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Abstract: In this paper, we consider a set-valued minimax frac-
tional programming problem (MFP), where the objective as well
as constraint maps are set-valued. We introduce the notion of ρ-
cone arcwise connectedness of set-valued maps as a generalization
of cone arcwise connected set-valued maps. We establish the suf-
ficient Karush-Kuhn-Tucker (KKT) conditions for the existence of
minimizers of the problem (MFP) under ρ-cone arcwise connected-
ness assumption. Further, we study the Mond-Weir (MWD), Wolfe
(WD), and mixed (MD) types of duality models and prove the corre-
sponding weak, strong, and converse duality theorems between the
primal (MFP) and the corresponding dual problems under ρ-cone
arcwise connectedness assumption.

Keywords: convex cone; set-valued map; contingent epideriva-
tive; arcwise connectedness; duality

1. Introduction

The class of minimax fractional programming problems are mainly studied in
various fields of mathematics, economics, and operational research. In 1990, Ya-
dav and Mukherjee (1990) formulated two types of duality models and proved
the duality theorems of differentiable fractional minimax programming prob-
lems. Later, in 1995, Chandra and Kumar (1995) introduced two types of
modified duality models and derived the duality theorems of differentiable frac-
tional minimax programming problems. Bector and Bhatia (1985) and Weir
(1992) established the optimality conditions and studied weak and strong duality
theorems of differentiable fractional minimax programming problems. Zamlai
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(1987) established the necessary and sufficient optimality conditions and de-
rived duality theorems of differentiable fractional minimax programming prob-
lems under generalized invexity assumption. Mishra (1995, 1998, 2001) studied
pseudolinear fractional minmax programming, generalized pseudo convex min-
imax programming, and pseudoconvex complex minimax programming prob-
lems. Mishra et al. (2003, 2004) studied nondifferentiable minimax fractional
programming and complex minimax programming problems under generalized
convexity. Liu and Wu (1998) established the sufficient optimality conditions
and proved duality theorems of differentiable fractional minimax programming
problems under (F, ρ)-convexity assumption. Ahmad (2003) established the suf-
ficient optimality conditions and proved duality theorems of differentiable frac-
tional minimax programming problems under ρ-invexity assumption. Liang and
Shi (2003) established the sufficient optimality conditions and formulated the
duality theorems of fractional minimax programming problems under (F, α, ρ, d)-
convexity assumption. Lai et al. (1999) established the necessary and sufficient
optimality conditions and studied the parametric duality theorems of nondiffer-
entiable fractional minimax programming problems under generalized convexity
assumption. Lai and Lee (2002) proved the parameter-free duality theorems of
nondifferentiable minimax fractional problems under generalized convexity as-
sumption. Ahmad and Husain (2006) established the sufficient optimality con-
ditions and proved the duality theorems of nondifferentiable minimax fractional
programming problems under (F, α, ρ, d)-convexity assumptions. Das and Na-
hak (2017) established the KKT sufficient optimality conditions of set-valued
minimax programming problems via contingent epiderivative and generalized
cone convexity assumptions. They also formulated the Mond-Weir, Wolfe, and
mixed types duals and proved the corresponding duality theorems.

In 1976, Avriel (1976) introduced the concept of arcwise connectedness as
a generalization of convexity by replacing the line segment joining two points
by a continuous arc. Later, Fu and Wang (2003) and Lalitha et al. (2003) in-
troduced the notion of cone arcwise connected set-valued maps as an extension
of the class of convex set-valued maps. Lalitha et al. (2003) established the
sufficient optimality condition for a constrained set-valued optimization prob-
lem via contingent epiderivative and cone arcwise connectedness assumptions.
In 2013, Yu (2013) established the necessary and sufficient optimality condi-
tions for global proper efficiency in vector optimization problem involving cone
arcwise connected set-valued maps. Yihong and Min (2016) introduced the con-
cept of α-order nearly cone arcwise connected set-valued maps and derived the
necessary and sufficient optimality conditions of some set-valued optimization
problems. Yu (2016) established the necessary and sufficient optimality con-
ditions for global proper efficient element in vector optimization problem with
cone arcwise connected set-valued maps. In 2018, Peng and Xu (2018) intro-
duced the notion of cone subarcwise connected set-valued maps and established
the second-order necessary optimality conditions for local global proper efficient
elements of set-valued optimization problems.
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In this paper, we establish the sufficient KKT conditions of a set-valued mini-
max fractional programming problem (MFP) under contingent epiderivative and
generalized cone arcwise connectedness assumptions. Further, we formulate the
different types of duality models and prove a variety of duality relationships be-
tween the primal problem (MFP) and the corresponding dual problems (MWD),
(WD), and (MD).

This paper is organized as follows. Section 2 deals with some definitions
and preliminary concepts of set-valued maps. A set-valued minimax fractional
programming problem (MFP) is introduced and the sufficient KKT conditions
are established for the problem (MFP) in Section 3. Various types of duality
theorems are proved under generalized cone arcwise connectedness assumptions.

2. Definitions and preliminaries

Let V be a real normed space and Ω be a nonempty subset of V . Then Ω is
called a cone if λv ∈ Ω, for all v ∈ Ω and λ ≥ 0. Furthermore, Ω is called
non-trivial if Ω 6= {θV }, proper if Ω 6= V , pointed if Ω ∩ (−Ω) = {θV }, solid if
int(Ω) 6= ∅, closed if Ω = Ω, and convex if λΩ+ (1− λ)Ω ⊆ Ω, for all λ ∈ [0, 1],
where int(Ω) and Ω denote the interior and closure of Ω, respectively and θV is
the zero element of V .

Aubin (1981) and Aubin and Frankowska (1990) introduced the notion of
contingent cone to a nonempty subset of a real normed space. Also, Aubin and
Frankowska (1990) as well as Cambini et al. (1999) introduced the notion of
second-order contingent set to a nonempty subset of a real normed space.

Definition 1 (Aubin, 1981; Aubin and Frankowska, 1990) Let V be a re-
al normed space, ∅ 6= B ⊆ V , and v′ ∈ B. The contingent cone to B at v′ is
denoted by T (B, v′) and is defined as follows: an element v ∈ T (B, v′) if there
exist sequences {λn} in R, with λn → 0+ and {vn} in V , with vn → v, such
that

v′ + λnvn ∈ B, ∀n ∈ N,

or, there exist sequences {tn} in R, with tn > 0 and {v′n} in B, with v′n → v′,
such that

tn(v
′
n − v′) → v.

