m 100 
Poisson's ratio v 0.3 
Damping parameter 0.01 

Table 1. Model data 

Firstly, the present design model was investigated for an excitation frequency 
of 10,000 Hz which results in a very directive pattern. The target value for the 
sound pressure at the semi-circle of radius 3 m from the membrane, was taken 
to be 90 dB. This value was chosen to be higher than the medium value for 
the sound pressure level at the corresponding semi-circle of the initial design, in 
order to make the optimized design radiate efficiently. In principle, the formu-
lation of the objective function allows the target sound pressure to be chosen 
arbitrarily along any closed curve in front of the membrane. Fig. 3 shows the 
directivity pattern for a flat diaphragm plate, both for an initially uniform distri-
bution of the discrete masses, and after the optimization of the discrete masses 
has been performed. It is clearly seen that the optimized directivity curve is 
much more uniform than the initial one. The target curve for the optimization 
is also shown in Fig 3. 

Figs. 5 and 4 show, respectively, the optimum discrete mass distribution, and 
the modulus of the structural velocity as a function of the radial distance before 
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Figure 3. Directivity pattern initially and after optimization at 10,000 Hz (with 
respect to a target level of 90 dB) 

and after the optimization. It is seen that the ring masses are located along 
nodal circles. Small masses are found near the center at the radius of 0.005 
mm and introduce the first nodal circle, while large masses are located at larger 
radii. 

The two velocity plots in Fig. 4 clearly illustrate that for the optimized de-
sign, the vibration amplitudes of the outer parts of the membrane are decreased, 
while the vibration amplitudes of the inner parts have been increased. This is 
closely connected with the discrete ring mass distribution which has a first large 
value at the radius of 0.0135 m, and after this distance the amplitudes of vibra-
tions are reduced. 

Fig. 6 shows the energy flux, scaled to unity, plotted as a function of the 
radial distance, both for the initial and for the optimized design. It is clearly 
seen that the energy flux from the optimized design is concentrated near the 
center of the membrane, while almost no flux is radiated from the outer part. 
The flux distribution explains the uniformity of the directivity diagram for the 
optimum design: since the flux is concentrated near the center, the membrane 
acts like a point source, which is always characterized by uniform directivity. 

Another way of explaining this behaviour is that the concentrated flux makes 
interference phenomena unlikely to occur because the size of the area which 
radiates sound is small compared to the sound wave length in air. (As is well-
known, it is interference phenomena which cause the narrow dips in directivity 
diagrams, viz. the curve for the initial design in Fig. 3). 
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Figure 7. Directivity patterns for single frequency optimized design subjected 
to different frequencies 

Although the structure is optimized for just one frequency of 10,000 Hz, 
i t  maintains a uniform directivity over a wide frequency range spanning over 
several eigenfrequencies. This can be seen from Fig. 7 which shows the direc-
t ivity diagram for the obtained design when subjected to excitation frequencies 
smaller and larger than 10,000 Hz. Here i t  is seen that the directivity remains 
uniform for all the frequencies, but that the sound pressure levels are different 
for the different excitation frequencies ( the signatures for the curves indicate 
the excitation frequencies). 

An  experience gained from the optimization is that i t  is advantageous to 
perform the optimization stepwise, by starting with a low value of the excitation 
frequency for which the response yields a uniform directivity, and then increase 
the frequency in small steps until the frequency of interest is reached. By using 
this procedure, i t  is possible to avoid the occurrence of the narrow dips in the 
sound pressure level which are seen on the curve in Fig. 3 corresponding to the 
initial design. 

In  order to widen the frequency range for which the design maintains the 
uniform directivity, a multifrequency optimization was carried out using the 
same design model, but optimizing simultaneously for the excitation frequencies 
500 Hz, 10000 Hz and 15000 Hz. The reasons for choosing the low frequency of 
500 Hz for which the directivity can be expected to be uniform, is that this to 
a certain extent will ensure that the sound pressure levels for low frequencies 
are not lowered by optimization, which is often found to be the case when the 
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Figure 8. Directivity patterns initially and after multifrequency optimization at 
500, 10,000 and 15,000 Hz (with respect to a target level of 90 dB) 

design is optimized for a single high excitation frequency. This phenomenon can 
be seen in Fig. 7, where the directivity curve for 500 Hz corresponds to a lower 
sound pressure level. 

For the multifrequency optimization problem, the objective function is sim-
ply defined as the sum of the three individual single frequency objectives, see 
(12). The result of the multifrequency optimization problem is presented in 
Fig. 8 which shows the directivity patterns for the three different frequencies 
initially and after the optimization. As is seen it has been possible to obtain 
a nearly uniform directivity at the same sound pressure level for the three fre-
quencies. 