Let U , V be real normed spaces, 2V be the set of all subsets of V , and Ω be
a solid pointed convex cone in V . Let F : U → 2V be a set-valued map from
U to V , i.e., F(u) ⊆ V , for all u ∈ U . The effective domain, image, graph, and
epigraph of F are defined respectively by

dom(F) = {u ∈ U : F(u) 6= ∅},

F(A) =
⋃

u∈A

F(u), for any ∅ 6= A ⊆ U,
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gr(F) = {(u, v) ∈ U × V : v ∈ F(u)},

and

epi(F) = {(u, v) ∈ U × V : v ∈ F(u) + Ω}.

Jahn and Rauh (1997) introduced the notion of contingent epiderivative
of set-valued maps, which plays a vital role in various aspects of set-valued
optimization problems.

Definition 2 (Jahn and Rauh, 1997) A single-valued map D↑F(u′, v′) : U →
V , whose epigraph coincides with the contingent cone to the epigraph of F at
(u′, v′), i.e.,

epi(D↑F(u′, v′)) = T (epi(F), (u′, v′)),

is said to be the contingent epiderivative of F at (u′, v′).

We now turn our attention to the notion of cone convexity of set-valued
maps, introduced by Borwein (1977).

Definition 3 (Borwein, 1977) Let A be a nonempty convex subset of a real
normed space U . A set-valued map F : U → 2V , with A ⊆ dom(F), is called
Ω-convex on A if ∀u1, u2 ∈ A and λ ∈ [0, 1],

λF(u1) + (1− λ)F(u2) ⊆ F(λu1 + (1− λ)u2) + Ω.

Avriel (1976) introduced the notion of arcwise connectedness as a gener-
alization of convexity by replacing the line segment joining two points by a
continuous arc.

Definition 4 A subset A of a real normed space U is said to be an arcwise
connected set if for all u1, u2 ∈ A there exists a continuous arc Hu1,u2

(λ) defined
on [0, 1], with a value in A, such that Hu1,u2

(0) = u1 and Hu1,u2
(1) = u2.

Fu and Wang (2003) and Lalitha et al. (2003) introduced the notion of
cone arcwise connected set-valued maps as an extension of the class of convex
set-valued maps.

Definition 5 (Fu and Wang, 2003; Lalitha et al., 2003) Let A be an ar-
cwise connected subset of a real normed space U and F : U → 2V be a set-valued
map, with A ⊆ dom(F). Then F is said to be Ω-arcwise connected on A if

(1− λ)F(u1) + λF(u2) ⊆ F(Hu1,u2
(λ)) + Ω, ∀u1, u2 ∈ A and ∀λ ∈ [0, 1].

Peng and Xu (2018) introduced the notion of cone subarcwise connected
set-valued maps.
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Definition 6 (Peng and Xu, 2018) Let A be an arcwise connected subset of
a real normed space U , e ∈ int(Ω), and F : U → 2V be a set-valued map, with
A ⊆ dom(F). Then, F is said to be Ω-subarcwise connected on A if

(1− λ)F(u1) + λF(u2) + ǫe ⊆ F(Hu1,u2
(λ)) + Ω,

∀u1, u2 ∈ A, ∀ǫ > 0, and ∀λ ∈ [0, 1].

Definition 7 A set-valued map F : Rn → 2R
m

is called upper semicontinuous
if F+(V ) = {x ∈ Rn : F (x) ⊆ V } is open in Rn for any open set V in Rm.

Definition 8 Let B be a nonempty subset of Rm. Then, B is said to be Rm
+ -

semicompact if every open cover of complements of the form

{(yi + Rm
+ )c : yi ∈ B, i ∈ I}

has a finite subcover.

Definition 9 A set-valued map F : Rn → 2R
m

is called Rm
+ -semicompact-

valued if F(x) is Rm
+ -semicompact, for all x ∈ dom(F).

Let U, V be real topological vector spaces, A be a nonempty subset of U ,
F : U → 2V be a set-valued map, and Ω be a pointed convex cone in V .
Consider a set-valued optimization problem (P):

max
u∈A

F(u). (P)

The maximizer of the problem (P) is defined in the following way.

Definition 10 Let u′ ∈ A and v′ ∈ F(u′). Then (u′, v′) is called a maximizer
of the problem (P) if there exist no u ∈ A and v ∈ F(u) such that

v′ < v.

Corley (1987) derived the existence results of solutions of a set-valued maxi-
mization problem in real topological vector spaces, where the objective function
is an upper semicontinuous and cone semicompact-valued set-valued map.

Theorem 1 (Corley, 1987) Let U, V be real topological vector spaces, A be
a nonempty compact subset of U , and Ω be an acute (i.e. Ω is pointed) convex
cone in V . Let F : U → 2V be Ω-semicompact-valued and upper semicontinuous.
Then there exists a maximal point for the problem (P).

3. ρ-cone arcwise connectedness

Das and Nahak (2014, 2016a,b, 2017a,b, 2020a,b), and Treanţă and Das (2021)
introduced the notion of ρ-cone convexity of set-valued maps. They established
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the sufficient KKT optimality conditions and developed the duality results for
various types of set-valued optimization problems under contingent epiderivative
and ρ-cone convexity assumptions. For ρ = 0, we have the usual notion of cone
convex set-valued maps introduced by Borwein (1977).

We introduce the notion of ρ-cone arcwise connectedness of set-valued maps
as a generalization of cone arcwise connected set-valued maps.

Definition 11 Let A be an arcwise connected subset of a real normed space U ,
u1, u2 ∈ A, e ∈ int(Ω), and F : U → 2V be a set-valued map, with A ⊆ dom(F).
Then F is said to be ρ-Ω-arcwise connected with respect to e on A for u1, u2 if
there exists ρ ∈ R, such that

(1− λ)F(u1) + λF(u2) ⊆ F(Hu1,u2
(λ)) + ρλ(1− λ)‖u1 − u2‖

2e+Ω,

∀λ ∈ [0, 1].
(1)

Definition 12 Let A be an arcwise connected subset of a real normed space U

e ∈ int(Ω), and F : U → 2V be a set-valued map, with A ⊆ dom(F). Then F
is said to be ρ-Ω-arcwise connected with respect to e on A if there exists ρ ∈ R,
such that (1) holds for all u1, u2 ∈ A.

Remark 1 If ρ > 0, then F is said to be strongly ρ-Ω-arcwise connected, if
ρ = 0, we have the usual notion of Ω-arcwise connectedness, and if ρ < 0, then
F is said to be weakly ρ-Ω-arcwise connected. Obviously, strongly ρ-Ω-arcwise
connectedness ⇒ Ω-arcwise connectedness ⇒ weakly ρ-Ω-arcwise connectedness.

Further, we construct an example of ρ-cone arcwise connected set-valued
map, which is not cone arcwise connected.

Example 1 Let U = R2, V = R, Ω = R+, and

A =

{
u = (u1, u2) | u1 + u2 ≥

1

3
, u1 ≥ 0, u2 ≥ 0

}
⊆ U.

Define

Hu,u′(λ) = (1− λ2)u+ λ2u′,

where u = (u1, u2), u′ = (u′
1, u

′
2), and λ ∈ [0, 1]. Clearly, A is an arcwise

connected set. Define a set-valued map F : R2 → 2R as follows:

F(u) =

{
[0, 3], if u1 + u2 ≥ 1

3
, u1 6= 3u2, u = (u1, u2),

[4, 7], otherwise.

We choose u = (1, 0), u′ = (0, 1), and λ = 1
2
. Then,

Hu,u′

(1
2

)
=

(3
4
,
1

4

)
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and

1

2
F(1, 0)+

1

2
F(0, 1) =

1

2
[0, 3]+

1

2
[0, 3] = [0, 3] * [4, 7]+R+ = F

(3
4
,
1

4

)
+R+.

Hence, F is not R+-arcwise connected. On the other hand, by considering
ρ = −2 and e = 4, we get that

(1− λ)F(1, 0) + λF(0, 1) = (1− λ)[0, 3] + λ[0, 3] = [0, 3]

and

F(Hu,u′(λ)) + ρλ(1− λ)‖u− u′‖2e = F(1− λ2, λ2)− 16λ(1− λ).

For λ 6= 1
2
, we have

F(1− λ2, λ2) = [0, 3].

So,

(1−λ)F(1, 0)+λF(0, 1)+16λ(1−λ) = [0, 3]+16λ(1−λ) ⊆ [0, 3]+R+ = R+.

For λ = 1
2
, we have

F(1− λ2, λ2) = F
(3
4
,
1

4

)
= [4, 7].

So,

(1− λ)F(1, 0) + λF(0, 1) + 12λ(1− λ) = [0, 3] + 4 = [4, 7] ⊆ [4, 7] + R+.

Consequently, F is a (−2)-R+-arcwise connected set-valued map with respect to
4 on A for (1, 0), (0, 1).

Theorem 1 Let A be an arcwise connected subset of a real normed space U ,
e ∈ int(Ω), and F : U → 2V be ρ-Ω-arcwise connected with respect to e on A.
Let u′ ∈ A and v′ ∈ F(u′). Then,

F(u)− v′ ⊆ D↑F(u′, v′)(H′
u′,u(0+)) + ρ‖u− u′‖2e+Ω, ∀u ∈ A,

where

H′
u′,u(0+) = lim

λ→0+

Hu′,u(λ)−Hu′,u(0)

λ
,

assuming that H′
u′,u(0+) exists for all u, u′ ∈ A.

Proof Let u ∈ A. As F is ρ-Ω-arcwise connected with respect to e on A,
we have

(1− λ)F(u′) + λF(u) ⊆ F(Hu′,u(λ)) + ρλ(1− λ)‖u− u′‖2e+Ω,

∀λ ∈ [0, 1].
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Let v ∈ F(u). Consider a real sequence {λn}, with λn ∈ (0, 1), n ∈ N, such that
λn → 0+ when n → ∞. Suppose

un = Hu′,u(λn)

and

vn = (1− λn)v
′ + λnv − ρλn(1− λn)‖u− u′‖2e.

Therefore,

vn ∈ F(un) + Ω.

It is clear that

un = Hu′,u(λn) → Hu′,u(0) = u′, vn → v′, when n → ∞,

un − u′

λn

=
Hu′,u(λn)−Hu′,u(0)

λn

→ H′
u′,u(0+), when n → ∞,

and

vn − v′

λn

= v−v′−ρ(1−λn)‖u−u′‖2e → v−v′−ρ‖u−u′‖2e, when n → ∞.

Therefore,

(H′
u′,u(0+), v − v′ − ρ‖u− u′‖2e) ∈ T (epi(F), (u′, v′)) = epi(D↑F(u′, v′)).

Consequently,

v − v′ − ρ‖u− u′‖2e ∈ D↑F(u′, v′)(H′
u′,u(0+)) + Ω,

which is true, for all v ∈ F(u). Hence,

F(u)− v′ ⊆ D↑F(u′, v′)(H′
u′,u(0+)) + ρ‖u− u′‖2e+Ω, ∀u ∈ A.

Hence, the theorem follows. ✷

4. Formulation of the main problem

Let A be a nonempty subset of Rn and B be a nonempty compact subset of Rm.
LetD1 andD2 be n×n positive semidefinite matrices. Let F ,H : Rn×Rm → 2R

and G : Rn → 2R
p

be set-valued maps, with

A×B ⊆ dom(F) ∩ dom(H) and A ⊆ dom(G).

Consider a set-valued minimax fractional programming problem

minimize
x∈A

max
⋃

y∈B

F(x, y) + (xTD1x)
1

2

H(x, y)− (xTD2x)
1

2

subject to G(x) ∩ (−Rp
+) 6= ∅.

(MFP)
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Define a set-valued map Φ : Rn × Rm → 2R by

Φ(x, y) =
F(x, y) + (xTD1x)

1

2

H(x, y)− (xTD2x)
1

2

, ∀(x, y) ∈ Rn × Rm,

assuming that

F(x, y) + (xTD1x)
1

2 ≥ 0

and

H(x, y)− (xTD2x)
1

2 > 0, ∀(x, y) ∈ A×B.

We assume that the set-valued map Φ(x, .) : Rm → 2R is R+-semicompact-
valued and upper semicontinuous on B, for all x ∈ A. Therefore, by Theorem
1, max

⋃
y∈B

Φ(x, y) always exists, for all x ∈ A. As Φ(x, y) ⊆ R, for each x ∈ A

there exists only one maximal point of the problem max
⋃

y∈B

Φ(x, y). The feasible

set of the problem (MFP) is

S′ = {x ∈ A : G(x) ∩ (−Rp
+) 6= ∅}.

The minimizer of the problem (MFP) is defined in the following way.