If the multifrequency optimized design is subjected to frequencies for which 
it is not optimized, the behaviour naturally can be expected to be better than 
that of the single frequency optimized design; this can be seen by comparing 
Fig. 7 and Fig. 9. However, it is possible to excite the diaphragm by frequencies 
such that the uniformity of the directivity of the diaphragm is lost; this problem 
may be solved by using more frequencies in the optimization. 

The mass distribution for the multifrequency optimum design example is 
shown in Fig. 10, and it is seen that the masses are basically distributed as in 
the case of the design optimized for a single frequency, with a large mass near 
the center, but whereas the single frequency design had three large masses the 
multifrequency design only has one large mass. This is due to the inclusion of 
the low frequency of 500 Hz in the multifrequency optimization problem. 
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Figure 9. Directivity patterns for multifrequency optimized design subjected to 
additional frequencies 
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Figure 11. Design model for axisymmetric diaphragm with shape of mid-surface 
as a design variable 

5. Example: Shape optimization

The second design model to be investigated is an axisymmetric elastic shell of 
constant thickness which is modelled by means of Mindlin axisymmetric shell 
elements. 

The design variables are taken to be 8 modifiers defining the shape of a 
quadratic B-spline spanned by 9 points, governing the shape of the mid-surface 
of the diaphragm. Using the shape as a design variable requires full formulation 
of the Helmholtz integral, since now the first term will no longer vanish, and 
also the baffie needs to be discretized. The design model can be seen in Fig. 11. 
The data for the design model are the same as in the previous example except 
for the discretization of the baffie, and the design model is again excited by 
a central, harmonically varying point force j(t) = Ae i w t with A = l N  and a 
frequency of 10,000 Hz. 

Th e motivation for choosing the shape of the mid-surface as a design variable 
is that we pursue to demonstrate similarities between the optimum designs for 
two different design models, and this way verify the relevance of the found 
optima. In addition, we believe that the shape is a more practical design variable 
than discrete masses. 

The result of the single frequency optimization is shown in Fig. 12, together 
with the directivity plot for the initial design and the target curve which is again 
taken to represent a target level of 90 dB. 

The figure shows that the directivity is improved significantly corn.pared 
to the initial design. The optimized shape of the diaphragm mid-surface as a 
function of the radial coordinate is shown in Fig. 13, with the center-axis located 
at the left hand side. 
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In order to compare the optimum design for the first design model in Fig. 2 
whith that of the present design model (Fig. 11), we plot in Fig. 14 the modulus 
of velocity and in Fig. 15 the flux scaled to unity, of the optimum solution just 
obtained. 

A comparison of Figs. 14 and 15 with the corresponding Figs. 4 and 6, re-
spectively, shows that the optimum designs based on the first and second design 
model exhibit precisely the same behavioural characteristics, which may be seen 
as a validation of the obtained designs. 

If the design which is shape optimized at the frequency of 10,000 Hz is 
subjected to other excitation frequencies, e.g. 1,000, 5,000, 13,000 and 15,000 
Hz, see Fig. 16, the same tendency is found as in Fig. 7, namely that all the 
directivities are almost uniform whereas the sound pressure levels are different. 

The conclusions of our investigations so far are that both the objective func-
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Figure 16. Directivity patterns for single frequency optimized design subjected 
to different frequencies 

tion formulated directly relative to the directivity plot and the two design mod-
els with either discrete masses or the mid-surface shape as design variables, are 
well suited for yielding uniform directivity by optimization. In fact, it has been 
shown by optimization of two different design models that the optimum mech-
anism for obtaining uniform directivity is that the diaphragm acts as a point 
source. In the following example, a more complicated design model is presented, 
and the experience obtained with the previous model will be utilized. 

6. E x a m p l e :  S h a p e  a n d  t h i c k n e s s  o p t i m i z a t i o n

Multifrequency optimization seems to be a good tool for elimination of change 
in sound pressure levels with different frequencies. Furthermore, inserting the 
diaphragm in a soft surround of fixed design will make it possible to increase the 
sound pressure levels at low frequencies. Another possibility may be to use the 
thicknesses of the diaphragm and of the surround as design variables, too. These 
augmentations have all been implemented in the design model shown in Fig. 17. 
As in all the preceding design models, the structure is modelled by Mindlin 
axisymmetric shell elements, and subjected to an external excitation force acting 
at the center as shown in Fig. 17. The cubic B-spline defining the shape of the 
mid-surface of the diaphragm is spanned by 9 points and have 8 modifiers. The 
circular arc between p9 and plO is the soft surround which is inserted around 
the diaphragm. Furthermore, the thickness of both the diaphragm and of the 
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Figure 17. Design model for an initially flat diaphragm with a soft surround 

surround is used as design variables (tl and t2, cf. Fig.17). 
The excitation frequencies for which the diaphragm will be optimized, are 

chosen to be 500, 7,000 and 10,500 Hz, i.e. low, medium, and high frequency 
are considered. The diaphragm is surrounded by a rigid baffle. The target level 
for the sound pressure level is chosen to be 85 dB which is very close to the 
average of the initial design. 