Definition 13 Let x′ ∈ S′ be a feasible point of the problem (MFP) and z′ =
max

⋃
y∈B

Φ(x′, y). Then (x′, z′) is called a minimizer of the problem (MFP) if

there exist no x ∈ S′ and z = max
⋃

y∈B

Φ(x, y), with x 6= x′, such that

z < z′.

For x ∈ A, define

I(x) = {j : 0 ∈ Gj(x), 1 ≤ j ≤ p}

J(x) = {1, ..., p} \ I(x),

B(x) =
{
y ∈ B : max

⋃

y∈B

Φ(x, y) ⊆ Φ(x, b)
}
,

and

K(x) =
{
(k, z∗, ỹ) ∈ N× Rk

+ × Rmk : 1 ≤ k ≤ n+ 1, z∗ = (z∗1 , ..., z
∗
k) ∈ Rk

+,

with
k∑

i=1

z∗i = 1, ỹ = (y1, ..., ys), with yi ∈ B(x), i = 1, ..., k
}
.
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As Φ(x, .) is R+-semicompact-valued and upper semicontinuous on B, ∀x ∈
A, we have

B(x′) 6= ∅, ∀x′ ∈ S′.

Let D be an n× n positive semidefinite matrix. Then, for all x,w ∈ Rn,

xTDw ≤ (xTDx)
1

2 (wTDw)
1

2 .

Moreover, if (wTDw)
1

2 ≤ 1, we have

xTDw ≤ (xTDx)
1

2 . (2)

5. Sufficient optimality conditions

We establish the sufficient KKT conditions of the set-valued minimax program-
ming problem (MFP) under ρ-cone arcwise connectedness assumption.

Theorem 2 (Sufficient optimality conditions) Let A be an arcwise connected
subset of Rn, x′ be a feasible point of (MFP), and z′ = max

⋃
y∈B

Φ(x′, y). Sup-

pose that there exist k ∈ N, (where 1 ≤ k ≤ n+ 1), z∗ = (z∗1 , ..., z
∗
k) ∈ Rk

+, with
k∑

i=1

z∗i = 1, yi ∈ B(x′), (1 ≤ i ≤ k), w, v ∈ Rn, w∗ = (w∗
1 , ..., w

∗
p) ∈ Rp

+, and

w′
j ∈ Gj(x

′) ∩ (−R+), (1 ≤ j ≤ p), such that

k∑

i=1

z∗i

(
D↑F(., yi)(x

′, yi) +D1w − z′(D↑(−H)(., yi)(x
′, yi)−D2v)

)
(H′

x′,x(0+))

+

p∑

j=1

w∗
jD↑Gj(x

′, w′
j)(H

′
x′,x(0+)) ≥ 0, ∀x ∈ A, (3)

p∑

j=1

w∗
jw

′
j = 0, (4)

wTD1w ≤ 1, vTD2v ≤ 1, (5)

(x′TD1x
′)

1

2 = x′TD1w, (6)

and

(x′TD2x
′)

1

2 = x′TD2v. (7)
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Assume that F(., yi) is ρi-R+-arcwise connected, (.)
TD1w is ρi-R+-arcwise con-

nected, −H(., yi) is ρ′i-R+-arcwise connected, (.)TD2v is ρ′i-R+-arcwise con-
nected and Gj, (1 ≤ j ≤ p), is νj-R+-arcwise connected with respect to 1, on A,
satisfying

k∑

i=1

z∗i

(
ρi + ρi − z′(ρ′i + ρ′i)

)
+

p∑

j=1

w∗
j νj ≥ 0. (8)

Then (x′, z′) is a minimizer of the problem (MFP).

Proof Suppose that (x′, z′) is not a minimizer of the problem (MFP).
Then, there exist x ∈ S′ and z = max

⋃
y∈B

Φ(x, y), with x 6= x′, such that

z < z′.

Since yi ∈ B(x′), i = 1, ..., k, we have

max
⋃

y∈B

Φ(x′, y) ∈ Φ(x′, yi).

As z′ = max
⋃

y∈B

Φ(x′, y), we have

z′ ∈ Φ(x′, yi), i = 1, ..., k.

Let zi ∈ Φ(x, yi). Again, as z = max
⋃

y∈B

Φ(x, y) and yi ∈ B(x′) ⊆ B, we

have

zi ≤ z.

Hence,

zi < z′.

As z′ ∈ Φ(x′, yi), there exist z′i ∈ F(x′, yi) and z′′i ∈ H(x′, yi) such that

z′ =
z′i + (x′TD1x

′)
1

2

z′′i − (x′TD2x′)
1

2

.

So,

z′i + (x′TD1x
′)

1

2 − z′(z′′i − (x′TD2x
′)

1

2 ) = 0, ∀i = 1, ..., k. (9)

Since zi ∈ Φ(x, yi), there exist z′i ∈ F(x, yi) and z′′i ∈ H(x, yi) such that

zi =
z′i + (xTD1x)

1

2

z′′i − (xTD2x)
1

2

.
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Therefore,

z′i + (xTD1x)
1

2

z′′i − (xTD2x)
1

2

< z′.

So,

z′i + (xTD1x)
1

2 − z′(z′′i − (xTD2x)
1

2 ) < 0, ∀i = 1, ..., k. (10)

Hence, we have

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)

≤
k∑

i=1

z∗i

(
z′i + (xTD1x)

1

2 − z′(z′′i − (xTD2x)
1

2 )
)
, (from (2) and (5))

< 0, (from (10))

=

k∑

i=1

z∗i

(
z′i + (x′TD1x

′)
1

2 − z′(z′′i − (x′TD2x
′)

1

2 )
)
, (from (9))

=
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
, (from (6) and (7)).

As x ∈ S′, there exists

wj ∈ Gj(x) ∩ (−R+).

Since w∗
j ≥ 0 (1 ≤ j ≤ p), we have

w∗
jwj ≤ 0, ∀1 ≤ j ≤ p.

So,

p∑

j=1

w∗
jwj ≤ 0.

Again, from (4), we have

p∑

j=1

w∗
jw

′
j = 0.

Therefore,

p∑

j=1

w∗
jwj ≤

p∑

j=1

w∗
jw

′
j .



Set-valued minimax fractional programming under ρ-cone arcwise connectedness 55

Hence,

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)
+

p∑

j=1

w∗
jwj

<

k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j .

(11)

As F(., yi) is ρi-R+-arcwise connected with respect to 1, on A and z′i ∈
F(x′, yi), we have

F(x, yi)− z′i ⊆ D↑F(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρi‖x− x′‖2 + R+.

Again, as z′i ∈ F(x, yi), we have

z′i − z′i ∈ D↑F(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρi‖x− x′‖2 + R+. (12)

Since (.)TD1w is ρi-R+-arcwise connected with respect to 1, on A, we have

xTD1w − x′TD1w ≥ D1w(H
′
x′,x(0+)) + ρi‖x− x′‖2 + R+. (13)

As −H(., yi) is ρ′i-R+-arcwise connected with respect to 1, on A and z′′i ∈
H(x′, yi), we have

−H(x, yi) + z′′i ⊆ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+.

Again, as z′′i ∈ H(x, yi), we have

−z′′i + z′′i ∈ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+. (14)

Since (.)TD2v is ρ′i-R+-arcwise connected with respect to 1, on A, we have

xTD2v − x′TD1v ≥ D2v(H
′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+. (15)

As Gj is νj-R+-arcwise connected with respect to 1, on A and w′
j ∈ Gj(x

′) ∩
(−R+), we have

Gj(x)− w′
j ⊆ D↑Gj(x

′, w′
j)(H

′
x′,x(0+)) + νj‖x− x′‖2 + R+.

Since wj ∈ Gj(x) ∩ (−R+), we have

wj − w′
j ∈ D↑Gj(x

′, w′
j)(H

′
x′,x(0+)) + νj‖x− x′‖2 + R+. (16)
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From (2), (8), and (12) - (16), we have

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)
+

p∑

j=1

w∗
jwj

≥
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j ,

which contradicts (11). Consequently, (x′, z′) is a minimizer of the problem
(MFP). ✷

6. Mond-Weir type dual

We consider a Mond-Weir type dual (MWD), correspoing to the primal problem
(MFP), where the set-valued maps F(., yi), −H(., yi) and Gj are contingent
epiderivable set-valued maps. Hence, we consider the following problem:

maximize z′ (MWD)

subject to

k∑

i=1

z∗i

(
D↑F(., yi)(x

′, yi) +D1w

− z′(D↑(−H)(., yi)(x
′, yi)−D2v)

)
(H′

x′,x(0+))

+

p∑

j=1

w∗
jD↑Gj(x

′, w′
j)(H

′
x′,x(0+)) ≥ 0, ∀x ∈ A,

for some k ∈ N, (1 ≤ k ≤ n+ 1) and yi ∈ B(x′),

p∑

j=1

w∗
jw

′
j ≥ 0,

wTD1w ≤ 1, vTD2v ≤ 1, (x′TD1x
′)

1

2 = x′TD1w,

(x′TD2x
′)

1

2 = x′TD2v, for some w, v ∈ Rn,

x′ ∈ A, z′ = max
⋃

y∈B

Φ(x′, y), w′ = (w′
1, ..., w

′
p), w

′
j ∈ Gj(x

′),

z∗ = (z∗1 , ..., z
∗
k), w

∗ = (w∗
1 , ..., w

∗
p), z

∗
i ≥ 0, w∗

j ≥ 0,

k∑

i=1

z∗i = 1,

where 1 ≤ i ≤ k and 1 ≤ j ≤ p.
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A point (x′, z′, w′, z∗, w∗), satisfying all the constraints of (MWD) is called
a feasible point of the problem (MWD).

Definition 14 A feasible point (x′, z′, w′, z∗, w∗) of the problem (MWD) is
called a maximizer of (MWD) if there exists no feasible point (x, z, w, z∗1 , w

∗
1)

of (MWD) such that

z′ < z.

Theorem 3 (Weak duality) Let A be an arcwise connected subset of Rn, x0

be a feasible point of (MFP) and (x′, z′, w′, z∗, w∗) be a feasible point of the
problem (MWD). Assume that F(., yi) is ρi-R+-arcwise connected, (.)TD1w

is ρi-R+-arcwise connected, −H(., yi) is ρ′i-R+-arcwise connected, (.)TD2v is
ρ′i-R+-arcwise connected and Gj, (1 ≤ j ≤ p), is νj-R+-arcwise connected with
respect to 1, on A, satisfying

(
ρi + ρi − z′(ρ′i + ρ′i)

)
+

p∑

j=1

w∗
j νj ≥ 0. (17)

Then,

max
⋃

y∈B

Φ(x0, y) ≮ z′.

Proof We prove the theorem by the method of contradiction. Suppose
that for z0 = max

⋃
y∈B

Φ(x0, y), z0 < z′. Since yi ∈ B(x′), i = 1, ..., k, we have

max
⋃

y∈B

Φ(x′, y) ∈ Φ(x′, yi).

As z′ = max
⋃

y∈B

Φ(x′, y), we have

z′ ∈ Φ(x′, yi), i = 1, ..., k.

Let zi ∈ Φ(x0, yi). Again, as z0 = max
⋃

y∈B

Φ(x0, y) and yi ∈ B(x′) ⊆ B, we

have

zi ≤ z0.

Hence, zi < z′. As z′ ∈ Φ(x′, yi), there exist z′i ∈ F(x′, yi) and z′′i ∈ H(x′, yi)
such that

z′ =
z′i + (x′TD1x

′)
1

2

z′′i − (x′TD2x′)
1

2

.



58 K. Das

So,

z′i + (x′TD1x
′)

1

2 − z′(z′′i − (x′TD2x
′)

1

2 ) = 0, ∀i = 1, ..., k. (18)

Since zi ∈ Φ(x0, yi), there exist z′i ∈ F(x0, yi) and z′′i ∈ H(x0, yi) such that

zi =
z′i + (xT

0 D1x0)
1

2

z′′i − (xT
0 D2x0)

1

2

.

Therefore,

z′i + (xT
0 D1x0)

1

2

z′′i − (xT
0 D2x0)

1

2

< z′.

So,

z′i + (xT
0 D1x0)

1

2 − z′(z′′i − (xT
0 D2x0)

1

2 ) < 0, ∀i = 1, ..., k. (19)

We have

k∑

i=1

z∗i

(
z′i + (xT

0 D1w)− z′(z′′i − (xT
0 D2v))

)

≤
k∑

i=1

z∗i

(
z′i + (xT

0 D1x0)
1

2 − z′(z′′i − (xT
0 D2x0)

1

2 )
)
, (from (2) and the constraints of (MWD))

< 0, (from (19))

=
k∑

i=1

z∗i

(
z′i + (x′TD1x

′)
1

2 − z′(z′′i − (x′TD2x
′)

1

2 )
)
, (from (18))

=
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
, (from the constraints of (MWD)).