The model has additional data as given in Table 2. 

Material data Membrane Surround 
Young's Modulus E l.5E9 N/m'/, 3.0E7 N/m'/, 

Mass density p 600 kg/m3 700 kg/m3 

Poisson's ratio v 0.3 0.33 
Damping parameter  0.01 0.01 
Model data Membrane Surround 
initial thickness h 0.5mm 1.0mm 
Num. elem. m 100 33 

Table 2. Model data 

The directivity results for the multifrequency optimization example are pre-
sented in Fig. 18 which shows the target curve for the sound pressure level and 
the directivity diagrams for the initially flat as well as for the optimized ax-
isymmetric shell design. It is seen that, as expected, the directivities have been 
smoothened considerably as compared with the initial ones. 

The optimized shell has a conical shape in the vicinity of the center, then 
a curved part and again a nearly conical shape which results in a more stiff 
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Figure 18. Directivity patterns initially and after multifrequency optimization 
at 500, 7,000 and 10,500 Hz (with respect to a target level of 85 dB) 
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Figure 19. Optimized shape of diaphragm mid-surface 

behaviour of the outer part, see Fig. 19. The thicknesses of the diaphragm and 
the surround which were also used as design variables, changed only slightly: 
the final thickness of the surround decreased from 1 mm to 0.991 mm, while the 
thickness of the diaphragm remained unchanged. 

This example shows that it is possible to obtain a nearly uniform directivity 
pattern for the frequencies considered. Further tests of the optimized design 
when subjected to other frequencies, have shown that the directivity remains 
uniform. up to 13,000 Hz. However, it has been found that further improvement 
can be obtained if more frequencies are considered in the optimization. 
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7. Conclusions

The directivity of a loudspeaker diaphragm has been optimized using as design 
variables the magnitudes and positions of a set of ring masses attached to the 
surface of the diaphragm, or the shape of the mid-surface of the diaphragm 
described through a quadratic B-spline. 

The objective function was formulated directly to give a directivity pattern 
in the form of a semi-circle. However, the formulation of the objective function 
is very flexible and in principle it is possible to optimize the directivity towards 
any arbitrary shape. 

The optimization of a flat circular membrane showed the possibility to obtain 
a uniform directivity for the entire audio frequency range, and it was found 
that the resulting energy flux from this membrane was concentrated around 
the center of the membrane, and in practice making the membrane acting like 
a point source. This actually ascertains that the point source is optimum for 
rendering the directivity uniform; this was indicated by two different design 
models. 

The problem was then to achieve this decoupling for a wide range of fre-
quencies. When the diaphragm is subjected to both high and low frequencies, 
this leads to trade-offs in the optimal design. At a low frequency, a stiff de-
sign is required to yield a reasonably high sound pressure level, whereas the 
uniformity of the directivity is not a problem, while at a high frequency, a soft 
design is required in order to make the diaphragm decoupled and to yield a 
uniform directivity. In order to obtain a design that offers a compromise on 
these requirements, a multifrequency optimization has been performed. The 
optimized design showed some improvement in the overall behaviour compared 
to a design optimized for a single frequency. However, it is believed that more 
frequencies should be included in the optimization if further improvements are 
to be obtained. 

The structural vibration problem was analysed by the finite element method, 
while the acoustics problem was solved using the boundary element method. 
The size of the coupled structural acoustic equation system was reduced by 
usage of eigenvector synthesis for the structural modes. 

The general structural optimization tool ODESSY which is being developed 
at the Institute of Mechanical Engineering of Aalborg University, was used as a 
basis for the structural analyses, and a boundary element module was developed 
and implemented for the acoustic analyses. 

First, optimization led to a diaphragm designed such as to act essential]y 
as a point source by placing a large mass in the inner part of the membrane, 
which introduced a nodal circle and decoupled the outer part of the membrane, 
thereby concentrating the area which radiates sound to be in the vicinity of the 
center. Secondly, it was shown that using the shape of the mid-surface as a 
design variable, it was possible to obtain a similar behaviour of the diaphragm. 

Finally, the shape of the mid-surface of a diaphragm inserted in a soft sur-
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round was optimized simultaneously for three different frequencies, and it was 
shown that it was possible to obtain a nearly uniform directivity pattern for 
each of these frequencies. 
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