As x0 ∈ S′, there exists

wj ∈ Gj(x0) ∩ (−R+).

Since w∗
j ≥ 0 (1 ≤ j ≤ p), we have

w∗
jwj ≤ 0, ∀j, (1 ≤ j ≤ p).

So,

p∑

j=1

w∗
jwj ≤ 0.



Set-valued minimax fractional programming under ρ-cone arcwise connectedness 59

Again, from the constraints of (MWD), we have

p∑

j=1

w∗
jw

′
j ≥ 0.

Therefore,

p∑

j=1

w∗
jwj ≤

p∑

j=1

w∗
jw

′
j .

Hence,

k∑

i=1

z∗i

(
z′i + (xT

0 D1w)− z′(z′′i − (xT
0 D2v))

)
+

p∑

j=1

w∗
jwj

<

k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j .

(20)

As F(., yi) is ρi-R+-arcwise connected with respect to 1, on A and z′i ∈
F(x′, yi), we have

F(x0, yi)− z′i ⊆ D↑F(., yi)(x
′, yi)(H

′
x′,x0

(0+)) + ρi‖x0 − x′‖2 + R+.

Again, as z′i ∈ F(x0, yi), we have

z′i − z′i ∈ D↑F(., yi)(x
′, yi)(H

′
x′,x0

(0+)) + ρi‖x0 − x′‖2 + R+. (21)

Since (.)TD1w is ρi-R+-arcwise connected with respect to 1, on A, we have

xT
0 D1w − x′TD1w ≥ D1w(H

′
x′,x0

(0+)) + ρi‖x0 − x′‖2 + R+. (22)

As −H(., yi) is ρ′i-R+-arcwise connected with respect to 1, on A and z′′i ∈
H(x′, yi), we have

−H(x0, yi) + z′′i ⊆ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x0

(0+)) + ρ′i‖x0 − x′‖2 +R+.

Again, as z′′i ∈ H(x0, yi), we have

−z′′i + z′′i ∈ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x0

(0+)) + ρ′i‖x0 − x′‖2 + R+. (23)

Since (.)TD2v is ρ′i-R+-arcwise connected with respect to 1, on A, we have

xT
0 D2v − x′TD1v ≥ D2v(H

′
x′,x0

(0+)) + ρ′i‖x0 − x′‖2 + R+. (24)
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As Gj is νj-R+-arcwise connected with respect to 1, on A and w′
j ∈ Gj(x

′) ∩
(−R+), we have

Gj(x0)− w′
j ⊆ D↑Gj(x

′, w′
j)(H

′
x′,x0

(0+)) + νj‖x0 − x′‖2 + R+.

Since wj ∈ Gj(x0) ∩ (−R+), we have

wj − w′
j ∈ D↑Gj(x

′, w′
j)(H

′
x′,x0

(0+)) + νj‖x0 − x′‖2 + R+. (25)

From (17), (21) - (25), and the constraints of (MWD), we have

k∑

i=1

z∗i

(
z′i + (xT

0 D1w)− z′(z′′i − (xT
0 D2v))

)
+

p∑

j=1

w∗
jwj

≥
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j ,

which contradicts (20). Therefore,

max
⋃

y∈B

Φ(x0, y) ≮ z′,

which completes the proof of the theorem. ✷

Theorem 4 (Strong duality) Let (x′, z′) be a minimizer of the problem (MFP)
and w′

j ∈ Gj(x
′) ∩ (−R+), (1 ≤ j ≤ p). Assume that for some positive integer

k, (1 ≤ k ≤ n + 1), z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k) with

k∑

i=1

z∗i = 1 and

w∗
j ≥ 0, (1 ≤ j ≤ p), Eqs. (2) - (7) are satisfied at (x′, z′, w′, z∗, w∗). Then,

(x′, z′, w′, z∗, w∗) is a feasible solution of (MWD). If the weak duality Theorem
3 between (MFP) and (MWD) holds, then (x′, z′, w′, z∗, w∗) is a maximizer of
(MWD).

Proof As Eqs. (2) - (7) are satisfied at (x′, z′, w′, z∗, w∗),

k∑

i=1

z∗i

(
D↑F(., yi)(x

′, yi) +D1w − z′(D↑(−H)(., yi)(x
′, yi)−D2v)

)
(H′

x′,x(0+))

+

p∑

j=1

w∗
jD↑Gj(x

′, w′
j)(H

′
x′,x(0+)) ≥ 0, ∀x ∈ A,

p∑

j=1

w∗
jw

′
j = 0,



Set-valued minimax fractional programming under ρ-cone arcwise connectedness 61

wTD1w ≤ 1, vTD2v ≤ 1,

(x′TD1x
′)

1

2 = x′TD1w,

and

(x′TD2x
′)

1

2 = x′TD2v.

Hence, (x′, z′, w′, z∗, w∗) is a feasible solution of (MWD). Suppose that the weak
duality Theorem 3 between (MFP) and (MWD) holds and (x′, z′, w′, z∗, w∗) is
not a maximizer of (MWD). Let (x, z, w, z∗1 , w

∗
1) be a feasible point for (MWD)

such that

z′ < z.

This contradicts the weak duality Theorem 3 between (MFP) and (MWD).
Consequently, (x′, z′, w′, z∗, w∗) is a maximizer for (MWD). ✷

Theorem 5 (Converse duality) Let A be an arcwise connected subset of Rn,
and (x′, z′, w′, z∗, w∗) be a feasible point of (MWD). Assume that F(., yi) is
ρi-R+-arcwise connected, (.)TD1w is ρi-R+-arcwise connected, −H(., yi) is ρ′i-
R+-arcwise connected, (.)

TD2v is ρ′i-R+-arcwise connected and Gj, (1 ≤ j ≤ p),
is νj-R+-arcwise connected with respect to 1, on A, satisfying (17). If x′ is a
feasible point of (MFP), then (x′, y′) is a minimizer of (MFP).

Proof Suppose that (x′, z′) is not a minimizer of the problem (MFP). Then
there exist x ∈ S′ and z = max

⋃
y∈B

Φ(x, y), with x 6= x′, such that

z < z′.

Since yi ∈ B(x′), i = 1, ..., k, we have

max
⋃

y∈B

Φ(x′, y) ∈ Φ(x′, yi).

As z′ = max
⋃

y∈B

Φ(x′, y), so that we have

z′ ∈ Φ(x′, yi), i = 1, ..., k.

Let zi ∈ Φ(x, yi). Again, as z = max
⋃

y∈B

Φ(x, y) and yi ∈ B(x′) ⊆ B, we have

zi ≤ z.

Hence, zi < z′. As z′ ∈ Φ(x′, yi), there exist z′i ∈ F(x′, yi) and z′′i ∈ H(x′, yi)
such that

z′ =
z′i + (x′TD1x

′)
1

2

z′′i − (x′TD2x′)
1

2

.



62 K. Das

So,

z′i + (x′TD1x
′)

1

2 − z′(z′′i − (x′TD2x
′)

1

2 ) = 0, ∀i = 1, ..., k. (26)

Since zi ∈ Φ(x, yi), there exist z′i ∈ F(x, yi) and z′′i ∈ H(x, yi) such that

zi =
z′i + (xTD1x)

1

2

z′′i − (xTD2x)
1

2

.

Therefore,

z′i + (xTD1x)
1

2

z′′i − (xTD2x)
1

2

< z′.

So,

z′i + (xTD1x)
1

2 − z′(z′′i − (xTD2x)
1

2 ) < 0, ∀i = 1, ..., k. (27)

We have

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)

≤
k∑

i=1

z∗i

(
z′i + (xTD1x)

1

2 − z′(z′′i − (xTD2x)
1

2 )
)
, (from (2) and the constraints of (MWD))

< 0, (from (27))

=

k∑

i=1

z∗i

(
z′i + (x′TD1x

′)
1

2 − z′(z′′i − (x′TD2x
′)

1

2 )
)
, (from (26))

=
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
, (from the constraints of (MWD)).

As x ∈ S′, there exists wj ∈ Gj(x) ∩ (−R+). Since w∗
j ≥ 0 (1 ≤ j ≤ p), we

have

w∗
jwj ≤ 0, ∀1 ≤ j ≤ p.

So,

p∑

j=1

w∗
jwj ≤ 0.

Again, from the constraints of (MWD), we have

p∑

j=1

w∗
jw

′
j ≥ 0.
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Therefore,

p∑

j=1

w∗
jwj ≤

p∑

j=1

w∗
jw

′
j .

Hence,

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)
+

p∑

j=1

w∗
jwj

<

k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j .

(28)

As F(., yi) is ρi-R+-arcwise connected with respect to 1, on A and z′i ∈
F(x′, yi), we have

F(x, yi)− z′i ⊆ D↑F(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρi‖x− x′‖2 + R+.

Again, as z′i ∈ F(x, yi), we have

z′i − z′i ∈ D↑F(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρi‖x− x′‖2 + R+. (29)

Since (.)TD1w is ρi-R+-arcwise connected with respect to 1, on A, we have

xTD1w − x′TD1w ≥ D1w(H
′
x′,x(0+)) + ρi‖x− x′‖2 + R+. (30)

As −H(., yi) is ρ′i-R+-arcwise connected with respect to 1, on A and z′′i ∈
H(x′, yi), we have

−H(x, yi) + z′′i ⊆ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+.

Again, as z′′i ∈ H(x, yi), we have

−z′′i + z′′i ∈ D↑(−H)(., yi)(x
′, yi)(H

′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+. (31)

Since (.)TD2v is ρ′i-R+-arcwise connected with respect to 1, on A, we have

xTD2v − x′TD1v ≥ D2v(H
′
x′,x(0+)) + ρ′i‖x− x′‖2 + R+. (32)

As Gj is νj-R+-arcwise connected with respect to 1, on A and w′
j ∈ Gj(x

′)∩
(−R+), we have

Gj(x)− w′
j ⊆ D↑Gj(x

′, w′
j)(H

′
x′,x(0+)) + νj‖x− x′‖2 + R+.
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Since wj ∈ Gj(x) ∩ (−R+), we have

wj − w′
j ∈ D↑Gj(x

′, w′
j)((H

′
x′,x(0+)) + νj‖x− x′‖2 + R+. (33)

From (17), (29) - (33), and the constraints of (MWD), we have

k∑

i=1

z∗i

(
z′i + (xTD1w)− z′(z′′i − (xTD2v))

)
+

p∑

j=1

w∗
jwj

≥
k∑

i=1

z∗i

(
z′i + (x′TD1w)− z′(z′′i − (x′TD2v))

)
+

p∑

j=1

w∗
jw

′
j ,

which contradicts (28). Consequently, (x′, z′) is a minimizer of the problem
(MFP). ✷

7. Wolfe type dual

We consider a Wolfe type dual (WD) correspoing to the primal problem (MFP),
where the set-valued maps F(., yi), −H(., yi) and Gj are contingent epiderivable
set-valued maps. This amounts to

maximize z′ +

p∑

j=1

w∗
jw

′
j (WD)

subject to

k∑

i=1

z∗i

(
D↑F(., yi)(x

′, yi) +D1w

−z′(D↑(−H)(., yi)(x
′, yi)−D2v)

)
(H′

x′,x(0+))

+

p∑

j=1

w∗
jD↑Gj(x

′, w′
j)(H

′
x′,x(0+)) ≥ 0, ∀x ∈ A,

for some k ∈ N, (1 ≤ k ≤ n+ 1), and yi ∈ B(x′),

wTD1w ≤ 1, vTD2v ≤ 1, (x′TD1x
′)

1

2 = x′TD1w,

(x′TD2x
′)

1

2 = x′TD2v, for some w, v ∈ Rn,

x′ ∈ A, z′ = max
⋃

y∈B

Φ(x′, y), w′ = (w′
1, ..., w

′
p), w

′
j ∈ Gj(x

′),

z∗ = (z∗1 , ..., z
∗
k), w

∗ = (w∗
1 , ..., w

∗
p), z

∗
i ≥ 0, w∗

j ≥ 0,
k∑

i=1

z∗i = 1,

where 1 ≤ i ≤ k and 1 ≤ j ≤ p.
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Definition 15 A feasible point (x′, z′, w′, z∗, w∗) of the problem (WD) is called
a maximizer of (WD) if there exists no feasible point (x, z, w, z∗, w∗) of (WD)
such that

z′ +

p∑

j=1

w∗
jw

′
j < z +

p∑

j=1

w∗
jwj ,

where
w′ = (w′

1, ..., w
′
p), w

∗ = (w∗
1 , ..., w

∗
p), w = (w1, ..., wp), and w∗ = (w∗

1, ..., w
∗
p).

We prove the duality results of Wolfe type of the problem (MFP). The proofs
are very similar to those of Theorems 3 - 5, and hence are omitted.

Theorem 6 (Weak duality) Let A be an arcwise connected subset of Rn, x0

be a feasible point of (MFP) and (x′, z′, w′, z∗, w∗) be a feasible point of the
problem (WD). Assume that F(., yi) is ρi-R+-arcwise connected, (.)TD1w is
ρi-R+-arcwise connected, −H(., yi) is ρ′i-R+-arcwise connected, (.)TD2v is ρ′i-
R+-arcwise connected and Gj, (1 ≤ j ≤ p), is νj-R+-arcwise connected with
respect to 1, on A, satisfying (17). Then,

max
⋃

y∈B

Φ(x0, y) ≮ z′ +

p∑

j=1

w∗
jw

′
j .

Theorem 7 (Strong duality) Let (x′, z′) be a minimizer of the problem (MFP)
and w′

j ∈ Gj(x
′) ∩ (−R+), (1 ≤ j ≤ p). Assume that for some positive integer

k, (1 ≤ k ≤ n + 1), z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k) with
k∑

i=1

z∗i = 1 and

w∗
j ≥ 0, (1 ≤ j ≤ p), Eqs. (2) - (7) are satisfied at (x′, z′, w′, z∗, w∗). Then

(x′, z′, w′, z∗, w∗) is a feasible solution of (WD). If the weak duality Theorem
6 between (MFP) and (WD) holds, then (x′, z′, w′, z∗, w∗) is a maximizer of
(WD).

Theorem 8 (Converse duality) Let A be an arcwise connected subset of Rn

and (x′, z′, w′, z∗, w∗) be a feasible point of (WD), with

p∑

j=1

w∗
jw

′
j ≥ 0. Assume

that F(., yi) is ρi-R+-arcwise connected, (.)TD1w is ρi-R+-arcwise connected,
−H(., yi) is ρ′i-R+-arcwise connected, (.)TD2v is ρ′i-R+-arcwise connected and
Gj, (1 ≤ j ≤ p), is νj-R+-arcwise connected with respect to 1, on A, satisfying
(17). If x′ is a feasible point of (MFP), then (x′, y′) is a minimizer of (MFP).

8. Mixed type dual

We consider a mixed type dual (MD) correspoing to the primal problem (MFP),
where the set-valued maps F(., yi), −H(., yi) and Gj are contingent epiderivable.
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This amounts to

maximize z′ +

p∑

j=1

w∗
jw

′
j (MD)

subject to

k∑

i=1

z∗i

(
D↑F(., yi)(x

′, yi) +D1w

−z′(D↑(−H)(., yi)(x
′, yi)−D2v)

)
(H′

x′,x(0+))

+

p∑

j=1

w∗
jD↑Gj(x

′, w′
j)(H

′
x′,x(0+)) ≥ 0, ∀x ∈ A,

for some k ∈ N, (1 ≤ k ≤ n+ 1) and yi ∈ B(x′),

p∑

j=1

w∗
jw

′
j ≥ 0,

wTD1w ≤ 1, vTD2v ≤ 1, (x′TD1x
′)

1

2 = x′TD1w,

(x′TD2x
′)

1

2 = x′TD2v, for some w, v ∈ Rn,

x′ ∈ A, z′ = max
⋃

y∈B

Φ(x′, y), w′ = (w′
1, ..., w

′
p), w

′
j ∈ Gj(x

′),

z∗ = (z∗1 , ..., z
∗
k), w

∗ = (w∗
1 , ..., w

∗
p), z

∗
i ≥ 0, w∗

j ≥ 0,
k∑

i=1

z∗i = 1,

where 1 ≤ i ≤ k and 1 ≤ j ≤ p.

Definition 16 A feasible point (x′, z′, w′, z∗, w∗) of the problem (MD) is called
a maximizer of (MD) if there exists no feasible point (x, z, w, z∗, w∗) of (MD)
such that

z′ +

p∑

j=1

w∗
jw

′
j < z +

p∑

j=1

w∗
jwj ,

where
w′ = (w′

1, ..., w
′
p), w

∗ = (w∗
1 , ..., w

∗
p), w = (w1, ..., wp), and w∗ = (w∗

1, ..., w
∗
p).

We prove the duality results of mixed type of the problem (MFP). The proofs
are very similar to those of Theorems 3 - 5, and hence are omitted.

Theorem 9 (Weak duality) Let A be an arcwise connected subset of Rn, x0

be a feasible point of (MFP) and (x′, z′, w′, z∗, w∗) be a feasible point of the
problem (MD). Assume that F(., yi) is ρi-R+-arcwise connected, (.)TD1w is
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ρi-R+-arcwise connected, −H(., yi) is ρ′i-R+-arcwise connected, (.)TD2v is ρ′i-
R+-arcwise connected and Gj, (1 ≤ j ≤ p), is νj-R+-arcwise connected with
respect to 1, on A, satisfying (17). Then,

max
⋃

y∈B

Φ(x0, y) ≮ z′.

Theorem 10 (Strong duality) Let (x′, z′) be a minimizer of the problem
(MFP) and w′

j ∈ Gj(x
′) ∩ (−R+), (1 ≤ j ≤ p). Assume that for some positive

integer k, (1 ≤ k ≤ n + 1), z∗i ≥ 0, yi ∈ B(x′), (1 ≤ i ≤ k) with

k∑

i=1

z∗i = 1

and w∗
j ≥ 0, (1 ≤ j ≤ p), Eqs. (2) - (7) are satisfied at (x′, z′, w′, z∗, w∗). Then

(x′, z′, w′, z∗, w∗) is a feasible solution of (MD). If the weak duality Theorem
9 between (MFP) and (MD) holds, then (x′, z′, w′, z∗, w∗) is a maximizer of
(MD).

Theorem 11 (Converse duality) Let A be an arcwise connected subset of
Rn and (x′, z′, w′, z∗, w∗) be a feasible point of (MD). Assume that F(., yi) is
ρi-R+-arcwise connected, (.)TD1w is ρi-R+-arcwise connected, −H(., yi) is ρ′i-
R+-arcwise connected, (.)

TD2v is ρ′i-R+-arcwise connected and Gj, (1 ≤ j ≤ p),
is νj-R+-arcwise connected with respect to 1, on A, satisfying (17). If x′ is a
feasible point of (MFP), then (x′, y′) is a minimizer of (MFP).

9. Conclusions

In this paper, we establish the sufficient KKT conditions of a set-valued min-
imax fractional programming problem (MFP) and study the duality results of
Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types under ρ-cone arcwise
connectedness assumption.
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